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Abstract: Computer vision in the structural health monitoring (SHM) field has become popular,
especially for processing unmanned aerial vehicle (UAV) data, but still has limitations both in
experimental testing and in practical applications. Prior works have focused on UAV challenges and
opportunities for the vibration-based SHM of buildings or bridges, but practical and methodological
gaps exist specifically for linear infrastructure systems such as pipelines. Since they are critical for the
transportation of products and the transmission of energy, a feasibility study of UAV-based SHM
for linear infrastructures is essential to ensuring their service continuity through an advanced SHM
system. Thus, this study proposes a single UAV for the seismic monitoring and safety assessment of
linear infrastructures along with their computer vision-aided procedures. The proposed procedures
were implemented in a full-scale shake-table test of a natural gas pipeline assembly. The objectives
were to explore the UAV potential for the seismic vibration monitoring of linear infrastructures with
the aid of several computer vision algorithms and to investigate the impact of parameter selection for
each algorithm on the matching accuracy. The procedure starts by adopting the Maximally Stable
Extremal Region (MSER) method to extract covariant regions that remain similar through a certain
threshold of image series. The feature of interest is then detected, extracted, and matched using the
Speeded-Up Robust Features (SURF) and K-nearest Neighbor (KNN) algorithms. The Maximum
Sample Consensus (MSAC) algorithm is applied for model fitting by maximizing the likelihood
of the solution. The output of each algorithm is examined for correctness in matching pairs and
accuracy, which is a highlight of this procedure, as no studies have ever investigated these properties.
The raw data are corrected and scaled to generate displacement data. Finally, a structural safety
assessment was performed using several system identification models. These procedures were first
validated using an aluminum bar placed on an actuator and tested in three harmonic tests, and then an
implementation case study on the pipeline shake-table tests was analyzed. The validation tests show
good agreement between the UAV data and reference data. The shake-table test results also generate
reasonable seismic performance and assess the pipeline seismic safety, demonstrating the feasibility
of the proposed procedure and the prospect of UAV-based SHM for linear infrastructure monitoring.

Keywords: UAV-based SHM; computer vision; MSER; SURF; MSAC; matching; accuracies; linear
infrastructure; pipeline; seismic test; seismic performance

1. Introduction

Linear infrastructures, such as highways, roads, railways, tunnels, and pipelines, are
critical for the transportation of products and the transmission of energy. Therefore, a safe
design and frequent inspections are essential to ensuring service continuity throughout
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their entire lifespan. The possibility of being exposed to natural hazards such as earth-
quakes should also be considered not only in the design and construction but also in the
maintenance phases. Among linear infrastructures, the condition or seismic monitoring
of natural gas pipelines is slightly more critical since their network may be constructed
through several terrains with different seismicity, leading to different hazard exposures [1].
During condition monitoring, their material deterioration or structural degradation due
to sustained loads, such as internal pressure, or as a result of thermal expansion can be
identified early and resolved rapidly. However, occasional loads like earthquakes may
lead to a sudden and significant loss of energy supply and even fire hazards, as previously
experienced in the 1994 Northridge earthquake [2]. The investigation revealed that the
seismic hazards contributing to the pipeline failure were mainly caused by permanent
ground deformation and seismic wave propagations [3]. The traveled waveform initiated
pipeline compression failure, followed by a tensile fracture that finally led to buckling. The
weakest links, such as welds or other bolted connections, experienced tension failure since
their design was linear with little redundancy. This indicates that pipeline networks have a
lower strength level as compared to other linear infrastructure systems. Therefore, they
have a high dependency on robust monitoring and a health assessment system to avoid
any service interruptions and to protect them from any foreseeable risks and hazards.

The pipeline monitoring task is typically supervised by conventional controls and
data acquisition systems that evaluate the pipeline condition 24 h per day, sometimes with
a few seconds scanning gap, depending on the communication technology used in the
field [4]. Recently, more robust monitoring techniques, such as acoustic emissions, guided
waves, or wireless sensors, have also been implemented to estimate the residual life by
detecting crack propagation, screening for corrosion, or identifying pressure changes that
may indicate damage to the pipeline system [5,6]. The advances in the field of pipeline
monitoring are shown in robotics as more flexible platforms to complete multiple works and
to conduct challenging tasks in each mission. Climbing robots show efficiency in assisting
pipeline inspections on land without posing a danger to human life and are also less time-
consuming [7]. For a more complex environment like undersea pipes, an Autonomous
Underwater Vehicle equipped with a multibeam echosounder and forward-looking sonar
provides high efficiency in the inspection of subsea pipelines [8].

An intelligent robotic system with functions that are not only useful for condition
monitoring but also beneficial for pipeline seismic hazard mitigation due to its airborne
operation is provided by an unmanned aerial vehicle (UAV), publicly known as a drone. It is
capable of capturing high-quality geospatial data independently of the ground movement,
perfectly isolating them from other disturbances in the mission environment. Therefore, for
monitoring pipelines before, after, or during seismic events, the UAV visibly outperforms
its other robotic instrument counterparts. Prior UAV studies have shown that they can
be operated for pipeline condition monitoring, for example, to capture gas leakage and
emissions [9–12]. The vast development of computer vision algorithms also supports either
laboratory or field experiments on UAV-based SHM. Generally, they are used to detect
special features of the tested object through pattern recognition and matching algorithms.
In the Digital Image Correlation (DIC) method [13], for example, an algorithm that uses a
correlation function to allow the measurement of the surface displacement, deformation
vector fields, or strain maps was used in the work by [14]. A drone-based stereo DIC was
developed and tested on a prestressed concrete tie for high-speed rail application as a
proof of concept for the successful integration of DIC and drone technologies. Automatic
feature detection algorithms such as the Scale-Invariant Feature Transform (SIFT) [15] or
Speeded-Up Robust Features (SURF) [16] enable the extraction of feature points based on
a 2D discrete wavelet transform for SIFT and a Hessian matrix for SURF [17], which has
also been used to analyze UAV videos. Matching algorithms, such as the greedy nearest
neighbor, optimal fair or full, or exact algorithm, are selected to match features between
images depending on the matching goal. False matching may occur, which should be
filtered using an optimization algorithm such as random sample consensus (RANSAC) or
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its variants, namely, the M-estimator SAC (MSAC) [18], Progressive SAC (PROSAC) [19],
or Maximum Likelihood Estimator SAC (MLESAC) [20] algorithm, of which selection is
based on either its accuracy, speed, robustness, or optimality [21].

