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Abstract: When performing lifting tasks at work, the Lifting Index (LI) is widely used to prevent
work-related low-back disorders, but it presents criticalities pertaining to measurement accuracy
and precision. Wearable sensor networks, such as sensorized insoles and inertial measurement units,
could improve biomechanical risk assessment by enabling the computation of an adaptive LI (aLI)
that changes over time in relation to the actual method of carrying out lifting. This study aims to
illustrate the concepts and mathematics underlying aLI computation and compare aLI calculations
in real-time using wearable sensors and force platforms with the LI estimated with the standard
method used by ergonomists and occupational health and safety technicians. To reach this aim,
10 participants performed six lifting tasks under two risk conditions. The results show us that the
aLI value rapidly converges towards the reference value in all tasks, suggesting a promising use of
adaptive algorithms and instrumental tools for biomechanical risk assessment.

Keywords: adaptive lifting index; biomechanical risk assessment; inertial measurement units; manual
material handling

1. Introduction

The Revised NIOSH (National Institute for Occupational Safety and Health, USA)
Lifting Equation (RNLE) is a widely used approach for rating the biomechanical risk in
lifting activities to prevent the occurrence of work-related low-back disorders (WLBDs) and
verify the effectiveness of ergonomic interventions [1–5]. The RNLE allows the estimation
of the lifting index (LI), a valid indicator of the risk of WLBDs, by dividing the actual object
load lifted (L) by the recommended weight limit (RWL) [6–9]. The goal of the RNLE is
to design lifting tasks with LIs less than one. The ease of use of the RNLE is a factor in
its appeal among field safety experts. In fact, the task variables necessary for computing
the RNLE can be determined using a weight scale, a tape measure, a goniometer, and a
timer [3]. Despite the extensive use of the approach, the scientific literature attributes certain
criticalities to the RNLE, mainly related to the accuracy and precision of the measurement
of the task variables, which may imply job risk misidentification [3,9–13]. Users’ capacity
to measure the RNLE task variables can be influenced by the lifting task’s complexity and
duration and the appropriateness of training [12,14].

These above-mentioned criticalities could now be minimized by virtue of the avail-
ability, within the new scenario represented by Industry 4.0 [15], of instrument-based
tools whose hardware and software components are represented by wearable sensor net-
works and an estimation engine designed on appropriate algorithms, respectively [16,17].
These tools for biomechanical risk assessment could be used for both quantitative “direct
instrumental evaluations” [16,18–20] and “rating of standard methods” [21–23].

Sensors 2024, 24, 1474. https://doi.org/10.3390/s24051474 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051474
https://doi.org/10.3390/s24051474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0197-6166
https://orcid.org/0000-0002-7654-0025
https://orcid.org/0000-0002-9458-6844
https://doi.org/10.3390/s24051474
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051474?type=check_update&version=1


Sensors 2024, 24, 1474 2 of 17

Regarding lifting activities, we hypothesize that the use of inertial measurement units
(IMUs) and sensorized insoles or shoes and a proper design of iterative algorithms could
allow the measurement of the variables required to calculate the multipliers of the RNLE
(distances, displacements, angles, frequencies, and forces exchanged with the environment)
during lifting activities, making it possible to calculate an adaptive-LI (aLI) characteristized
by accuracy, precision, and time variation in association with the actual mode of execution
of the lifting task.

The objectives of this study are to present the basic concept and mathematics at the
base of aLI calculation and to use it to estimate the reference LI and the error that is made.

2. Materials and Methods

This study was carried out under the aegis of the SOPHIA (Socio-Physical Interaction
Skills for Cooperative Human-Robot Systems in Agile Production, http://www.project-
sophia.eu, accessed on 29 November 2023) project.

2.1. Concepts: Kinematic and Kinetic Data

We conducted this study by considering signals that can be recorded in the workplace
using wearable sensors that do not impede the physiological motor strategy of the workers
while performing the task of lifting heavy loads. Wearable sensors include the terms
“miniaturized (lightweight and small size)” and “wireless connected”.

2.1.1. Kinematic Data

For the unique purpose of estimating RNLE task variables, we acquired kinematic
data using IMUs’ wearable sensors.

