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Abstract: The Advanced Meteorological Image (AMI) onboard GEOKOMPSAT 2A (GK-2A) enables
the retrieval of dust aerosol optical depth (DAOD) from geostationary satellites using infrared (IR)
channels. IR observations allow the retrieval of DAOD and the dust layer altitude (24 h) over surface
properties, particularly over deserts. In this study, dust events in northeast Asia from 2020 to 2021
were investigated using five GK-2A thermal IR bands (8.7, 10.5, 11.4, 12.3, and 13.3 µm). For the dust
cloud, the brightness temperature differences (BTDs) of 10.5 and 12.3 µm were consistently negative,
while the BTD of 8.7 and 10.5 µm varied based on the dust intensity. This study exploited these optical
properties to develop a physical approach for DAOD lookup tables (LUTs) using IR channels to
retrieve the DAOD. To this end, the characteristics of thermal radiation transfer were simulated using
the forward model; dust aerosols were explained by BTD (10.5, 12.3 µm)—an intrinsic characteristic
of dust aerosol. The DAOD and dust properties were gained from a brightness temperature (BT)
of 10.5 µm and BTD of 10.5, 12.3 µm. Additionally, the cumulative distribution function (CDF) was
employed to strengthen the continuity of 24-h DAOD. The CDF was applied to the algorithm by
calculating the conversion value coefficient for the DAOD error correction of the IR, with daytime
visible aerosol optical depth as the true value. The results show that the DAOD product can be
successfully applied during the daytime and nighttime to continuously monitor the flow of yellow
dust from the GK-2A satellite in northeast Asia. In particular, the validation results for IR DAOD
were similar to the active satellite product (CALIPSO/CALIOP) results, which exhibited a tendency
similar to that for IR DAOD at night.

Keywords: dust aerosol optical depth (DAOD); GK-2A; thermal infrared; dust; cumulative distribution
function (CDF); aerosol robotic network (AERONET)

1. Introduction

To understand the current and future environmental challenges, we must characterize
the role of atmospheric aerosols in various meteorological processes across different envi-
ronments, impacting climate, weather, and air quality. Aerosol particles markedly impact
visibility [1,2], dimming [3], precipitation [4], air quality [5], and human health, including
blood circulation [6].

Mineral dust aerosols are a crucial atmospheric component, causing variabilities in
interactions with clouds by impacting their optical properties. In this way, dust aerosols
influence the radiative budget and global climate change by contributing to abnormal weather.

In northeast Asia, the wind-driven movement of aerosols relies on meteorological
conditions and affects the air quality. In particular, dust storms occur frequently during the
springtime, causing poor air quality in northeast Asia. In recent years, the frequency of
yellow dust events has increased in the winter and fall as they have become drier due to
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climate change. Therefore, it is an essential phenomenon for understanding Earth’s climate
circulation system.

Satellite monitoring is an important strategy for scrutinizing the properties of the dif-
ferent aerosol flow types: mineral dust, fine particles, and volcanic ash. The aerosol optical
depth (AOD) retrieved from satellites is the best indirect measurement for atmospheric
environmental research modeling studies. Accordingly, increased research attention has
been focused on reducing associated errors and, thus, improving the accuracy of AOD [7].
Many ground-based remote-sensing aerosol networks, including the aerosol robotic net-
work (AERONET), have been established globally. Additionally, basic optical properties
are derived from numerous Earth observation satellites, such as Geosynchronous Earth
Orbit (GEO) satellites, including the Advanced Baseline Imager (ABI), Advanced Himawari
Imager (AHI), Advanced Meteorological Imager (AMI), and Geostationary Ocean Color
Imager (GOCI). Furthermore, aerosol retrieval algorithms have been developed for Low
Earth Orbit (LEO) satellite instruments, such as the Advanced Very High-Resolution Ra-
diometer (AVHRR) [8,9], Ozone Monitoring Instrument (OMI) [10], Multiangle Imaging
Spectro-Radiometer (MISR) [11], Moderate Resolution Imaging Spectrometer (MODIS) [12],
Visible Infrared Imaging Radiometer Suite (VIIRS) [13,14], and Cloud and Aerosol Imager
(CAI) [15].

Previous studies on aerosol detection via satellite have performed measurements using
the visible channel. Meanwhile, GEO and LEO satellites have various visible and near-IR
channels, enabling corrected reflectivity and aerosol property retrieval with high accuracy.
However, aerosol observations using the visible channel are limited to the daytime. Ac-
cordingly, we sought to study dust aerosol in the nighttime IR spectral domain using the
Atmospheric Infrared Sounder (AIRS) or Infrared Atmospheric Sounding Interferometer
(IASI) [16,17]. However, to achieve this, IR spectral observations must complement solar
measurements. First, the terrestrial radiative forcing can be determined based on the effect
of dust on IR radiation [18]. Excluding bright surfaces, such as snow and deserts, it is
important to accurately observe the absorption of longwave radiation emitted from the
Earth’s surface [19]. Second, the sensitivity of DOAD is considerably impacted by the size
of aerosol particles. For example, coarse modes, such as mineral aerosols, are observed in
the IR domain. In contrast, pollution is derived in the visible and IR domains, making it
difficult to discriminate between them. Third, IR observations can be observed at night,
allowing the flow of dust to be monitored, which has proven practical in acquiring aerosols
regardless of surface characteristics [20–23].

The objectives of this study were to develop an advanced DAOD algorithm to identify
dust-storm outbreaks and their spatial extent using IR channels from Geo-Kompsat 2A
(GK-2A). Since only IR channels were used, the algorithm was applicable to daytime and
nighttime conditions. The DAOD of the IR domain was derived using a physical method
based on offline calculated look-up tables (LUTs). Furthermore, to increase the accuracy of the
DAOD, the CDF method was applied to analyze its qualitative and quantitative performances.

2. Materials and Methods
2.1. Materials
2.1.1. Satellite Observations: GEOKOMPSAT-2A (GK-2A)

The GK-2A of the Korean Meteorological Administration (KMA) has been performing a
meteorological satellite mission since 5 December 2018, and is currently operating well. The
GK-2A life is 10 years; its capability with multi-band and high temporal and spatial resolution
was verified during the 8 months in-orbit test period. Currently, GK-2A AMI scans the Earth’s
full disk every 10 min and the Korean Peninsula every 2 min over using high spatiotemporal
resolution (0.5–2 km). Similar to the GOES-16 (National Aeronautics and Space Administration,
NASA, Washington, DC, USA) and Himawari-8 (Japan Aerospace Exploration Agency, JAXA,
Tokyo, Japan), GK-2A has 16 channels: visual channels (0.47, 0.51, 0.64, and 0.86 µm), near-IR
channels (1.38 and 1.61 µm), and IR channels (3.8, 6.3, 6.9, 7.3, 8.7, 9.6, 10.5, 11.2, 12.3, and
13.3 µm) (Table 1). This satellite greatly improves the accuracy of precision weather and
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prognosticates extreme weather over the Korean Peninsula and the Asia-Pacific region.
GK-2A AMI diversifies channels and provides RGB color images using compositing tech-
niques. This allows real-time monitoring of various weather phenomena. Moreover, it can
be used for unpredictable and dangerous weather through continuous observation.