There are still research gaps to be explored and essential topics to be covered to sup-
port UAV-based SHM, especially for linear infrastructures. First, there are practical gaps
related to the UAV potential for seismic monitoring aiming at the safety assessment of
linear infrastructures. Prior works have focused only on UAVs for the inspection of tun-
nels [22], railways [23], power lines [24], or roads [25]. For pipeline monitoring, previous
studies have only explored post-seismic actions, for example, UAV mapping that shows
the surface ruptures causing pipeline leakage [26] or a UAV for pipeline post-recovery
reconnaissance [12]. Second, methodological gaps in a simple yet practical method to assess
the measurement accuracy of UAV data have been identified. Some challenges have been
addressed, primarily on UAV stabilization, positioning accuracy, and measurement accu-
racy [27–29]. They become critical issues for intelligent UAV-based vibration monitoring
purposes [30,31], as they affect data accuracy due to image distortions and misalignments.
However, only UAV control, like estimating motion based on an Inertial Measurement Unit
(IMU) [32] or an image-processing technique using a calibration method [33], has been
adapted as a solution.

Prior works have provided valuable insights into the potential benefits of deploying
UAV-based SHM; however, further study is necessary to address previous gaps and im-
prove our understanding in this field. Therefore, the main contributions of this study are
the exploration of the UAV potential for the seismic vibration monitoring of linear infras-
tructures, focusing on pipeline systems, with the aid of several computer vision algorithms
and the investigation of the impact of selecting several parameters for the applied computer
vision algorithms on the feature matching accuracy. The goal is to deploy UAV-based
SHM for seismic and safety assessments of linear infrastructures. The remainder of this
paper is organized as follows. In Section 2, computer vision procedures and their relevant
parameters are presented and their accuracies are verified. The small-scale validation
experiment is given in Section 3. The pipeline application on a shake table is given in
Section 4. Conclusions are drawn in Section 5.

2. Computer Vision Procedures for UAV-Based Seismic Structural Health Monitoring

A systematic approach using computer vision algorithms for the seismic SHM of
linear infrastructures is proposed in Figure 1. A camera equipped with a UAV faces
the measurement points on the object, focusing on the distributed artificial targets that
are distinctive from their surrounding environment. These optical targets are based on
the design of Schneider [34], in which the target centers are typically found using the
ellipse-finding algorithm. They are detected, recognized, and matched later using different
algorithms, as proposed in Figure 1. Depending on the field of view, the UAV should fly in
front of the object, like in the example in Figure 1, or above the object, as shown later in the
validation test and pipeline shake-table tests. Similar to vision-based vibration SHM using
steady cameras, as previously studied by the authors [35–39], the UAV camera should also
be kept stable, and the UAV body should not drift while monitoring the tests; otherwise,
they will affect the data accuracy. Therefore, this study proposes conversion and correction
steps between two key steps for UAV-based seismic SHM, i.e., the computer vision-aided
procedure and seismic safety measures, as shown in Figure 1, with the details given in the
next subsections.
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Figure 1. Proposed computer vision procedures for UAV-based seismic SHM for linear infrastructures.

2.1. Video Acquisition and Image Processing

A UAV and its components, including the gimbal and the camera, should be calibrated
before each mission following the system requirements. In each mission, the UAV records
a single or multiple videos based on the number of tests or its battery life. The video is
then extracted into continuous images, with the total number of images depending on the
camera sampling rate and the testing duration. For a UAV camera that is set to record
colored videos, the colored images are processed into grayscale to comply with the feature
extraction algorithm’s requirements, as detailed in the next subsection. An illustration of
the effect is shown as a histogram in Figure 1. When the RGB channels from the original
image are transformed into grayscale, the pixel distribution is more stretched over the
gray-level intensity. The pixel distribution shifts more to brighter areas, while in darker
areas, the pixel counts are slightly reduced. The quality of underexposed or low-contrast
images is then improved using the Contrast-limited Adaptive Histogram Equalization
(CLAHE) method [40], which was studied previously by the authors [39], along with
several image enhancement algorithms to ensure that their impacts are insignificant to the
data accuracies. Next, each image is processed continuously using region detection as well
as feature detection, extraction, and matching algorithms.

2.2. MSER Detector

The basis of fundamental computer vision tasks such as 3-D reconstruction, stereo
matching, or object tracking relies on the selection and detection of regions of interest and
local features, followed by finding their correspondence in the next image. Artificial targets
attached to the structure are already distinguishable and easy to track within the image
sequences; thus, they serve as elements and are further called distinguished regions (DRs)
in this paper. They are defined by an extremal property of the intensity function in the DR,
and their outer boundaries are identified as Maximally Stable Extremal Regions (MSERs),
with more details in Matas et al. [41]. As compared to other region detectors, MSER has
major advantages, as it is applicable for hardware operations and has high repeatability
with correct identification [42–44]. Five parameters of MSERs should be determined, i.e.,
maximum and minimum areas with their variations, delta or threshold delta, and minimum
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diversity. Maximum and minimum areas are regions that can be considered stable with
an increasing threshold delta. The minimum diversity is the value between two regions
that discards the lesser diversity value. The threshold delta is the variation between gray
levels for each region detected by the MSER. Each component of the MSER area increases
monotonically with each increasing threshold delta. The variation in the threshold delta
must be less than the maximum variation and must be a local minimum, and the diversity
of overlapping MSERs must be greater than the minimum diversity to be accepted as an
MSER. Furthermore, these parameters are also subjected to a constraint that they must be a
positive number.