IMUs are electronic devices that incorporate accelerometers, gyroscopes, and mag-
netometers, which detect the acceleration, orientation, and angular velocities of body
segments and joints. Since these sensors operate on the inertia principle, the term “inertial”
refers to the resistance to motion (inertia) of a free mass that has been accelerated by an
external force or torque [16].

In this study we used the Xsens MVN Link system (Xsens, Enschede, The Netherlands,
sampling rate 60 Hz) to record participants’ whole-body kinematics. The MVN Awinda
motion analysis system includes a protocol for measuring whole-body kinematics, which
consists of 17 IMUs positioned over the body, one on the head, sternum, and pelvis (at the
L5/S1 level), and bilaterally on each of the following body segments: scapula, upper arm,
forearm, hand, thigh, shank, and foot. To achieve proper sensor placement, Xsens MVN
whole-body lycra suits in various sizes (M to XXL) were used.

2.1.2. Kinetic Data

Two dynamometric platforms (P 6000, BTS, Milan, Italy), embedded in the floor
(sampling rate 680 Hz), were used to acquire ground reaction forces (GRFs).

Although in our study, we used force platforms, there are many wearable devices,
including insoles and sensorized shoes, which allow for GRFs’ measurement or the mea-
surement/estimation of only the vertical component of the GRF and weight load directly
in the workplace [24–26].

Kinematic and kinetic data were acquired simultaneously, synchronizing the two
systems, with a trigger signal generated by a synching device (BTS Trigger Box, BTS,
Milan, Italy).

2.2. Mathematics Procedure

In this section, we introduce the aLI, which adapts its values with each subsequent
execution of the lifting task. Starting from the LI [6–9] of the RNLE method [4,5,27], we
propose an instrumented revised version that changes and improves with each subsequent
lifting cycle.

http://www.project-sophia.eu
http://www.project-sophia.eu
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The workflow of the iterative algorithm is summarized in the following flow diagram
(Figure 1):
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Figure 1. Flow diagram of the iterative algorithm to compute the adaptive lifting index (aLI);
n: identified lifting cycles; εn: error in estimating the aLI at n-th cycle; LIn: lifting index at n-th cycle;
F: lifting frequency measured; Fref: reference lifting frequency.

At the initialization, the number of identified lifting cycles (n) and the error in estimat-
ing the aLI (ε) are set to equal zero.

Each lifting cycle is determined by the identification of “start” and “stop” instants,
which are automatically determined in two stages.

First, on the kinematic signal relating to the vertical component of the position of
both wrists, the sections in which the trend fits a bell profile are identified (see Figure 2a),
corresponding to the execution of a lifting task. Where the left and right fitted bells have
very close centers in time (at less than 10 samples), the presence of a lifting cycle is identified
as during lifting, the movement of the hands is symmetrical.

At this point, once the lifting cycles have been identified, within each of them, the
events marking the start, end of lifting, and end of lowering are identified by finding the
starting and stopping events of the segment of the wrist belonging to the above-mentioned
bell that best matches a template (constructed by averaging the corresponding lifting signals
acquired from numerous measurements carried out in the past in our laboratory), [19,20]
by minimizing the squared Euclidean distance between the segment and the search vector
(see Figure 2b). We have that:

1. The start of lifting corresponds to the first minimum of the bell.
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2. The stop of lifting corresponds to the time instant at which the identified bell reaches
its maximum value.

3. The stop of lowering corresponds to the time instant at which the bell reaches its first
minimum after the global maximum.
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Starting from the identification of the first lifting cycle, all necessary multipliers of the
RNLE are calculated for the calculation of the relative n-th cycle lifting index (LIn):

LIn =
L(n)

LC·HM(n)·VM(n)·DM(n)·AM(n)·FM(n)·CM
(1)

where L(n) is the load lifted in kilograms. In the calculation of the LIn, L(n) is not entered
a priori as a constant input, but it is estimated from the ground reaction forces measured
by two force platforms embedded in the floor. To calculate L(n), first, the weight of the
subject at rest ( Lhuman), before starting the lifting, is calculated. This is determined as the
ratio of the vertical component of the ground reaction force ( f orcevert_noLoad) divided by the
gravitational acceleration (g = 9.81 m/s2):

Lhuman = f orcevert_noLoad/g[kgf] (2)