Table 1. Summary of the GK-2A/AMI spectral bands.

Band Band Name
Wavelength

Band Width (Max) Spatial Resolution
(km)Min (um) Max (um)

1 (blue) VIS0.47 0.43 0.48 0.075 1
2 (green) VIS0.51 0.52 0.52 0.063 1

3 (red) VIS0.64 0.63 0.66 0.125 0.5
4 (VIS) VIS0.86 0.85 0.87 0.088 1
5 (NIR) NIR1.37 1.37 1.38 0.03 2
6 (NIR) NIR1.61 1.60 1.62 0.075 2
7 (IR) SWIR3.8 3.74 3.96 0.5 2
8 (IR) WV6.3 6.06 6.43 1.038 2
9 (IR) WV6.9 6.89 7.01 0.5 2

10 (IR) WV7.3 7.26 7.43 0.688 2
11 (IR) IR8.7 8.44 8.76 0.5 2
12 (IR) IR9.6 9.54 9.72 0.475 2
13 (IR) IR10.5 10.3 10.6 0.875 2
14 (IR) IR11.2 11.1 11.3 1.0 2
15 (IR) IR12.3 12.2 12.5 1.25 2
16 (IR) IR13.3 13.2 13.4 0.75 2

2.1.2. AERONET

The Aerosol Robotic Network (AERONET) is an international ground-based aerosol
remote sensing network [23] (https://aeronet.gsfc.nasa.gov/ accessed on 1 January 2020).
It provides representative data to validate aerosol product data from the satellite. The
AERONET AOD uncertainty at Level 2 (version 2) is approximately 0.01 to 0.02, which
can be considered a true value to validate AMI AOD over land and ocean. In this study,
AERONET data was used to validate the accuracy of DAOD by performing a spatiotem-
poral collocation between AMI AOD 11.4 µm and AERONET observations. AERONET
observations within a 10-min span were averaged to perform ground-measured aerosol
loading; averaged AMI 11.4 µm AODs within a 10-km radius of one AERONET site were
used to represent satellite aerosol movement.

2.1.3. Suomi-NPP/VIIRS

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi
National Polar-Orbiting Partnership (S-NPP) satellite was launched in October 2011 and
was extend the performance of MODIS. VIIRS has various channels (visible, short, IR
spectral), providing numerous products with precise accuracy [24]. In particular, VIIRS
aerosol data (VIIRS AOD550s at Intermediate Product level) were computed in pixel
mode with a spatial resolution of 0.75 km. Hence, unlike MODIS, it can validate the
accuracy of products with high spatial resolution. The VIIRS product was downloaded
from the National Oceanic and Atmospheric Administration’s (NOAA)’s Comprehensive
Large Array-Data Stewardship System (CLASS) (https://www.ncei.noaa.gov, accessed on
1 January 2020). The data have undergone continuous evaluations with uncertainty ranges
of [∆τ = −0.470τ − 0.01 (lower bound), −0.0058τ + 0.09 (upper bound)] over land and
[∆τ = −0.238τ + 0.01 (lower bound), 0.194τ + 0.048 (upper bound)] over ocean [13]. The
VIIRS aerosol product was used to verify the accuracy of the DAOD developed in this
study for the yellow sand period in 2020.

https://aeronet.gsfc.nasa.gov/
https://www.ncei.noaa.gov
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2.1.4. CALIPSO/CALIOP

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the main instru-
ment of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
spacecraft, is a major sensor that studies interactions between aerosols, clouds, and verti-
cal profiles. Particularly, CALIPSO derives profiles of attenuated backscatter at 532 and
1064 nm and polarized backscatter at 532 nm. This study used an active sensor capable of
retrieving information about aerosols and clouds during the daytime and nighttime. Also,
CALIPSO has high horizontal and vertical resolutions of 333 m and 30–60 m, respectively,
facilitating the evaluation of aerosol (e.g., aerosol type, extinction profile, height, optical
depth), and cloud properties [25,26]. CALIPSO has three products levels that use raw
signals to distinguish clouds and aerosols (L1), reclassifies the types (L2), and provides
specific variables, such as extinction coefficients, AOD (L3). In this study, we used L3 data
to validate DAOD at night when yellow dust occurred.

2.1.5. Dust Storm Events in 2020–2021

In this study, the dust storm events that occurred between 2020 and 2021 in Northeast
Asia were the study objects as GK-2A satellite data were available for 24 h for the visible and
IR channels of the retrieved DAOD. Therefore, the National Meteorological Satellite Center
(NMSC) of KMA provided information on the optical depth monitoring of yellow dust while
simultaneously identifying the flow of dust storms and selecting cases that affect the Korean
Peninsula for use in forecasting (Table 2). This was applied to the dust event that occurred in
the spring of 2021 using training data based on the dust storm in 2020.

Table 2. Dust events in 2020–2021 used this study.

Satellite Data
Composition Dust Event Date Oriental Dust Location Analysis Day

Training dataset dust episodes
(2020)

16–17 February 2020 Dalian
(Northeast of China)

00:00 UTC–10:50 UTC

20–23 February 2020
Wulatezhongqi/Yanan~

Shandong province/
Bohai sea

12–14 March 2020
Tibetan Plateau~

Shandong province~
Bohai sea

18–19 March 2020 Inner Mongolia~Bohai sea
30 March–2 April 2020 Southeast of Mongolia

3–7 April 2020 Wulatezhongqi
(East of Monolia)

15–18 April 2020 Mongolia

20–22 April 2020 Dandong~Bohai sea~
Tongliao, Siping

24–25 April 2020 East of Mongolia
10–11 May 2020 Bohia sea~Siping
11–14 May 2020 Inner Mongolia

31 May–6 June 2020 Gobi Desert~ Wulatezhongqi~
Erenhot~Jurihe

5–11 June 2020 Taklamakan
9–11 June 2020 Gobi Desert

19–23 October 2020 Gobi Desert
30 October–2 November 2020 Gobi Desert

5–8 November 2020 Gobi Desert
7–8 November 2020 Manchuria

Analysis dataset dust edpisodes
(2021)

13–14 January 2021 Gobi Desert

00:00 UTC–23:50 UTC

21–22 February 2021 Gobi Desert
15–17 March 2021 Mongolia
23–28 March 2021 Gobi Desert
15–17 April 2021 Mongolia
26–27 April 2021 Mongolia
04–07 May 2021 Gobi Desert
23–24 May 2021 Gobi Desert

16 December 2021 Inner Mongolia
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2.2. Methods
2.2.1. Look-Up-Table-Based Physical Retrieval Algorithm

The DAOD was retrieved during the day and night utilizing a GK-2A IR channel. A
flowchart of the DAOD automated algorithm is shown in Figure 1.
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Figure 1. Flowchart of the Dust Aerosol Optical Depth (DAOD) product algorithm used by
GK-2A/AMI.