A brief explanation of the MSER algorithm is provided as follows. As mentioned
previously, each RGB image is first converted to grayscale, so the intensity range is now
within the range of 0 (black) to 255 (white) for 8-bit images. Then, it is segmented using
intensity thresholding with certain values such that if the gray level of the image pixel is
smaller than the threshold, then it is set to zero, and otherwise, it is set to one. The DR
with the highest gray level is called the extremal region, Q, which is maximally stable if
the variation rate of the extremal region q

(
ij
)

has a local minimum following the discrete
approximation in Equation (1). The threshold increment ∆i is defined by the difference
ij − ij − 1. These stable regions are selected as the output by selecting those with the highest
stability, with an example shown in Figure 1.

q
(
ij
)
=

∥Q
(
ij
)
−Q

(
ij − 1

)
∥

∥Q
(
ij
)
∥

(1)

2.3. SURF Descriptor

The next challenge after detecting DRs is to keep the most visible features in those
regions, such as edges, corners, blobs, etc. A local descriptor is built from these features that
should stay constant under numerous disturbances, like geometric transformation, noise,
or photogrammetric changes. The SURF algorithm was selected as the feature extraction
descriptor in this study due to its capability to reduce computational complexity [45], which
mainly consists of four steps. First, the integral image that represents the input image is created.
A Hessian matrix is built, and its determinant is used to detect blob-like features, followed by
generating descriptors. The properties of SURF are shown in Equation (2), which symbolizes
them as a Laplacian in which (x, y) is the location of point X in image I. Based on Equation (2),
the SURF detector keeps the blob-like features in the image and differentiates between bright
blobs detected on a dark background and vice versa. The CLAHE method, as mentioned in
the previous subsection, accelerates this process since the image quality improves as the image
enhancement algorithm is applied. Blob features are detected by convolving the source image
with the determinant of the Hessian (DoH) filters, having the 2-D Gaussian second-order
derivatives Gxx and Gyy, which are then divided by the Gaussian variance, σ2, as shown
in Equation (3). These features are then interpolated to sub-pixel accuracy. Two descriptor
vectors are extracted in this step, i.e., 64- and 128-dimensional descriptors, which are later
labeled as SURF 64-D and SURF 128-D. They are based on the sums of wavelet responses.
Lastly, salient features associated with each interest point are stored. A detailed analysis of the
SURF algorithm can be found in [46].

sgn
{

Gxx(x, y, σ) + Gyy(x, y, σ)
}
=

{
+1
−1

bright blob over dark background
dark blob over bright background

(2)

DoH(x, y, σ) =
Gxx(x, y, σ) · Gyy(x, y, σ)− Gxx(x, y, σ)2

σ2 (3)

2.4. Refined Matching

After feature detection and extraction using SURF, searching for the most similar matches
for local features in image data sets becomes the next computational challenge. The matching
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step selected in this study is performed by making exhaustive comparisons of SURF vectors
using the Euclidean distance combined with the K-nearest neighbor (KNN) method. KNN
matching is searched in the metric space M. As shown in Equations (4) and (5), the problem
consists of pre-processing the set of points P = {p1, p2, . . . , pn} such that the operation
NN (q, P) can be executed effectively with the query point q ∈ M. The KNN method was
performed in this study, as it constantly returns precisely K neighbors when there are at
least K points in P and also depends on the number of returned NNs with their respective
distance to q. The KNN is defined as the set A following Equation (4), in which A should
satisfy the condition stated in Equation (5). The accuracy of KNN matching is computed
using Equation (6) and is the percentage of the number of correct matches over the number of
detected features. This equation is also used to compute the accuracy of refined MSAC.

KNN(q, p, K) = A (4)

|A| = K, A ⊆ P (5)

Accuracy (%) =
Number o f correct matched f eatures

Number or detected f eatures
× 100 (6)

Practical applications of the KNN algorithm open the possibility of returning approxi-
mate rather than exact matches, as they are imposed to enhance the computational speed.
The return matches are still close to the exact neighbors, with several false matches. The
existing methods of refined matching are categorized based on their statistical, function,
or graph models. Among them, the RANSAC algorithm has been widely used due to
its robustness [47]. Otherwise, selecting one of its variants, such as MSAC, to improve
model accuracy or enhance iteration efficiency is also another option. This study selected
an MSAC algorithm that follows the random sampling consensus (RANSAC). On the basis
of statistics, MSAC evaluates the hypothesis based on the minimum correlation and interre-
lation, followed by characterizing the error distribution as a hybrid model. The fitness of
the corresponding points defined by the MSAC algorithm is computed using Equation (7),
in which the number of random trials N is set to 500 to find outliers. The distance of
corresponding points, d(xi, yi), from the threshold t is determined from the fundamental
matrix. Inliers from two images in MSAC are mapped by a geometric transformation
matrix, in which the transformation type is determined based on similarity in this study.
The results of geometric transformation rely on the number of matched features such that
more matching features indicate the higher efficiency of the transformation.

measure o f f itness =
N

∑
i

min(d(xi, yi), t) (7)

2.5. Conversion and Correction

After refined matching using the MSAC algorithm, the circle center of the artificial
target is detected, and the step is repeated for all image sequences. For the image sequence
at time step t0, t1, . . . , tn, the aforementioned methods are applied separately to each
image. The displacement is calculated by subtracting the location of the circle center,
xi, yi, to the location at the reference time t0, i.e., x0, y0, which results in pixel units. The
physical dynamic displacement is calculated by multiplying a scale factor S, as shown in
Equation (8), by the pixel displacement. It follows the pinhole camera model, in which di is
the image dimension, and dp is the physical dimension of the targets. It assumes that as the
camera’s optical axis is perpendicular to the object surface, then all features on the object
plane can be equally scaled down into the image plane.

S =
di
dp

(8)
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The next step is correcting the displacement data for any internal and external factors
that may contribute to UAV drift or movement [48]. During a mission, a single UAV
without any additional payloads may experience drifting or movement. If it is significant,
then it will show specific trends in the displacement data, as shown in a previous study [48].
Therefore, background subtraction is used to separate the UAV’s drift from the specimen’s
movement to stabilize it and obtain clearer vibration data.