The force of the lifting cycle ( f orceli f ting) is then calculated as the average of the
vertical component of the ground reaction force of the person-load system ( f orcehuman_load)
between the start of the n-th lifting (startn) and the stop of the corresponding lowering
(stop_loweringn):

f orceli f ting =
∑

stop_loweringn
i=startn

f orcehuman_load(i)
stop_loweringn − startn

[N] (3)

The weight of the person-load system is then calculated as the ratio between the force
of lifting ( f orceli f ting) and the acceleration of gravity:

Lhuman_load = f orceli f ting/g[kgf] (4)

The lifted weight is estimated as the difference between the weight of the Person-
Loaded System and the reference weight (Table 1):

L(n) = Lhuman_load − Lre f [kgf] (5)
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Table 1. For each task (1, 2, 3, 4, 5, and 6): the reference values of the load weight (L), the horizontal
(H) and vertical (V) locations, the vertical travel distance (D), the asymmetry angle (A), the lifting
frequency (F), the hand-to-object coupling (C), the corresponding reference values of the multipliers
obtained from the Revised NIOSH Lifting Equation (see text for further details), recommended
weight limit (RWL), and Lifting index (LI).

Task LC
(kgf)

H
(cm) HM V

(cm) VM D
(cm) DM A (◦) AM F

(Lifts/min) FM C CM L
(kgf) RWL LI

1 23 30.5 0.82 55 0.94 40 0.93 0 1 4 0.84 good 1 7 13.88 0.50
2 23 30.5 0.82 55 0.94 40 0.93 0 1 6 0.75 good 1 6.2 12.39 0.50
3 23 30.5 0.82 55 0.94 40 0.93 0 1 3 0.88 good 1 7.3 14.54 0.50
4 23 60 0.42 10 0.81 85 0.87 0 1 4 0.84 good 1 8.5 5.66 1.50
5 23 60 0.42 10 0.81 85 0.87 0 1 6 0.75 good 1 7.6 5.05 1.50
6 23 60 0.42 10 0.81 85 0.87 0 1 3 0.88 good 1 8.9 5.93 1.50

LC is the load constant, equal to 23 kg, as required by the RNLE [5].
HM(n) is the horizontal multiplier calculated at the beginning of the n-th lifting, using

the following equation [5]:

HM(n) =
0.25

H(startn)
=

0.25
Handsmp(startn)− Anklemp(startn)

(6)

where H(startn) is the horizontal location (Figure 3), measured in centimeters, at the start
of the n-th lifting cycle and computed as the distance in the anterior–posterior direction
between the midpoint of the left and right third knuckle (Handsmp(n)) and the mid-point
between the ankles (Anklemp(n)). To compute this parameter, as well as for the multipliers
that need kinematic data about the hands, we corrected the used XSens kinematic model
(see the section on kinematic and kinetic models) to obtain the wrist position, with a
trigonometric approach to obtain the position of the center of the hands properly by adding
the distance between the wrist and the third metacarpal from the wrist position (measured
for each considered subject).

VM(n) is the vertical multiplier, computed using the following equation [5]:

VM(n) = 1 − 0.3 ·|0.75 − V(startn)| (7)

where V(n) is the vertical location (Figure 3), measured in centimeters, of the n-th lifting
cycle, defined as the height of the hands (midpoint of the left and right third knuckle) from
the floor at the beginning of n-lifting.

DM(n) is the distance multiplier, calculated using the following equation [5]:

DM(n) = 0.82 +
0.045
D(n)

= 0.82 +
0.045

|V(stopn)− V(startn)|
(8)

where D(n) is the vertical travel distance (Figure 3), measured in centimeters, defined as
the absolute value of the difference between the vertical height of the hands (midpoint
of the left and right third knuckle) from the floor at the end of the n-th lifting task and at
the beginning.

AM(n) is the asymmetry multiplier, calculated using the following equation [5]:

AM(n)= 1 − 0.0032·A(n) = 1 − 0.0032·|A(stopn)− A(startn)| (9)

is the difference in the angle between the subject’s sagittal plane and the center of the load
at the end and beginning of the n-th lifting task. In the present case, all the liftings took
place completely in the sagittal plane; therefore, the asymmetry angle was always equal to
0, and AM(n) was equal to 1 for each n.
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CM(n) is the coupling multiplier of the n-th lifting task, indicating the quality of
gripping and ranging between 0.9 and 1 [5]. In the present case, all the liftings took place
with excellent subject–load coupling; therefore, CM(n) was always set equal to 1.