GK-2A Dust Pixel Retrievals

The GK-2A AMI Aerosol Detection Products (ADPS) algorithm can monitor the aerosol
category (e.g., dust, haze, and volcanic ash) by fusing the multiple channels [27,28]. These
characterizations and physical principles were used to determine the threshold values of
the dust algorithm. A GK-2A ADPS algorithm based on the BTD method was developed
to retrieve aerosol types to reflect daytime, nighttime land, and ocean characteristics
differently. This study focused on dust pixels using thermal IR (TIR) channels. This method
is widely used due to its advantage of monitoring dust at night and over bright surfaces,
such as deserts. Assuming that the temperature most similar to the surface temperature was
a clear pixel, the boundary value of BT10.5 was used as the most basic value [29]. During
the day, BT10.5 decreases in the presence of dust due to the maximum dust absorption of
10.5 µm [30] and peaks in bright surfaces (Equation (1)).

BT10.5 > 243.0 K (1)

The boundary value of this dust mask relies on the spatial and thermal distinctions
between aerosols and clouds; the depression of the brightness temperature difference
(BTD) between BT10.5 and BT12.3 (BTD10.5−12.3, Equation (2)) can be exhibited by the dust
plumes [30–34]. Using the characteristic of preferentially absorbing shorter wavelengths,
cloud components with silicate particles can be discriminated using various IR bands [35].
Silicate particles cause a negative BTD between BT10.5 and BT12.3 for the dust region, with
the longer wavelength channel recording a higher brightness temperature [35]. BT8.7 is
not as affected by the presence of dust but is much lower than BT10.5 under unspoiled
sky conditions. Therefore, BT8.7 and BT10.5 (BTD8.7−10.5, Equation (3)) are larger for dust
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than for the ground and clouds [30,36–39]. To improve the accuracy of dust detection,
11.2 µm and 12.3 µm (BTD11.2−12.3, Equation (4)) have similar spectral characteristics,
however, elicit strong signals for weak or low-altitude dust [40]. The brightness temperature
ratio (BTR) between the two wavelength channels was built to more precisely discriminate
between the dust and surface properties [41]. Typically, the ratios of BT10.5 and BT12.3
(BTR10.5−12.3) values are lower than over the dust region; therefore, in the algorithm, the
boundary value was applied to increase the accuracy of dust detection (Equation (5)).
Furthermore, the BTR value was applied by changing the channel values BT10.5 and BT8.7
(BTR10.5−8.7, Equation (6)). The BTD-BBTD (background) test uses 30-day background
image data and, thus, corrects the water vapor (Equation (7)). D*-parameter (Equation (8))
is computed by combining the dust absorption rate difference of 8.7, 10.5, and 12.3 µm
and the coefficient based on the empirical equation and is a representative variable that
can identify yellow dust. This parameter was created by Hansell to detect nighttime dust
since many silicate minerals with strong bands often absorb better at 8.7 µm than 10.5 µm,
leading to a negative BTD8.7−10.5. Therefore, a parameter is often designed such that a
value >1 indicates dust and a value < 1 indicates clouds [42].

On land, Equations (2)–(8) were applied:

BT10.5 − BT12.3 ≤ 0.1 (2)

BT10.5 − BT8.7 < −0.8 (3)

BT11.2 − BT10.5 ≥ 0.5 (4)

Ratio
[

BT10.5

BT12.3

]
≤ 0.1 (5)

Ratio
[

BT10.5

BT8.7

]
≤ 0.1 (6)

(BTD10.5−12.3)− (BBTD10.5−12.3) (7)

D∗ = exp{[(BTD10.5−12.3)− C]/[(BTD8.7−10.5)− E]} (8)

where the offsets C and E were set to be −0.5 and 15.
In the ocean, Equations (9)–(15) were applied:

BT10.5 − BT12.3 ≤ 0.1 (9)

BT10.5 − BT8.7 < −0.8 (10)

BT11.2 − BT10.5 ≥ 0.5 (11)

Ratio
[

BT10.5

BT12.3

]
≤ 0.1 (12)

Ratio
[

BT10.5

BT8.7

]
≤ 0.1 (13)

(BTD10.5−12.3)− (BBTD10.5−12.3) (14)

D∗ = exp{[(BTD10.5−12.3)− C]/[(BTD8.7−10.5)− E]} (15)

In this study, the DAOD using IR channels was calculated using only the dust pixels
identified through the threshold test.

Forward Simulation

To defined the BT and BTD (10.5 and 12.3 µm) characteristics of dust, an appropriate
aerosol model was selected. The dust aerosol model must be developed considering
the complex refractive index, particle size distribution, and particle shape. The complex
refractive index (RI) is a parameter that defines the interaction between electromagnetic
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radiation and matter [43]. The real part indicates the scattering properties and the imaginary
part declares the absorption properties of the dust aerosol (Equation (16)).

Refractive Index(RI, λ) = n(λ)− ik(λ) (16)

where λ = wavelength, n = real part, and k = imagery part [44,45].
The particle size distribution is expressed as a lognormal distribution. During yellow

dust, large particles become principal, and the lognormal distribution was selected per
Equation (17):

dv
dln r

=
C f ine√
2πS f ine

exp

−
(

ln r − ln r f ine

) 2

2
(

S f ine

)2

+
Ccoarse√
2πScoarse

exp

[
− (ln r − ln rcoarse)

2

2(Scoarse)
2

]
(17)

where dv/dlnr is the particle number size distribution; C f ine and Ccoarse are the number of
particles per cross-section of the atmospheric column ( m−2); r is the particle radius; r f ine
and rcoarse are the modal radii; and S f ine and Scoarse are the standard deviations of lnr f ine
and lnrcoarse, respectively.

The shape of aerosol particles is difficult to define owing to their irregular shape and
non-uniform size; therefore, the particles were assumed to be spherical in this study. The
phase function can be expressed by Equation (18):

P(λ, θ) =
∫ r=∞

r=0
πr2F(λ, r, RI, θ)

dN
dlnr

dlnr (18)

where F is the top of the atmosphere (TOA) radiative forcing in W/m2; N is the particle
number density; and r is the particle radius.

DISORT is a discrete ordinate radiative transfer program for sorting the radiative
transfer equation [46]. The IR radiative transfer of the dust layer was simulated using
previously calculated parameters (i.e., complex refractive index, particle size distribution,
shape) and the values were derived for the single scattering albedo (ω0), asymmetry factor
(g), and extinction coefficient ratio (k) based on Equations (19)–(21):

Extinction Coefficient : σext(λ) = σsca(λ) + σabs(λ) (19)

Single Scattering Albedo : ω0(λ) =
σsca(λ)

σext(λ)
(20)

Asymmetry Factor g(λ) =

∫
cosθP(λ, θ)dcos(θ)∫

(λ, θ)dcos(θ)
(21)

These calculated parameters together with a given optical depth of the dust layer, serve as
input for the radiation transfer model, DISORT, to simulate IR wavelength observations (Figure 2).