2.6. Seismic Safety Measures

The final step in this procedure is to measure the seismic safety of the structure
using the peak displacement and frequency content of the structure generated by the
acceleration response. For validation tests, the autoregressive (AR) covariance algorithm is
used to obtain the PSD spectra of the specimen, as the applied loads are simply harmonic
waves. Pipeline tests use white noise loading to generate table displacement and structure
acceleration, which are set as the input and output, respectively, of the covariance-driven
Stochastic Subspace Identification (SSI-Cov) algorithm. The SSI-Cov algorithm is a well-
known representation of a state-space model that processes response or output data into
a covariance function. More details of SSI-Cov can be found in [49], with applications
on vision-based SHM in [37,50]. The important modal parameters, i.e., frequency and
damping, are computed using this algorithm. The shifting of these values before and after
earthquake tests is used to indicate whether any damages exist in the pipeline structure.

3. Validation Test on Aluminum Bar
3.1. Specimen Layout and Instrumentation

The proposed framework was experimentally validated using three tests, with the
layout for each test shown in Figure 2a–c. The test object was an aluminum bar with the
dimensions 100 mm × 10 mm × 900 mm placed on a simulator, as shown in Figure 2e. The
simulator excited the sinusoidal loading for a rigid test model. Monitoring was conducted
by a quadcopter-type UAV, as shown in Figure 2e, with the specifications listed in Table 1.
Figure 2d shows an example of correct pairs between images as the final result of the
proposed procedure in Figure 1. It is the targeted matching showing that all features are
correctly detected, tracked, and matched between images that must be achieved with all
image series in each test. To present the results, the displacements of features P1, P2, P3,
and BG are selected. The background (BG) is used as a control point for correction if the
UAV drifts or moves during the tests. Before the tests, the gimbal and cameras were first
calibrated following the manufacturer’s recommendations. For all tests, monitoring was set
at 30 frames per second (fps), i.e., a 30 Hz sampling rate, and utilized the full-resolution ROI
of the UAV cameras, i.e., 3840 × 2160 pixels. The UAV was operated using the controller
shown in Figure 2e such that it was navigated to be positioned in front of the specimen for
Tests 1 and 2. For the third test, it flew above the specimen, recording the plan view, similar
to the position while monitoring the pipeline test.

Table 1. UAV specifications.

Aperture f/2.8-f/11 Lens 35 mm

Battery life 30 min Shutter speed 8-1/2000 s (mechanical)
8-1/8000 s (electric)

Control Manual Satellite positioning system GPS

FOV Forward, backward ±60◦

(vertical), ±27◦ (horizontal) Sensor 1 inch CMOS

Gimbal stabilization 3-axis (pitch, roll, yaw) Video transmission 720 p

Image size 3840 × 2160 pixels Weight 1288 g

ISO 100–6400 (video) Size (diagonal) 350 mm
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Figure 2. Selected features (P1, P2, P3, and BG) from Test 1 (a), Test 2 (b), and Test 3 (c) with the setup
on the simulator (e). An example of targeted feature matching with no errors (d) in Test 1.

3.2. MSER and Threshold Delta Variations

Following the proposed computer vision approach in Figure 1, the first procedure after
converting the test video to an image series is transforming RGB channels into grayscale.
The total number of images from a 36 sec test duration with a 30 fps sampling rate is
1079 images. To visualize the image characteristics, an example of the first or reference
image from Test 1, I1, with the associated gray-level distribution and histogram is given
in Figure 3. The processed image has a width of 3840 pixels and a height of 2160 pixels,
and the gray level is distributed among these pixels, ranging from the darkest gray value
of zero to the brightest value of 255. The gray distribution of the reference image shows
that most of the pixels are localized within a very low to medium gray-level intensity. The
histogram shows several peaks near gray level 150 from the light background.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 26 
 

 

 

Figure 3. Gray-level distribution and intensity. 

The MSER detector is then applied, and the five parameters explained in Section 2.2 

are determined. The minimum and maximum areas of a connected component to be 

considered regions and, later, the expected feature size are set to 10 and 10,000 pixels, 

respectively. The maximum area variation between extremal regions is set to 0.25 at 

varying intensity thresholds. As for the MSER threshold delta (MSER TH), values ranging 

from 1 to 30 are selected for the thresholding process. These values are further used to 

explore the effect of the SURF size and threshold, as well as the MSAC threshold, to 

achieve accurate matching. Table 2 shows the maximum and minimum number of 

detected regions and extracted features of images from Test 1. Almost 6000 regions can be 

detected using MSER TH = 1, while a minimum of 251 regions are generated if MSER TH 

= 30 is selected. As the TH increases, the number of detected MSERs decreases, affecting 

the number of correct pairs in SURF and MSAC, as will be described in the next 

subsection. Figure 4 shows the number of regions detected by MSER and the difference 

between detected regions, ∆𝑟𝑒𝑔𝑖𝑜𝑛𝑠, of the reference image and images 2 and 3, 𝐼1−2 and 

𝐼1−3, based on MSER TH. Figure 5 illustrates the regions detected by MSERs at TH 1, 10, 

15, 20, 25, and 30. As shown in the example from Test 1 in Figure 5, 251 MSERs are detected 

at TH = 30; however, only 80 correct pairs are left after refined matching by MSAC. 

Furthermore, the algorithms detect fewer features of interest as compared to the targeted 

features and correct matching in Figure 2d. Therefore, the maximum MSER TH that can 

be applied from the three tests is TH = 30.  

In Figure 4, the example is taken from the results of Test 1, in which 𝐼2 and 𝐼3 are 

images recorded in the middle and at the end of the test. Figure 4 shows that at MSER TH 

= 1, 𝐼1 detects 5863 regions, while 𝐼2 and 𝐼3 identify 5965 and 5746 MSERs, respectively. 

These numbers decrease significantly at MSER TH = 2, detecting around a 46% difference 

compared to TH = 1, with 3161, 3154, and 3160 regions for 𝐼1, 𝐼2, and 𝐼3, respectively. As 

the threshold range increases, the detected regions become fewer, and only 251, 284, and 

285 regions are detected for 𝐼1, 𝐼2, and 𝐼3 at MSER TH = 30. These regions differ by 95% 

when compared to those identified at MSER TH = 1.  