FM(n) is the frequency multiplier [5], calculated using the following equation:

FM(n) = f (F(n)) (10)
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where F(n) is the frequency that the algorithm can automatically determine, according to
the following equation:

F(n) =
{

1 i f n = 1
60 ∗ n

∆ i f n > 1
[lifts/min] (11)

where ∆ is the difference between the start of the n-th lifting task (startn) and the start of
the first lifting task (start1): ∆ = startn − start1.

Once LIn has been calculated, for each lifting cycle, the adaptive-Lifting Index aLI
is calculated (Figure 1) as the average of the lifting indices calculated from n = 1 to the
current n-th cycle:

aLI(n) =
∑n

k=1 LIk

n
(12)

At the same time, the error between the current aLI and that of the previous cycle is
calculated according to the formula:

εn = aLI(n)− ∑n−1
k=1 LIk

n − 1
= aLI(n)− aLI(n − 1) (13)

As a condition for the convergence of the algorithm, to have an increasingly accurate
estimate of the risk level, the triple constraint, with data-driven thresholds, imposed that:

(I) The absolute value of the difference between the estimated frequency and the reference
frequency (Fref, Table 1) is lower than 5 ∗ 10−1 (frequency convergence);

(II) The absolute value of the error at εn is less than 3 ∗ 10−1;
(III) The absolute value of the ∆ε, defined as the difference between the error at the n-th

cycle and that of the previous cycle (n − 1), is less than 10−2.

In formulas: ∣∣∣F(n)− Fre f

∣∣∣ < 0.5
AND

|εn| < 0.3
AND

∆ε(n) = |εn − εn−1| < 0.01 [lifts/min]

(14)

As the first constraint, we selected frequency because the LI estimate depends a lot on
the frequency with which the liftings are carried out, and it is necessary to wait a certain
number of cycles to best estimate the frequency of lifting. We also worked on the error so
that it could be small (II constraint) and, above all, stable (III constraint).

If this triple condition is verified, the algorithm is considered convergent, and we
obtain the cycle (cycleconv), aLI (aLIconv), error (εconv), and ∆ε (∆ε−conv) at convergence.
Otherwise, it continues identifying lifting cycles and adjusts the aLI iteratively as further
cycles are completed until convergence is achieved.

With each successive iteration of the calculation, new values of the task variables,
multipliers, and aLI are obtained. An approximate value is determined at each lifting cycle,
and these values form a succession that, if convergent, yields increasingly precise values of
the aLI.

2.3. Experimental Procedures
2.3.1. Participants

The study recruited 10 participants (5F and 5M), with a mean age of 37.20 ± 5.15 years,
a height of 1.68 ± 0.08 m, a weight of 68.35 ± 13.68 kg, and a body mass index [BMI]
of 23.90 ± 3.44 kg/m2. All participants were not taking part in any clinical medication
trials and had no history of back pain, upper or lower limb or trunk surgery, neurological
or orthopaedic diseases, or problems with the vestibular system. Participants provided
written informed consent for the study, which followed the Helsinki declaration and was
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approved by the local ethics committee (Comitato Etico “LAZIO 2”, N.0078009/2021), after
receiving a thorough description of the experimental process. There was no mention of the
expected results to prevent potential bias.

2.3.2. Experimental Procedure

Before measurements were started, the Xsens system was calibrated for each partici-
pant, using the “N-pose and walk” technique prior to starting recordings. To record Xsens,
the Xsens MVN Analyse program (version 2018.0. 0) was utilized. Furthermore, partici-
pants underwent a training session to become familiar with the assessment procedures and
correctly execute lifting tasks. The participants were asked to perform a manual material
lifting task standing in a neutral body position and lifting a plastic crate with handles
using both hands, according to the RNLE [5]. Table 1 shows, for each lifting condition,
the reference values of the load weight (L), the horizontal (H, Figure 3) and vertical (V,
Figure 3) locations, the vertical travel distance (D, Figure 3), the asymmetry angle (A),
the lifting frequency (F), and the corresponding reference values of the multipliers. The
hand-to-object coupling was defined “good” for all lifting tasks.