DAOD Look-Up Table

The forward radiative transfer model in IR channels is expressed by Equation (22):

ITOA = ϵc Iac + Tacϵc B(Tc) + Iclr(1 − ϵc) (22)

where ITOA is the satellite-received radiance; Iac is the radiance contribution from the region
above the dust cloud; Iclr is the clear-sky radiance; Tac represents the above-dust cloud
transmission; Tc is the effective top temperature of dust layer; B operator is the Planck
function; and (ϵc) is the emissivity at the top of the dust layer.
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Figure 2. Simulation model results based on infrared channel characteristics by DISORT (1 model
(red circle), 2 model (orange circle), 3 model (yellow inverted triangle), 4 model (green triangle),
5 model (sky blue square), 6 model (blue square), 7 model (purple rhombus), 8 model (burgundy
rhombus), 9 model (orange triangle), 10 model (yellow green inverted triangle)).

The cloud is defined by its cloud top temperature Tc and its emissivity ϵc. In Equation (22), the
transmission from the dust layer, dust cloud top temperature, and Planck function are related to
dust extinction at IR wavelengths. By removing other terms, the DAOD can be derived analytically.
However, surface and dust cloud emissivity are relatively ambiguous, and the dust optical values
were retrieved using LUTs calculated by radiative transfer [47]. The retrieval strategy was based
on a physical approach that relied on the use of LUTs for the simulated DAOD (Table 3). To
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derive accurate DAOD, the measured top-of-atmosphere (TOA) radiance is a crucial to comput-
ing the LUT using an appropriate aerosol dust model. TOA radiance was calculated using the
Santa Barbara discrete ordinate radiative transfer (SBDART) (http://libradtran.org, accessed on
1 January 2018) [48].

Table 3. List of the input variables used to calculate the dust aerosol optical depth (DAOD) lookup table.

Variable
Name Number of Entries Entries

Wavelength 5 3.8, 10.5, 11.2, 12.4, 13.3 µm
(considering spectral response function)

Solar zenith angle 9 0, 10, 20, 30,..., 80 (10 intervals)
Satellite zenith angle 17 0, 5, 10, 15,..., 80 (5 intervals)

Relative azimuth angle 18 0, 10, 20,..., 170 (10 intervals)
AOD 10 0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 2.0, 3.0, 4.0, 5.0

Dust Aerosol model 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 µm
(considering effective radius)

Dust Altitude 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 km

Estimation of the Effective Dust Height

This study assumed a method using the GOES-R volcanic ash height [49]. This method
was assumed to be similar to inferring the height of volcanic ash by searching a temperature
close to the height when volcanic ash moves. The retrieved Te f f was used to approximate
the dust height and find the closest matching temperature point; the linear interpolation
weights and points were decided by finding Te f f within the Numerical Weather Prediction
(NWP) temperature profile. In this study, the vertical NWP profiles utilized of dust retrieval
were assigned a temperature that reflected the levels between the surface and the model
tropopause height (~10 km). Subsequently, the dust height was computed using the
interpolation method (Equation (23)):

HDust(height) = H1 +
Te f f − T1

T2 − T1
(H2 − H1) (23)

where HDust is the dust height; T1 and T2 are the temperatures within the profile that bound
Te f f , with T1 as the temperature at the highest bounding level; and H1 and H2 are the dust
heights of the bounding temperatures corresponding to T1 and T2, respectively [49].

Based on forward simulations, it was deemed appropriate to develop the temperature-
difference model according to height (HDust). The temperature difference model included
BT10.5 and BTD10.5−12.3. The BT10.5 and BTD10.5−12.3 values calculated from the LUTs
(simulated BT) were compared with the BT10.5 and BTD10.5−12.3 values calculated from the
satellite (observed BT). BT10.5 is highly correlated with dust optical depth and BTD10.5−12.3
nearby corresponds to particle volume [43]. The value with the minimum root-mean-square
deviation (RMSD) was determined through comparison (Equation (24)); the optical depth
and particle effective radii of the dust were obtained at the same time. Therefore, the
accuracy of Tac and Tc determines the reliability of the retrieved results (Figure 3).

Min RMSD =
1
N

√√√√√(
BT10.5(calc) − BT10.5(obs)

)2

BT10.5(obs)
+

1
N

√√√√√(
BTD10.5−12.3(calc) − BTD10.5−12.3(obs)

)2

BTD10.5−12.3(obs)
(24)

where BT10.5(calc) is the BT calculated using the radiative transfer model; BT10.5(obs) is the
GK2A satellite-observed BT; BTD10.5−12.3(calc) is the difference between the BT10.5 and BT12.3
using the radiative transfer model; and BTD10.5−12.3(obs) is the satellite-observed BTD.

http://libradtran.org
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2.2.2. Empirical Bias Correction Method

Once the source of the empirical bias correction in the GK-2A DAOD was recognized,
an algorithm was applied to correct for it. In addition, to generate a 24-h continuous forecast,
the DAOD concentration was corrected by comparing it with the DAOD of the visible
channel. Specifically, the CDF were used to adjust the GK-2A satellite IR (10.5 µm) AOD
in accordance with visible AOD. This method is particularly convenient for harmonizing
and facilitating the information gained from difference sources [50]. That is, instead of
converting the wavelength, DAOD is converted into an empirical bias correction method
using the wavelength value. The visible AOD of the GK-2A satellite had an accuracy of
RMSE = 0.21 with a bias = 0.08 in 2020; it is being serviced and used for daytime monitoring.
It is meaningful to use accuracy to correct the IR AOD based on Equations (25) and (26):

DAOD (0 < DAOD < 1.6) = a0 + a1DAOD + a2DAOD2 + a3DAOD3 (25)

DAOD (1.6 ≤ DAOD < 4) = a4 + a5DAOD + a6DAOD2 + a7DAOD3 (26)

where the regression coefficients a0 = 0.083, a1 = −0.171, a2 = 1.174, a3 = −0.348 (0 < DAOD
< 1.6), a4 = −0.977, a5 = 2.505, a6 = −0.615, and a7 = 0.075 (1.6 ≤ DAOD < 4) are gained
through the fitting procedure, and the new DAOD were computed and selectively applied.

3. Results and Discussion
3.1. Dust Detection Using Infrared Channels from GK-2A
3.1.1. Comparisons of Dust Imagery Products during the Nighttime