Table 2. Maximum and minimum detected regions and extracted feature points using MSER and 

SURF based on MSER threshold (TH). 

TH Max. Min.  TH Max.  Min.  TH Max.  Min.  TH Max.  Min.  TH Max.  Min.  

1 5965 5746 7 2042 2015 13 1115 1023 19 757 752 25 430 389 

2 3161 3154 8 1783 1691 14 1085 1029 20 759 743 26 384 335 

3 3357 3151 9 1405 1391 15 969 926 21 762 735 27 419 395 

4 2383 2274 10 1319 1285 16 1100 1045 22 682 637 28 309 264 

5 2044 1999 11 1420 1343 17 1039 1009 23 546 490 29 303 264 

6 2040 1980 12 1165 1093 18 888 878 24 481 442 30 285 251 

Figure 3. Gray-level distribution and intensity.

The MSER detector is then applied, and the five parameters explained in Section 2.2
are determined. The minimum and maximum areas of a connected component to be
considered regions and, later, the expected feature size are set to 10 and 10,000 pixels,
respectively. The maximum area variation between extremal regions is set to 0.25 at varying
intensity thresholds. As for the MSER threshold delta (MSER TH), values ranging from 1 to
30 are selected for the thresholding process. These values are further used to explore the
effect of the SURF size and threshold, as well as the MSAC threshold, to achieve accurate
matching. Table 2 shows the maximum and minimum number of detected regions and
extracted features of images from Test 1. Almost 6000 regions can be detected using MSER
TH = 1, while a minimum of 251 regions are generated if MSER TH = 30 is selected. As the
TH increases, the number of detected MSERs decreases, affecting the number of correct
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pairs in SURF and MSAC, as will be described in the next subsection. Figure 4 shows the
number of regions detected by MSER and the difference between detected regions, ∆regions,
of the reference image and images 2 and 3, I1−2 and I1−3, based on MSER TH. Figure 5
illustrates the regions detected by MSERs at TH 1, 10, 15, 20, 25, and 30. As shown in
the example from Test 1 in Figure 5, 251 MSERs are detected at TH = 30; however, only
80 correct pairs are left after refined matching by MSAC. Furthermore, the algorithms
detect fewer features of interest as compared to the targeted features and correct matching
in Figure 2d. Therefore, the maximum MSER TH that can be applied from the three tests is
TH = 30.

Table 2. Maximum and minimum detected regions and extracted feature points using MSER and
SURF based on MSER threshold (TH).

TH Max. Min. TH Max. Min. TH Max. Min. TH Max. Min. TH Max. Min.

1 5965 5746 7 2042 2015 13 1115 1023 19 757 752 25 430 389

2 3161 3154 8 1783 1691 14 1085 1029 20 759 743 26 384 335

3 3357 3151 9 1405 1391 15 969 926 21 762 735 27 419 395

4 2383 2274 10 1319 1285 16 1100 1045 22 682 637 28 309 264

5 2044 1999 11 1420 1343 17 1039 1009 23 546 490 29 303 264

6 2040 1980 12 1165 1093 18 888 878 24 481 442 30 285 251
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Figure 4. Detected regions (top) and differences from reference image (∆regions %, bot.) with respect
to MSER threshold delta variations (MSER TH).

In Figure 4, the example is taken from the results of Test 1, in which I2 and I3 are
images recorded in the middle and at the end of the test. Figure 4 shows that at MSER
TH = 1, I1 detects 5863 regions, while I2 and I3 identify 5965 and 5746 MSERs, respectively.
These numbers decrease significantly at MSER TH = 2, detecting around a 46% difference
compared to TH = 1, with 3161, 3154, and 3160 regions for I1, I2, and I3, respectively. As
the threshold range increases, the detected regions become fewer, and only 251, 284, and
285 regions are detected for I1, I2, and I3 at MSER TH = 30. These regions differ by 95%
when compared to those identified at MSER TH = 1.
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ing threshold delta variations using reference and second images from Test 1.

3.3. Effect of SURF Dimension and KNN Threshold in Matching Accuracy

After detecting MSERs, the interest points in each image are extracted using SURF. It
uses a box filter to estimate the Gaussian derivative, in which strong key points are detected
by the determinant of the Hessian matrix. The selected SURF descriptors in this study
are vectors with 64 and 128 dimensions, i.e., SURF 64-D and 128-D. The SURF vectors of
interest points are calculated with a ratio threshold that is set to a maximum of one to
minimize ambiguous matches. The matching process uses the Euclidean distance combined
with KNN. The impact of the KNN threshold and SURF dimension selections on matching
accuracy is also explored in this subsection. These algorithms are applied consecutively
following the proposed procedure in Figure 1, and their results are strongly dependent on
one another. Therefore, their explanation is combined in this subsection.

Following the steps in Figure 5, the first observation is the effect of the SURF dimension
selection and KNN threshold. An example is provided using I1−2, and MSER TH is kept
constant at 15 for this purpose. The first variation is taken for SURF 64-D and 128-D. The
second is the KNN threshold variation, which is checked for thresholds of 1 to 100, with
five threshold increments. Interest points are first extracted from each image after MSER
detection. The MSER threshold that was selected as 15 results in 969 regions, as shown in
Figure 5. The SURF feature vectors of the set of interest points are then extracted and result
in 969 interest points per image following MSERs. Figure 5 illustrates an example of SURF
and KNN matching for SURF 128-D, in which 148 correct points are matched at TH = 15,
about 15.3% of the number of detected points. The results for both dimensions with their
associated matching thresholds are given in Figure 6, and their averages are presented in
Table 3. The accuracy is also checked for each dimension when the matching is refined
using the MSAC algorithm, and the difference between the two dimensions is presented
in Table 4.
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Figure 6. Percentage of correct matches (accuracy (%)) based on SURF 64-D and 128-D and KNN
threshold variations (KNN TH).

Table 3. Statistics of matching accuracy of SURF and MSAC algorithms.