The lifting tasks were designed to obtain reference LI values of 0.5 (tasks 1, 2, and 3
in Table 1) and 1.5 (tasks 4, 5, and 6 in Table 1). Note that tasks within the same LI (1, 2,
and 3 for LI = 0.5 and 4, 5, and 6 for LI = 1.5) differed only for variables F and L (Table 1).
Each participant was required to perform all six tasks, each lasting 4 min, at the frequencies
described in Table 1 for each task. A metronome was utilized to trigger the lifting frequency:
each time the acoustic signal was received, the participants raised the load to the set height.
A rest period of 5 min was used between tasks. The lifting tasks were assigned to each
participant in a random order.

2.3.3. Errors of Measured Variables

To estimate the measurement errors in the variables measured with IMU and force
platforms with respect to reference values (Table 1), the absolute error (Ea) and the relative
percentage error (Er) are evaluated at each cycle (EaH and ErH for H, EaV and ErV for V, EaD
and ErD for D, EaL and ErL for L), as follows:

Ea =
∣∣∣variablemeasured − variablere f

∣∣∣ (15)

Er = 100 ∗

∣∣∣variablemeasured − variablere f

∣∣∣
variablere f

[%] (16)

where variablere f are the values defined in Table 1.

2.4. Statistical Analysis

The statistical analyses were carried out using SPSS 20.0 (IBM SPSS). The Shapiro–Wilk
test was used to verify the normal distribution of the data. One sample t-test was used
to compare the values of aLIconv with the reference values for each task. Furthermore, for
each LI we performed, we conducted a one-way repeated-measures ANOVA to determine
whether there were any significant differences among the three tasks with the same LI
(tasks 1, 2, and 3 with LI = 0.5 and tasks 4, 5, and 6 with LI = 1.5). The statistical significance
level was set at α = 0.05.

3. Results

Figure 4 shows the box-whisker plots of the results relating to the estimated variables
of the RNLE. Figure 4 shows the values of the H, V, D, and L, calculated using wearable
sensors, force platforms, and the algorithm described in Section 2.2, and the reference
values of the variables for each task (Table 1). Figure 5a, b shows the Ea and Er of these
variables, respectively. The absolute errors are in meters for H, V, and D and in kgf for L.
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travel distance (D), and load weight (L). For each plot, the horizonal black line in the middle of
each box is the sample median (q2), the bottom and top of each box are the 25th (q1) and 75th (q3)
percentiles of the sample, respectively. The whiskers are lines extending above and below each box:
whiskers go from the end of the interquartile range to the furthest observation within the whisker
lengths: q1 − 1.5 × (q3 − q1) and q3 + 1.5 × (q3 − q1). The dots are the outliers (values that are more
than 1.5 times the interquartile range away from the bottom or top of the box). nsample: number of
samples (10 in this case). The gray panel provides an explanation of the plot.

For each task, Figure 6 shows the mean and SD values of estimated F at each cycle and
the mean and SD values of cycleconv.
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Figure 5. The x-axis of all graphs shows tasks 1 to 6. The graphs of rows (a,b) show, respectively, the
absolute and relative percentage errors of the horizontal (H) and vertical (V) locations, vertical travel
distance (D), and load weight (L). For each plot, the horizonal black line in the middle of each box is
the sample median (q2), the bottom and top of each box are the 25th (q1) and 75th (q3) percentiles of
the sample, respectively. The whiskers are lines extending above and below each box: whiskers go
from the end of the interquartile range to the furthest observation within the whisker lengths: q1 −
1.5 × (q3 − q1) and q3 + 1.5 × (q3 − q1). The dots are the outliers (values that are more than 1.5 times
the interquartile range away from the bottom or top of the box).

For each task, Figure 7 shows the mean and SD values of aLI (7a), error (7b), and ∆ε

(7c) at each cycle and the mean and SD values of cycleconv.
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Figure 6. For each task (1, 2, 3, 4, 5, and 6), the mean and SD values of the estimated frequency (F)
and the reference values are depicted with black dotted lines. Vertical lines are the mean and SD
values of cycleconv (cycle at algorithm convergence).