To monitor the DAOD for 24 h, accurately detecting dust at night using IR channels
is essential. The dust red-green-blue (RGB) imagery from the GK-2A/AMI (developed
by the KMA NMSC) was used for qualitative evaluation at nighttime. This imagery
was developed by selecting an appropriate channel to detect dust and converting it to
R (11.2–10.5 µm), G (10.5–8.7 µm), B (10.5–13.3 µm) using the BTD in the IR channel to
monitor the occurrence and movement of dust. The images facilitate the visual discrimina-
tion between dust (purple-pink) and non-dust (green), enabling the identification of the
cloud type. On 24 April 2020, at 03:00 UTC (12:00 KST), a dust storm originated east of
Mongolia and northern China and moved to the southeastern regions due to northwesterly
winds (Figure 4). A high concentration of 407 µm/m3 was observed in Huimin, which
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affected a weak intensity of <200 µm/m3 at 21:00 UTC (25 April 2020, at 05:00 KST). Subse-
quently, the storm began to affect the Yellow Sea at 22:00 UTC (25 April 2020, at 07:00 KST)
and penetrated the Korean Peninsula at a concentration of 100–200 µm/m3 at 00:00 UTC
(09:00 KST) on 25 April. As a result of the GK-2A aerosol detection product analysis,
this image shows that dust originated, entered the Shandon Peninsula, and moved to the
southwest well on 24 April 2020, at 07:00 UTC–10:00 UTC (Figure 4a,b). Additionally, based
on the yellow dust well, the darker the color, the stronger the dust storm. At 13:00 UTC
(22:00 KST), dust was detected in the Yellow Sea, which moved southwest with a constant
intensity (Figure 4c). When dust approached the ocean, it was continuously detected
without discontinuity between land and sea. In many cases, dust detection was not possible
due to the weakening of the detection strength caused by contrasting surface properties.
Moreover, when dust occurs in clouds, it is important to prevent dust removal by clouds
to increase the accuracy of dust detection. Therefore, yellow dust was not removed by
the clouds and was continuously detected from 16:00 UTC to 19:00 UTC (Figure 4d,e).
GK-2A dust RGB showed a strong dust signal (pink) in northwest China and a weak dust
signal (pale pink) in the vicinity of the Shandong Peninsula and the east sea of the Korean
Peninsula. As a result of the qualitative comparison with GK-2A dust RGB, it appeared
similar to the comparative GK-2A aerosol detection image, as it was detected using a strict
threshold test and fewer pixels in the GK-2A dust RGB.

3.1.2. Comparison of Dust Imagery Products during the Daytime

For qualitative evaluation during the daytime, the dust RGB imagery was used,
obtained through the same process described in Section 3.1.1. On 11 May 2020, at 03:00 UTC
(12:00 KST), a dust storm originated in eastern Mongolia and extended to inner Mongolia,
China (Figure 5). It was also observed on the Loess Plateau and west of the Shandong
Peninsula at 00:00 UTC on 12 May (09:00 KST). According to the China Meteorological
Administration (CMA), a high dust concentration of ≥800 µm/m3 was observed in inner
Mongolia, such as in Erlenhot and Zhulihe, at 05:00 UTC on May 11, reaching a maximum
of >3000 µm/m3. On 12 May, the concentration in Dungseong, located on the Loess Plateau,
began to rise, indicating that it was approaching the Korean Peninsula as it was biased to
the southwest. Subsequently, dust storms were detected in the Yellow Sea and the central
area of the Korean Peninsula through the Shandong Peninsula in China. In particular,
the dust across the Korean Peninsula was strong. As a result of GK-2A aerosol detection
analysis, the image represented that dust was strongly penetrating the Korean Peninsula
in a U-shape. From 03:00 UTC to 05:00 UTC on 12 May (Figure 5a,b), the concentration of
dust generated strongly in southern China gradually weakened as it passed through the
Yellow Sea, affecting the Korean Peninsula. Additionally, due to the improvement of the
yellow dust detection algorithm, continuity between land and sea was well distinguished,
enabling the identification of the dust flow. From 07:00 UTC to 09:00 UTC (Figure 5c,d),
dust that had affected the central region of the Korean Peninsula moved to the south and
directly affected the southern coast at 11:00 UTC (Figure 5e). By using the GK-2A dust
RGB, detection of dust movement became possible. The dark pink pixels in the dust RGB
and the pixels in the GK-2A aerosol detection algorithm coincided, facilitating the accurate
identification of yellow dust.
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3.2. Correction of DAOD Visible and Infrared Channels from GK-2A
3.2.1. GK-2A Visible AOD Spatial Variability and Retrieval Accuracy

Under the assumption that the accuracy of the visible AOD of GK-2A must be secured
to a certain extent, CDF fitting can be performed on the IR AOD. Therefore, confirming
the accuracy of the visible AOD was essential. To confirm the accuracy of the visible
AOD, AERONET was used to provide ground observation data. The maps showing the
location of the AERONET (Table 4) sun-sky radiometers utilized in this study are shown in
Figure 6. AERONET data were used for cloud screening (Level 1.5) based on the dissimilar
temporal frequencies between clouds and AOD. When the yellow dust occurred in East
Asia in 2020, an AERONET point that matched the trajectory of the dust storm was selected,
and only 40 sites could simultaneously utilize the data. The visible channel-based AOD
and AERONET were compared for AERONET validation. Compared with AERONET
AOD, GK-2A AOD values were near the 1:1 line, however, tended to be underestimated
in some pixels. Figure 6a shows the R, RMSE, and bias values of 0.83, 0.23, and 0.084,
respectively. Additionally, as the aerosol loading increased (AOD > 1), the values became
increasingly close to the 1:1 line, indicating that the GK-2A AOD is superior in detecting
high aerosol concentration plumes. However, the pixels with AERONET AOD were above
1.5 (AERONET AOD > 1.5); the low value of GK-2A AOD was due to the effect of aerosols
being underestimated before calculating the GK-2A AOD by over-detecting the surface
reflectivity of the 30-day background composite field. Additionally, to confirm the accuracy
of the GK2A visible AOD, the aerosol products were validated using the Suomi-NPP/VIIRS
(Figure 6b) EDR AOD in northeast Asia. The inter-comparison of GK-2A visible AOD
products and VIIRS AOD indicated that the GK-2A visible AOD products had an overall
global bias of −0.0008 against VIIRS EDR AOD, whereas the corresponding value of the
VIIRS IP AOD products was0.0415 [13]. The validation of the GK-2A visible AOD revealed
that the visible AOD retrievals agreed well with the VIIRS AOD observations (R = 0.651),
and the GK-2A AOD products exhibited positive biases (y = 0.61x + 0.038) in a high aerosol
loading area [51]. Similar to the AERONET results, when high-concentration aerosols
were generated, the Suomi-NPP/VIIRS and GK-2A AOD were near the 1:1 line, showing
agreement. However, when the concentration of VIIRS was high, the disadvantage of
GK-2A under-detection appeared to be the same as that of AERONET, warranting further
improvement in the future.

Table 4. Details about the representative Aerosol Robotic Network (AERONET) site to validate dust
aerosol optical depth (DAOD).

Site Latitude
(Degree)

Longitude
(Degree) Elevation (m) Type

Anmyon 36.539 N 126.330 E 47 Rural
AOE_Baotou 40.852 N 109.629 E 1314 Rural

Beijing 39.977 N 116.381 E 92 Urban
Beijing-CAMS 39.933 N 116.317 E 106 Urban
Beijing-RADI 40.005 N 116.379 E 59 Urban

Bhola 22.227 N 90.756 E 7
Chen-Kung_Univ 22.993 N 120.204 E 50
Chiba_University 35.625 N 140.104 E 60

Dalanzadgad 43.577 N 104.419 E 1470 Rural
Dhaka_University 23.728 N 90.398 E 34
Dibrugarh_Univ. 27.451 N 94.896 E 119
Dongsha_island 20.699 N 116.729 E 5

Douliu 23.712 N 120.545 E 60
EPA-NCU 24.968 N 121.185 E 144

Fuguei_Cape 25.297 N 121.538 E 50
Fukue 32.752 N 128.682 E 80
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Table 4. Cont.