Algorithm and
Dimension SURF 64-D SURF 128-D MSAC 64-D MSAC 128-D

Max (%) 13.6 16.4 38.5 72.8

Min (%) 11.8 13.6 35.3 61.0

Mean (%) 12.8 15.5 36.5 64.2

Table 4. The difference in matching accuracy between SURF 64-D and 128-D (∆SURF (%)) as well as
between MSAC 64-D and 128-D (∆MSAC (%)) with their respective KNN TH (TH).

TH ∆SURF (%) ∆MSAC (%) TH ∆SURF (%) ∆MSAC (%) TH ∆SURF (%) ∆MSAC (%)

1 1.9 10.2 35 2.1 25.8 70 3.2 26.4

5 2.8 25.7 40 2.5 28.9 75 2.4 24.1

10 3.4 25.5 45 2.7 29.7 80 1.9 25.5

15 3.0 24.0 50 2.2 28.2 85 3.6 29.5

20 2.8 27.7 55 2.5 31.9 90 2.7 23.4

25 2.2 35.2 60 2.8 32.4 95 2.9 26.3

30 3.4 31.4 65 2.9 25.5 100 3.4 27.6

The effect of the KNN threshold selection is assessed first using Figure 6 and Table 3.
Figure 6 shows the percentage of the KNN matching accuracy from thresholds 1 to 100
with five threshold increments based on SURF and its combination with MSAC using
the dimensions 64-D and 128-D. Table 3 presents the maximum, minimum, and mean
percentages of Figure 6. From these results, it is clear that selecting a higher KNN threshold
does not improve the matching accuracy when it is combined either with SURF only or
with MSAC. For SURF 64-D, the difference between maximum and minimum values is
only 1.8%, while 2.8% is computed for SURF-128D. When integrating SURF and KNN with
MSAC, about a 3.2% difference in accuracy is obtained for MSAC-64D. Meanwhile, about
an 11.8% difference in accuracy is calculated between the maximum and minimum values
for MSAC-128D. More analysis is then necessary to further examine the impact of using
SURF 128-D over 64-D.

Table 4 presents the difference between SURF 128-D and 64-D for each algorithm as
∆SURF and ∆MSAC with their corresponding KNN thresholds. These values are calculated
from Figure 6. The impact of using a higher SURF dimension in improving the accuracy of
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the matching is lower when only relying on KNN. For example, when using a threshold = 1,
the two dimensions only differ by about 1.9%, and the difference then slightly increases
to 3.4% at TH = 100. The average is computed as 12.7% and 15.5% for 64-D and 128-D,
respectively, before MSAC. It differs by only about 2.7% between the two dimensions.
When SURF and KNN are combined with MSAC, this average increases to 36.5% and
64.2% for 64-D and 128-D, about a 27.7% difference. This is about ten times higher than the
result before MSAC. About a 10.2% difference in accuracy at TH = 1 is computed between
the two dimensions, and then it increases up to 27.6% at TH = 100, as shown in Table 4.
Modifying the SURF and KNN results with MSAC appears to affect the accuracies based
on this observation. More assessments are necessary to confirm these results, focusing on
the effectiveness of selecting higher SURF dimensions and combining them with MSAC.

3.4. Effects of MSER Threshold, SURF Dimension, and MSAC Threshold in Improving Number of
Correct Pairs and Matching Accuracy

The previous subsection suggests that the matching accuracy does not rely on the
KNN threshold selection. A low impact is also observed when using only SURF and KNN
to find perfect matches between images. This subsection focuses more on the effect of a
higher SURF dimension and observes the impact of selecting MSER and MSAC thresholds.
The first assessment is to check whether MSER TH selections improve the number of correct
matches and accuracies if combined with SURF, KNN, and MSAC. Figure 7 shows the
number of correct pair matches with their associated accuracies for different MSER TH
and SURF dimensions for images 2 and 3, I1−2 and I1−3, respectively. Recall the results in
Figure 4, where a higher MSER TH detects fewer regions, so it also affects the declining
number of correct pairs, as shown in Figure 7. However, the matching accuracy only
increases slightly when selecting a lower MSER TH using either only SURF and KNN
or their combination with MSAC. For example, in Figure 7, for image I1−2, when using
MSER TH = 15, SURF and KNN result in 13.1% and 15.3% accuracies for 64-D and 128-D,
respectively. Less improvement is observed when MSER TH = 1 is selected, as the accuracies
increase by only about 5% and 4.8% for each dimension. If the combination with MSAC is
considered, MSER TH = 15 results in accuracies of 35.9% and 64.1%, but they only increase
slightly to 48.5% and 68.5% using MSER TH = 1 for 64-D and 128-D.
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The second assessment is to confirm the previous observation that using SURF 128-D
and combining it with MSAC improves the number of correct pair matches and accuracy.
For I1−2 and I1−3 in Figure 7, the results clearly show that using SURF 128-D with KNN
and MSAC is the superior combination for increasing the number of correct pair matches as
well as for enhancing the accuracy. However, SURF 64-D also performs effectively as long
as the result is refined with MSAC. For example, at MSER TH = 1, 15, and 30, using image
I1−3, SURF 64-D generates 3186, 395, and 78 correct pairs, respectively, after MSAC. These
numbers shift from 976, 124, and 30 correct pairs without MSAC; hence, they increase by
about 69.4%, 68.6%, and 61.5%. They are associated with 54.3%, 40.8%, and 31% accuracies
at MSER TH = 1, 15, and 30, rising from 16.6%, 12.8%, and 12% before MSAC, respectively.
The statistics of Figure 7 are given in Table 5. It confirms that using SURF and KNN only
results in 12.1% and 13.6% accuracies for SURF 64-D and 128-D, as demonstrated by the
results of I1−3. MSAC improves these results by 24.9% and 47.8%, respectively, i.e., 37%
and 61.4% for SURF 64-D and 128-D after combining with MSAC. Similar performance is
also given using the results of I1−2. Combining SURF, KNN, and MSAC adds 19.6% and
37.9% accuracy to 64-D and 128-D, increasing from 12.3% and 13.9% before processing
them with MSAC.

Table 5. Statistics of correct pair matching with their respective accuracies using SURF, KNN, and
their combination with MSAC algorithms.