Figure 8 shows the values of aLIconv, cycleconv, εconv, and ∆ε. One sample t-test
showed no statistical significant differences between aLIconv and reference values for task 1
(t = 1.0124; p = 0.341), task 2 (t = 1.455; p = 0.196), task 3 (t = 0.4035; p = 0.696), and task
5 (t = −1.2247; p = 0.2603), while statistical significant differences * were found for task 4
(t = −4.4915 p = 0.003) and task 6 (t = −4.8603; p = 0.001). The repeated measures ANOVA
revealed no significant effect of the task on aLI for LI = 0.5 (F = 1.278, p = 0.321) and LI = 1.
5 (F = 2.815, p = 0.107).
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Figure 8 shows the values of aLIconv, cycleconv, εconv, and Δε. One sample t-test showed 
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Figure 7. For each task (1, 2, 3 4, 5, and 6), the mean and SD values of the aLI (a), error (b), ∆ε (c) at
each cycle are presented. Black dotted lines (a) represent the reference values of LI, as defined in
Table 1. Vertical lines are the mean and SD values of cycleconv.

More in detail, in Table 2, the mean (±SD) of aLIconv and εconv for each task are reported.

Table 2. The mean and standard deviation values (M ± SD) of aLIconv and εconv for each task.

Task

1 2 3 4 5 6

aLIconv 0.56 ± 0.06 0.68± 0.10 0.51 ± 0.06 1.43 ± 0.12 1.47 ± 0.39 1.39 ± 0.07
εconv 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.14 ± 0.26 0.04 ± 0.06
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lifting activities. This index receives information from a network of IMU sensors for esti-
mating H, V, D, and F and from force platforms to estimate the weight of the lifted load. 
The calculation algorithm allows for an adjustment of the estimation cycle after cycle until 
the definitive value is identified, which occurs when three conditions are respected. 

The results show us that the aLI value rapidly converges towards the reference value 
(Table 1) for all six tasks performed in the two risk conditions (Figures 7 and 8). In the 
lowest risk condition, the tool takes from 6 to 7 cycles to 12 to 13 cycles, about 2 min, to 
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Figure 8. For each task (1, 2, 3, 4, 5, and 6), the aLIs at stop of algorithm (aLIconv), cycles at stop
(cyclecon), errors (εconv) at stop of algorithm, and difference between the error at stop of algorithm
and that at the previous cycle (∆ε-conv). Black dotted lines represent the reference values of LI, as
defined in Table 1. In each plot, the horizonal black line in the middle of each box is the sample
median (q2); the bottom and top of each box are the 25th (q1) and 75th (q3) percentiles of the sample,
respectively. The whiskers are lines extending above and below each box: whiskers go from the end
of the interquartile range to the furthest observation within the whisker lengths: q1 − 1.5 ∗ (q3 − q1)
and q3 + 1.5 × (q3 − q1). The dots are outliers (values that are more than 1.5 times the interquartile
range away from the bottom or top of the box).

4. Discussion

In this study, we used the aLI to estimate the level of biomechanical risk in heavy lifting
activities. This index receives information from a network of IMU sensors for estimating
H, V, D, and F and from force platforms to estimate the weight of the lifted load. The
calculation algorithm allows for an adjustment of the estimation cycle after cycle until the
definitive value is identified, which occurs when three conditions are respected.

The results show us that the aLI value rapidly converges towards the reference value
(Table 1) for all six tasks performed in the two risk conditions (Figures 7 and 8). In the lowest
risk condition, the tool takes from 6 to 7 cycles to 12 to 13 cycles, about 2 min, to correctly
estimate LI, while in the highest risk condition, the cycles used fluctuate between 7 and 20,
about 3 min (Figure 7). Furthermore, in the lowest risk condition, there is, on average, a
slight overestimation of the risk level, which is greater in the tasks with a higher frequency
(maximum overestimation for task 2 at frequency 6 liftings/min, then 1 with 4 liftings/min
and then 3 with 3 liftings/min), but in all cases, it reduces as the considered number of
cycles increases. Meanwhile, in the highest risk condition, in the two lower frequency tasks,
4 and 6, there is a slight underestimation of the risk level, while in task 5, initially, there
is an overestimation of the risk level, which, however, is then reduced significantly as the
considered cycles increase. We also observe that in tasks with a higher level of risk, there
is greater intra-subject variability in the estimate of the aLI, which, however, at the same
level of risk, is greater in tasks with a higher frequency (Figure 7). Furthermore, statistical
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analysis suggests that the estimation algorithm should be optimized, especially for higher
risk levels (Figure 8). On the other hand, the estimate is independent of the method of
execution of the lifting activity within the same risk level (Figure 8), and this allows us to
be confident in the generalizability of the procedures.