Site Latitude
(Degree)

Longitude
(Degree) Elevation (m) Type

Fukuoka 33.524 N 130.475 E 30
Gangneung_WNU 37.771 N 128.867 E 60 Suburban

Gwangju_GIST 35.228 N 126.843 E 52 Urban
Hankuk_UFS 37.339 N 127.266 E 167

Hokkaido_University 43.075 N 141.341 E 59
Hong_Kong_PolyU 22.393 N 114.180 E 30

Hong_Kong_Sheung 22.483 N 114.117 E 40
Irkutsk 51.800 N 103.087 E 670

Kaohsiung 22.676 N 120.292 E 15
Luang_Namtha 20.931 N 101.416 E 557

Lulin 23.469 N 120.874 E 2868
Mandalay_MTU 21.973 N 96.186 E 104

NAM_CO 30.773 N 90.963 E 4746
Niigata 37.846 N 138.942 E 10

Noto 37.334 N 137.137 E 200
Osaka 34.651 N 135.591 E 50

Seoul_SNU 37.458 N 126.951 E 116 Urban
Shirahama 33.693 N 135.357 E 10

Socheongcho 37.423 N 124.738 E 28 Ocean
Taipei_CWB 25.015 N 121.538 E 26

Ussuriysk 43.700 N 132.163 E 280
XiangHe 39.754 N 116.962 E 36 Urban

Xitun 24.162 N 120.617 E 91
Yonsei_University 37.564 N 126.935 E 97 Urban

Focusing on these 40 AERONET sites, Figure 6c,d and Table 5 summarize the regional
variations in GK-2A visible AOD retrieval accuracy. The GK-2A visible AOD performed
better in Korea and Japan than in Taiwan and China. In particular, the GK-2A AOD had
a lower RMSE and bias at points closer to the Korean Peninsula, while numerous errors
occurred farther away. Moreover, the Korean Peninsula branching Anmyon, Hankuk-UFS,
Seoul-University, Yonsei-University, Gwangju Gist, Socheongcho, and Gangneung-WNU
had RMSEs as low as 0.07–0.13, and the bias (AERONET–Observation) was underestimated
at 0.0003–0.05. However, in Japan, including Fukue, Fukuoka, Shirahama, Osaka, Chiba-
University, Noto, Niigata, and Hokkaido, the RMSEs were as low as 0.07–0.24, and the
bias was overestimated at 0.006–0.067, excluding Noto. Moreover, in China, including
Xianghe, Beijing_CAMS, Beijing, and Beijing_radi, RMSEs of 0.146–0.20 and biases of
−0.023 to 0.01 were detected. Hence, no overestimation occurred, similar to the Japanese
region, but with a low RMSE. In contrast, the Taiwan region, including Dongsha_island,
Luang_namtha, mandaly_mtu, Bhola, Hong Kong_polyU, Hong Kong_sheung, Kaoshiung,
Chenkung_University, Lulin, Douliu, Dhaka_University, Xitun, EPA_NCU, Taipei_CWB,
Fuguei_Cape, Dibrugarh_University, and NAM_CO, exhibited a relatively large RMSE and
bias. Therefore, the accuracy of AERONET and GK-2A AOD by region tended to decrease
as the distance increased from the Korean Peninsula. However, as this study focused on
improving the accuracy of the IR and increasing the continuity of the DAOD during the
day and night, it was conducted by considering the error of the AOD (assuming that the
visible AOD is true).
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paring aerosol optical depth (AOD). Validation results of GK-2A AOD, AERONET (a), and Suomi-
NPP/VIIRS (b) AOD in the 2020 yellow dust case. Results of statistical error (RMSE (c), bias
(d)) analysis of GK-2A AOD and AERONET AOD.
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Table 5. Results of statistical error (RMSE, bias) analysis for the representative Aerosol Robotic
Network (AERONET) site to validate GK-2A of Aerosol Optical Depth (AOD) results.

Site Latitude/Longitude
(Degree)

Colocation
Number RMSE Bias

Anmyon 36.539 N/126.330 E 1675 0.122 0.009
AOE_Baotou 40.852 N/109.629 E 1156 0.225 −0.111

Beijing 39.977 N/116.381 E 1031 0.146 −0.023
Beijing-CAMS 39.933 N/116.317 E 1975 0.177 −0.017
Beijing-RADI 40.005 N/116.379 E 1871 0.191 −0.02

Bhola 22.227 N/90.756 E 1871 0.211 0.047
Chen-Kung_Univ 22.993 N/120.204 E 1404 0.273 0.062
Chiba_University 35.625 N/140.104 E 1165 0.13 −0.023

Dalanzadgad 43.577 N/104.419 E 2133 0.264 −0.155
Dhaka_University 23.728 N/90.398 E 681 0.224 0.078
Dibrugarh_Univ. 27.451 N/94.896 E 948 0.279 0.101
Dongsha_island 20.699 N/116.729 E 1526 0.176 0.052

Douliu 23.712 N/120.545 E 722 0.185 0.029
EPA-NCU 24.968 N/121.185 E 994 0.193 0.024

Fuguei_Cape 25.297 N/121.538 E 604 0.134 0.016
Fukue 32.752 N/128.682 E 1689 0.095 −0.006

Fukuoka 33.524 N/130.475 E 1767 0.141 −0.008
Gangneung_WNU 37.771 N/128.867 E 1343 0.13 0.032

Gwangju_GIST 35.228 N/126.843 E 565 0.134 0.003
Hankuk_UFS 37.339 N/127.266 E 1800 0.073 0.055

Hokkaido_University 43.075 N/141.341 E 918 0.237 −0.067
Hong_Kong_PolyU 22.393 N/114.180 E 591 0.18 −0.006

Hong_Kong_Sheung 22.483 N/114.117 E 860 0.13 0.006
Irkutsk 51.800 N/103.087 E 1105 0.101 −0.049

Kaohsiung 22.676 N/120.292 E 1626 0.24 0.062
Luang_Namtha 20.931 N/101.416 E 1745 0.496 0.222

Lulin 23.469 N/120.874 E 630 0.09 −0.013
Mandalay_MTU 21.973 N/96.186 E 2299 0.303 0.154

NAM_CO 30.773 N/90.963 E 639 0.261 −0.139
Niigata 37.846 N/138.942 E 1384 0.106 −0.014

Noto 37.334 N/137.137 E 1329 0.12 0.014
Osaka 34.651 N/135.591 E 1371 0.182 −0.023

Seoul_SNU 37.458 N/126.951 E 1655 0.137 0.034
Shirahama 33.693 N/135.357 E 516 0.028 −0.006

Socheongcho 37.423 N/124.738 E 1000 0.115 0.008
Taipei_CWB 25.015 N/121.538 E 761 0.248 0.126

Ussuriysk 43.700 N/132.163 E 870 0.094 0.012
XiangHe 39.754 N/116.962 E 1388 0.202 0.002

Xitun 24.162 N/120.617 E 1486 0.233 0.053
Yonsei_University 37.564 N/126.935 E 1436 0.136 0.049