Algorithm and dimension SURF 64-D SURF 128-D MSAC 64-D MSAC 128-D

Images I1−2 I1−3 I1−2 I1−3 I1−2 I1−3 I1−2 I1−3

Max 1059 976 1179 1032 2847 3186 4019 4505

Min 25 29 18 22 44 72 80 124

Mean 172.6 166.8 200 190.1 468 542.1 733.3 847.2

Algorithm and dimension SURF 64-D SURF 128-D MSAC 64-D MSAC 128-D

Images I1−2 I1−3 I1−2 I1−3 I1−2 I1−3 I1−2 I1−3

Max (%) 18.1 16.6 20.1 17.6 48.6 54.3 68.5 76.8

Min (%) 9.5 9.8 7.2 8.8 17.5 27.3 31.9 49.4

Mean (%) 12.3 12.1 13.9 13.6 31.9 37 51.8 61.4

The regions in each image are first detected using MSERs. Feature extraction and
matching are conducted by the proposed approaches, i.e., the SURF and KNN algorithms.
The obtained results from the selected algorithms reveal that a higher SURF dimension of
128 returns more correct matches with better accuracy as compared to a dimension of 64.
Moreover, when SURF and KNN are combined with MSAC, the results show a more clear
improvement as compared to the results of using only SURF and KNN algorithms. Lastly,
the effects of refined MSAC and the threshold are further evaluated using MSER THs of
1 to 30 with five threshold increments. The selected dimension is SURF D-128. MSAC
and the threshold selections, i.e., 0.001, 0.01, 0.1, and 1, for eliminating false matches and
improving accuracy are explored, as it is mentioned previously that a higher number of
correct matches indicates the optimal performance of each applied algorithm. Figure 8
shows the results with the values stated in Table 6. As the MSAC threshold is selected
to have lower values, the number of correct pair matches and matching accuracy are
improved substantially. Selecting an MSAC threshold of 0.001 results in 5539, 1786, 1180,
907, 633, 333, and 169 correct pairs for MSER TH = 1, 5, 10, 15, 20, 25, and 30, respectively.
These numbers are associated with 94.5%, 87.4%, 89.5%, 93.6%, 83.4%, 85.6%, and 67.3%
accuracies, which are higher than the values when using MSAC TH = 1. Even though
a lower MSAC threshold gives a more efficient performance in enhancing the number
of correct matching pairs as well as a better matching accuracy, the threshold selection
still needs to consider the preferred feature of interest that is located on the test object.
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For Test 1, the selected points to be used later in extracting the displacement are located
on the aluminum bar and background, as shown in Figure 9. The example is generated
using MSER TH = 15 and SURF D-128. Many extra points are refined using a lower
MSAC TH, and for higher thresholds, the algorithm returns fewer points. Several natural
features (marked as natural ft. in Figure 9), i.e., targetless points, are also detected in each
threshold. Each threshold shows that all features of interest located in the specimen area
are successfully detected, extracted, and matched, except for MSAC TH = 1. One selected
point, referred to as P1 in Figure 2, and another point located in the specimen area are not
identified using MSAC TH = 1. Therefore, the suitable threshold based on the selected
points is 0.001, 0.01, or 0.1. Since a threshold of 0.1 results in fewer points, which means less
computational effort, yet still identifies all points of interest successfully, it can be selected
as the MSAC threshold for Test 1.
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Table 6. Values of correct pair matches with their respective accuracies from Figure 8.

MSER TH
MSAC TH = 0.001 MSAC TH = 0.01 MSAC TH = 0.1 MSAC TH = 1

Correct Pairs % Correct Pairs % Correct Pairs % Correct Pairs %

1 5539 94.5 4887 83.4 3799 64.8 3483 59.4

5 1786 87.4 1530 74.9 1153 56.4 982 48.0

10 1180 89.5 924 70.1 772 58.5 740 56.1

15 907 93.6 696 71.8 667 68.8 588 60.7

20 633 83.4 510 67.2 413 54.4 386 50.9

25 333 85.6 239 61.4 201 51.7 181 46.5

30 169 67.3 107 42.6 75 29.9 73 29.1
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3.5. Test Results

The previous subsection provides the implementation of the proposed computer vision
procedures and explores the impact of selecting the threshold and SURF dimension. The
computer vision results give an understanding of which dimension or threshold should be
selected not only to accelerate UAV data processing but also to generate matched points with
high accuracy. Three sin-wave tests were conducted using the aluminum bar with the testing
setup shown in Figure 2 and test data given in Table 7. These tests were used to further
validate the procedure before being applied to the pipeline shake-table test. Test 1 is used as an
example, with comprehensive results detailed in the previous subsection. Tests 2 and 3 used
a similar sampling rate of 30 fps with a shorter duration, i.e., 33 sec and 23 sec, respectively.
The total number of images in each test is given in Table 7, as well as the algorithm threshold
and dimension. Since the distance between the specimen and UAV is larger for Tests 2 and
3 as compared to Test 1, a smaller SURF dimension was selected to extract the preferred
features, i.e., P1, P2, P3, and BG. Surf 64-D was selected for both tests with a KNN threshold
of 50, similar to Test 1. As for the MSAC threshold, Test 2 used MSAC TH = 0.1, while a
threshold equal to 1 is more fitting to match the points in Test 3. An example of point matching
pairs after MSAC for Tests 2 and 3 is given in Figure 10. For Test 2, selecting SURF 64-D
causes many natural features located in the test environment to be detected, extracted, and
matched; however, if using SURF 128-D, several points in the specimen and background are
unidentified. As for Test 3, SURF 64-D is also suitable for extracting those points of interest
with fewer detected natural features from the testing environment.

Table 7. Test data, selected threshold (TH), and dimension (D) of MSER, SURF, and MSAC algorithms.

Test # Sampling Rate (fps) Time (s) Total Images MSER TH SURF-D KNN TH MSAC TH

1 30 36 1079 15 128 50 0.1

2 30 33 1009 10 128 50 0.1

3 30 23 708 10 128 50 1
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Figure 10. Point matching pairs from Tests 2 and 3 and selected points to measure displacement.