These data suggest a promising use of this approach in terms of measurement times,
which, excluding the worker’s dressing time, are very short. Furthermore, such a rapid esti-
mate of the risk level suggests the use of aLI within control algorithms for early intervention
collaborative robots to support lifting activities.

The results of this study also show that the accuracy of the estimation ranges between
0.05 and 0.18 in the lowest risk lifts and between 0.10 and 0.33 in the highest risk lifts (see
Table 2). Instead, the estimation precision varies between 0.06 and 0.10 in tasks with LI = 0.5
and between 0.07 and 0.39 in tasks with LI = 1.5 (Table 2). These results are also particularly
useful in understanding that this instrumental approach can minimize the misidentification
of tasks [12,28] with a good classification of the same.

From a detailed analysis of the estimation made on the RNLE variables, regarding H,
the results show an overestimation for the lifting performed in the risk condition LI = 0.5,
with a median error that never exceeds 5 cm (Figure 4), and an underestimation for those
with LI = 1.5, with a median error that never exceeds 10 cm. This error is fundamentally
attributable to a drift in the rotation of the local reference system with respect to the
laboratory one, which can be typical of IMU systems and can be minimized through several
procedures [29–32]. Furthermore, it will be necessary to better estimate, compared to what
was done with the correction factor, the position between the two hands when picking
up the load (see the methods section). It will be particularly important to improve the
estimation of H, as previous sensitivity analyses have shown that the horizontal position, in
addition to being important for determining the LI, is normally, together with frequency, the
variable most affected by error with traditional measurements [12]. For the estimation of the
variable V, there is an overestimation for both the risk conditions, with errors always below
10 cm. Also, this type of error can be minimized by improving the correction procedure on
the calculation of the hands’ position. The estimation of D is particularly accurate for both
risk classes, with a slightly higher error for the one with LI = 1.5. In this case, any systematic
errors in the measurement are eliminated in the difference. The estimate of the weight of
the lifted object is accurate enough in both risk conditions, with an underestimation error
almost always below 1 kgf. The type of sensor employed to detect the ground reaction
forces is the most likely factor influencing the inaccuracy in the estimation of the weight of
the lifted load, implying a systematic error.

Future developments include the use of countless wearable devices, insoles, and
sensorized shoes, instead of force platforms, to enable GRF measurement and weight load
estimates directly in the workplace [24–26]. However, the data on the frequency estimation
are very interesting and are accurate and precise after just a few lifting cycles and therefore
after about one or two minutes (Figure 6). This ability is a notable advantage compared to
what is accomplished with traditional measurements, as scientific literature shows that the
frequency variable is normally affected by error [12].

5. Conclusions

The concepts, mathematics, and results of this study suggest a very promising use of
instrumental tools and automatic algorithms for rating the variables provided by the RNLE
and therefore for estimating the level of risk.

Indeed, the approaches proposed in this study are very useful in new Industry 4.0
scenarios where manual material handling activities can be performed by hybrid human–
robot teams [15]. In this case, the robot control algorithms can refer to these available indices
in real-time and make the robots intervene when the exposure to risk is high. Furthermore,
an index conceived in this way would also allow rapid administration of acoustic, visual,
or vibrotactile feedback stimuli to workers to warn the workers that they are exposing
themselves to a high risk [33,34]. For these reasons, there are also many experiences and
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activities [17] underway to include these new approaches within the International Standard
Organization (ISO) 11,228 parts 1 and the technical report 12,295 [27,35].

However, the results of this study cannot be generalized as the sample tested is still too
small, and the type of lifting is very far from representing the wide variability present in the
workplace. The precision and accuracy of the aLI will have to be increased using additional
correction factors for the estimation of the variables H and L. Furthermore, the ability of the
aLI to correctly estimate the biomechanical risk level will have to be tested in further simple
tasks but with different characteristics. In particular, it will be necessary to investigate
asymmetric lifting in order to test a better ability of the algorithm to estimate the asymmetry
variable compared to that of health and safety operators in the workplace [12,28,36–38].
Finally, it is important to test and refine the algorithm’s performance in challenging tasks
that require the estimation of composite LIs (CLIs), variable LIs (VLIs), and sequential LIs
(SLIs) [5,35].
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