3.2.2. Bias Correction of GK-2A Infrared DAOD

To maintain continuity in the visible and IR channels of the DAOD, CDFs were applied
to the dust events in 2020. To validate the accuracy of DAOD, a representative case of
yellow dust was tested using 2021 data. The goal was to maximize the accuracy of the
DAOD value while tracking the accuracy of the visible-channel DAOD. This method
assumes that the visible DAOD is true and applies a method for fitting the IR DAOD. That
is, the visible DAOD is calculated based on reflectivity, and the IR DAOD is calculated
based on radiation; hence, their calculation purposes differ, and each LUT differs, limiting
consistency. However, the statistical CDF fitting method was adopted by focusing on the
technology to correct errors quickly. CDFs were applied to individual grid cells to increase
the accuracy of the IR DAOD based on the visible DAOD. The CDFs of DAOD during
the training data (dust event in 2020) are shown in Figure 7. Notably, the visible DAOD
was evenly distributed within the 0–4 range, while the IR DAOD = was cumulated in the
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0.5–1.6 range. In addition, at the 1.6 starting point of the AOD, the visible and IR AOD
crossed, and the fitting curve was reversed. That is, it did not detect low dust concentrations
of 0–0.5 µm and tended to underdetect strong yellow dust. Since the DAOD of GK-2A was
calculated only for yellow dust pixels, the sensitivity of DAOD using the IR channel was
greater, and the concentration of DAOD tended to be high. In fact, because the DAOD of
yellow dust was observed at a high concentration rather than at a low concentration of 0.5,
this may result from reflection. Therefore, in this study, the tendency of the fitting curve
differed based on a DAOD of 1.6; the coefficient was applied by bisecting it. The regression
coefficients for each dust pixel were calculated; Figure 8 shows the piecewise linear CDF
fitting across the GK-2A satellite imagers analyzed for 2020. From the CDF fitting curve,
the IR DAOD was overestimated compared with the visible DAOD within the 0–1.6 range
(Figure 8a), and the IR DAOD was underestimated compared to the visible DAOD within
the 1.6–4.0 range (Figure 8b). Therefore, the coefficients were derived by dividing each
DAOD concentration range. Although each range was set and applied, the frequency of
the data was small in the DAOD range of 1.6 to 4.0, and the high concentration duration
was short, indicating an even distribution of data.
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3.2.3. Accuracy of Infrared DAOD Applied to Coefficient (Correction Factor)

To validate accuracy, the IR DAOD data of the GK-2A was applied. Previous studies
have applied the coefficients calculated using the CDF fitting method to the GK-2A DAOD.
Meanwhile, the current study only collected data for dust detection pixels for the 2021
dust episodes. Figure 9 shows the scatterplots of AERONET versus GK-2A IR DAOD
before (Figure 9a) and after (Figure 9b) bias correction for dust pixels. First, the DAOD
before correction based on pixels co-located with AERONET showed very low accuracy
based on the x = y (1:1) line. The original AMI DAOD had a correlation coefficient of
0.352, a slope of 0.314, and an offset of 0.417. AERONET was developed based on 500 nm
(visible) and DAOD based on 1050 nm (IR); therefore, differences inevitably occurred. This
study aimed to develop a nighttime DAOD and ensure continuous monitoring alongside
daytime DAOD, which was challenging. However, the visible channel AOD and DAOD
after CDF fitting showed improved results and a trend similar to the 1:1 line (after bias
correction, the correlation improved to 0.691, and the slope and offsets improved to 0.806
and 0.134, respectively). It was estimated to be improved as the value of DAOD shows that
over-detection is relieved when AERONET’s AOD (0.5–1.0) is small, and a similar tendency
is shown when the concentration of the AERONET AOD is high.
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Figure 10 shows a histogram of the original (uncorrected, Figure 10a) and CDF fitting
(corrected, Figure 10b) IR DAOD pixels over the dust detection pixels (the same observa-
tion time as the DAOD data shown in Figure 9). The standard visible AOD had a high
frequency of ~0.3, gradually decreasing with increasing concentration. Although before
bias correction, there were numerous IR DAOD frequencies in the range of 0.7, the de-
tection was poor at concentrations < 0.5 and >1.6. This estimated DAOD only applies to
pixels detected as dust, hence, when dust occurs, the concentration is high, and a small
concentration < 0.5 cannot be detected even in the IR channel [52]. After applying the
CDF method, the number showing high frequency at DAOD 0.7 shifted to the left, and the
frequency showing low concentration increased. Therefore, the visible and IR DAOD were
consistent, and their concentration distribution showed a similar tendency.
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3.3. Qualitative Comparisons through Intense Dust Events

Asian dust originates in the deserts of the Taklamakan, Mongolia, northern China, and
Kazakhstan and travels to China, North and South Korea, and Japan, where it particularly
impacts human health and air quality. [53,54]. It is a well-known phenomenon that occurs
during springtime in northeast Asia and frequently in fall and winter. After applying the
coefficients derived from the 2020 training dataset, the GK-2A DAOD was computed and
applied for dust events that occurred in 2021.

3.3.1. Spring Dust Transport over the Korean Peninsula on 23–28 March 2021

On 21 March 2021, yellow dust originated from the Gobi Desert and the inner Mongo-
lian highlands. This dust was driven by a northwest wind on 23 March and was detected in
northern and northeastern China and the Korean Peninsula. Meanwhile, the concentration
of PM10 at 04:00 UTC in Sokcho was 262 µg/m3, in Daegwallyeong was 247 µg/m3, in
Mungyeong was 206 µg/m3, and in Uljin was 162 µg/m3. The yellow dust that occurred
on 21 March gradually faded, however was observed again on March 26 at 04:00 UTC in
the inner Mongolian plateau, and the concentration of PM10 in Zuricher was 838 µg/m3

and in Erlenhot was 1226 µg/m3. Subsequently, PM10 was observed in certain areas of the
Korean peninsula at 09:00 UTC with 141 µg/m3 in Seoul, 132 µg/m3 in Suwon, 105 µg/m3

in Ganghwa, 100 µg/m3 in Gwanaksan, and 100 µg/m3 in Gwangju.
Figure 11 shows the dust detection, visible DAOD, and IR DAOD obtained by GK-2A

on 26–28 March from 23:00 UTC to 01:00 UTC at 5 h intervals based on the developed
algorithm. Based on the improved results, continuity, and detection speed were increased
regardless of the ground surface characteristics. Therefore, the area for detecting the DAOD
at night increased, and the flow of yellow sand observed in Mongolia along the northwest
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wind could be effectively monitored. Over time, the yellow dust approached the Korean
Peninsula, and when it originated, the DAOD of the visible and IR channels reached
concentrations of ≥0.8 (Figure 11a). After 5 h, the concentration began to decrease to
0.4 (Figure 11b,c). Additionally, while the DAOD of the visible region was observed at
various concentrations, the DAOD of the IR region exhibited a concentration of 0.4–0.8.
After the twilight period, only the DAOD of IR could be observed (Figure 11d,e), confirming
that the DAOD was observed at the same location as the dust detection, and clouds and dust
were mixed while approaching the Korean Peninsula at 19:00 UTC. After 5 h (Figure 11f),
visible and IR DAOD were observed during the daytime after dawn, and the concentration
increased; however, the visible DAOD showed a higher concentration.

3.3.2. Example of Dust Transport over the Korean Peninsula on 14–16 April 2021
(Spring Dust)

On 14 April, yellow dust originating from the Gobi Desert affected Bohai Bay. At
04:00 UTC on 15 April, satellites detected dust in areas such as the Gobi Desert in southern
Mongolia, northern China, and the Inner Mongolian Highlands. The concentrations of
PM10 were 3342 µg/m3 at Zurcher, 1552 µg/m3 at Erlenhot, and 886 µg/m3 at Dongseong,
which were affected by the high concentration of dust. Figure 12 shows the dust detection,
visible DAOD, and IR DAOD obtained by GK-2A on 14–16 April, from 23:00 UTC to
01:00 UTC at 5 h intervals based on the use of the developed algorithm. A northeast–
southwest directional V-shaped band passing through the West Sea first flowed in and
affected the Korean Peninsula; as time passed, yellow dust was introduced again. When
it first entered, a high concentration of ≥1.0 (Figure 12a–c) was observed approaching
in the form of cloud penetration. Yellow sand mixed with clouds was detected, and its
concentration decreased over time. At night (Figure 12d,e), dust was observed at the
same location, and the concentration ranged from 0.4 to 1.0; the DAOD became thicker,
penetrating the cloud. After dawn, the dust increased again during the day (Figure 12f),
and both visible and IR DOAD appeared to be at the same concentration.

3.3.3. Example of Dust Transport over the Korean Peninsula on 4–8 May 2021 (Spring Dust)

The 5–8 May 2021, event was selected as the longest-lasting yellow dust event in
2021. On 3 May, the dust storm originated from the Gobi, Northern China, and Inner
Mongolian Highlands and continued to affect the region until 7 May. Figure 13 shows
the dust detection, visible DAOD, and IR DAOD obtained by GK-2A on 5–7 May, from
23:00 UTC to 01:00 UTC at 5 h intervals based on the use of the developed algorithm. The
yellow dust piled up with clouds and approached the Korean Peninsula in a circle resem-
bling a pig’s tail. When it originated in a form similar to the previous two cases, it showed
a tendency to approach with a thick concentration and then fade; yellow dust appeared to
penetrate between the cloud belt located under the Korean Peninsula and clouds located
in China (Figure 13a–c) during the daytime. In particular, the DAOD values of 0.4 to
0.9 at night (Figure 13d,e) effectively monitored dust movement. Consequently, during the
daytime, after 5 h (Figure 13f), the concentration of dust moving between clouds tended to
be consistent with 1.0; however, in the flow of dust that followed, it appeared somewhat
higher in the IR channel.
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3.4. Quantitative Comparison between GK-2A DAOD and CALIPSO/CALIOP throughout Dust
Events in 2021 (Validation)

For the quantitative validation of the GK-2A DAOD, CALIPSO was used, which has a
vertical profile in northeast Asia for 2021. Most of the associated DAOD was calculated
only during the daytime and can, thus, be used to validate the DAOD calculated at night
developed in this study. The CALIPSO satellite is a passive satellite that cannot detect
large areas owing to its narrow swath. However, it was the only data to validate DAOD at
night, and it is valuable data that can only be verified after passing that time and point. [55].
Since the CALIPSO satellite observes the Korean Peninsula once during the day and night,
the time when the dust occurred and the time when the CALIPSO passed should be the
same; therefore, there were limitations in the validation case. To validate the data, the
CALIPSO/CALIOP AOD at 10.2 µm was used for retrieval during the 10-min observation
period of the GK-2A IR DAOD. By selecting a point within a 10-km radius of the CALIPSO
pixel, the GK-2A DAOD grid was determined to be the nearest point. The CALIPSO data
and GK-2A matched the approach of yellow dust over the Korean Peninsula at 19:10 UTC
on 15 April 2021 (CAL_LID_L2_VFM_ValStage1-V3-41.2021-04-15T-10-53ZN. hdf). Yellow
dust was strongly detected in the GK-2A dust detection retrieval (Figure 14a), and GK-2A
AOD (Figure 14b) was also observed at a high concentration (range: 0.7–1.3). In particular,
within the CALIPSO observations at night, the yellow sand was found to be floating high
at latitude 38◦ at the same location as GK-2A at approximately 8.5 to 9 km from CALIPSO
10.2 nm AOD, and the value was measured up to 1.3. In contrast, the low-lying yellow dust
was estimated to be approximately 4 km, and the GK-2A DAOD and colocation pixels were
the same at 0.7. When dust occurs at night, validation is difficult because the two satellites
must match simultaneously. Nevertheless, meaningful results can be obtained by inferring
the quantitative dust values, particularly at night, using the validation case.
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4. Summary and Conclusions

Based on the developed and improved IR DAOD of GK-2A, multispectral data can
be obtained for dust plumes. In particular, based on the observation data analysis, we
developed a dust storm mask algorithm to pinpoint dust detection, direction, and flow. The
dust detection algorithm is based on the multi-threshold IR (8.7, 10.5, 11.2, and 12.3 µm)
BTD-BBTD ratio. This algorithm can be used under 24-h conditions to identify yellow dust.
In this study, the performance of the GK-2A visible AOD in northeast Asia was evaluated
against AERONET and Suomi-NPP/VIIRS. The IR DAOD was presented utilizing a CDF
fitting method to retrieve the column properties of atmospheric aerosols from the GK-
2A visible AOD. The accuracy of GK-2A IR DAOD data was assessed using collocated
measurements with ground observations, and spatial-temporal variability was examined
using CALIPSO/CALIOP.

The main contributions of this study are as follows:

1. The GK-2A/AMI DAOD was developed to detect yellow sand in northeast Asia and
achieve continuous monitoring during the day and night.

2. The GK-2A/AMI AOD had an overall high correlation with AERONET (R = 0.691)
and Suomi-NPP/VIIRS (R = 0.651).

3. The developed DAOD exhibited variable accuracy in the visible AOD; thus, its accuracy
was improved using a CDF fitting method, assuming that the visible AOD is true.

4. Following the DAOD correction, it was validated quantitatively and qualitatively
with AERONET. In particular, when yellow dust appeared, the movement flow of the
dust was monitored and showed continuity for 24 h.

5. Validation of the DAOD with CALIPSO/CALIOP at night showed quantitative values
similar to 1020 nm for the CALIPO product, enabling the persistence of the height
and attribute of the dust at the time of occurrence.

This study was performed to provide a method to calculate the DAOD even at night
using the characteristics of the IR channel that can be applied for forecasting more accurate
values. However, only dust pixels were used because yellow dust occurred, and among
those pixels, there were few cases in which the time and space coincided with polar orbiting
satellites; above all, verification was limited. In the future, the model will be applied
to additional dust cases to perform further qualitative and quantitative validations and
address lingering issues, including under-detection.
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