The displacement responses in Tests 1, 2, and 3 are given in Figure 11. The record
from background points, BG, is shown in the figure, and it is subtracted from the raw
displacement data of each point. The displacement of each point, P1, P2, and P3, is plotted
together with BG data, as shown in Figure 11. The response from the three validation tests
generates sinusoidal waveforms, as shown in Figure 11. The direction of the applied load to
the UAV camera orientation is the in-plane direction, defined in this work as the x-direction.
The peak displacements in the positive direction, δx,max+ , and in the negative direction,
δx,max− , of each point from each test are given in Table 8, together with their mean values.

The verification of the test results was conducted in the frequency domain, in which
the natural frequency of the specimen was measured using the acceleration response.
The natural frequency of the specimen has already been measured previously by several
tests [48], and the reference value taken in this study is the average value, computed
as 5.31 Hz. Also, as the applied load is in the form of sinusoidal waves with a low
amplitude, the specimen is expected to remain within its elastic range, causing no damage
to the specimen. The frequency of the specimen in each test was generated using the
autoregressive (AR) covariance algorithm and was measured from the targets P1, P2, and
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P3. The PSD spectra are shown in Figure 12, and the difference between the measured
frequency and the reference frequency is given in Table 9. For Test 1, similar peaks at
5.28 Hz are computed from each point. Test 2 and Test 3 show variations with peaks at
5.23 Hz, 5.17 Hz, and 5.05 Hz calculated for P1, P2, and P3, while 5.29 Hz and 5.20 Hz are
shown as peaks in Test 3 spectra. The mean values computed from Tests 1, 2, and 3 are
5.28 Hz, 5.15 Hz, and 5.25 Hz, respectively. The results are comparable to the reference
values, which differ by about 0.53%, 2.98%, and 1.10% with respect to the natural frequency
of the specimen measured from the reference data.
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Figure 11. Displacement response results, δx, from validation Tests 1, 2, and 3.

Table 8. Peak and average displacement responses from validation Tests 1, 2, and 3.

Point

Test 1 Test 2 Test 3

δx,max+

(mm)
δx,max−

(mm)
δx, avg
(mm)

δx,max+

(mm)
δx,max−

(mm)
δx, avg
(mm)

δx,max+

(mm)
δx,max−

(mm)
δx, avg
(mm)

P1 33.31 −12.11 9.29 32.64 −31.23 0.11 33.04 −33.12 0.18

P2 33.48 −13.76 9.31 33.00 −34.20 0.08 33.04 −33.08 0.18

P3 33.15 −12.93 9.30 31.17 −32.86 0.09 - - -
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4. Pipeline Shake-Table Test
4.1. Testing Setup

The previous section has detailed the implementation of each proposed algorithm
as well as its accuracy, which was validated on a small-scale aluminum bar using three
harmonic tests. The procedure was then verified on a laboratory-scale pipeline that was
tested using several earthquake motions and white noise tests. The testing setup in Figure 13
shows the pipeline assembled on two shake-table tests to accommodate its length and
to allow biaxial movements from shake-table excitations. The longitudinal response is
defined in the x-direction, while the y-direction generates the lateral response. The UAV is
operated above the shake table with the camera oriented toward the specimen, as shown
in Figure 13. Due to space limitations in the laboratory, only half of the specimen with
the distributed targets could be captured by the UAV. The selected targets for seismic data
processing were located North (N) and South (S) with the background (BG) to consider the
UAV drift during operation, similar to validation tests. The pipeline frequency response
was computed using the SSI-Cov algorithm, which requires input motion obtained from
the shake table; therefore, a single target attached to the shake table shown in Figure 13 was
selected to generate the table displacement. A total of eight tests were conducted, with the
details shown in Table 10. Four earthquake tests in the lateral and biaxial directions with
increasing amplitude, together with two white noise motions before and after earthquake
tests, were recorded by the UAV. The initial white noise was recorded at 30 fps, while the
last ones used 60 fps to accommodate the possibility of frequency shifts due to the softening
of the pipeline.
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Figure 13. Seismic testing setup showing the UAV position during tests, pipeline position on the
biaxial shake table, and selected points to generate the seismic response.

Table 10. Pipeline test protocols with their selected thresholds (TH) and dimensions (D) for computer
vision tasks.

No.
Test Protocols Computer Vision Procedure

Test Direction fs (Hz) Record Duration
(Sec)

MSER
TH SURF-D KNN TH MSAC TH

1. White Noise 1 Longitudinal ¯x 30 80 10 128 50 1

2. White Noise 2 Lateral ¯y 30 80 10 128 50 1

3. EQ 1 Lateral ¯y 60 40 10 128 50 0.1

4. EQ 2 Lateral ¯y 60 40 10 128 50 0.1

5. EQ 3 Biaxial 60 50 10 128 50 0.1

6. EQ 4 Biaxial 60 50 10 128 50 0.1

7. White Noise 3 Longitudinal ¯x 60 80 10 128 50 1

8. White Noise 4 Lateral ¯y 60 80 10 128 50 1
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4.2. Computer Vision Procedure Results

The UAV was operated with a mission to complete each test following the protocols in
Table 10. The videos were processed to generate image sequences, and computer vision
algorithms in the proposed procedures were used to detect, extract, and match the features
of interest. Validation tests accelerated the process of selecting the suitable threshold
and dimensions for pipeline tests, with the selected thresholds and dimensions shown
in Table 10. An example of the results at the start (t = 0) and at the end (t = T) is
given in Figure 14 for Earthquake#1 (EQ 1). The selected MSER TH is 10, which results
in 1574 regions. Using SURF 128-D and KNN TH = 50, the number of correct matches
is 364 points, about a 23.12% accuracy. After refined MSAC with a threshold = 0.1, the
accuracy improves to 43% as more matches are obtained, i.e., 677 correct points. These
selections were used for all seismic tests. As for white noise tests, a larger SURF-128D
was selected to accelerate the algorithms since more images are processed due to longer
recording duration and higher frame rates.
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MSER, (c) SURF and KNN matching, (d) Refined matching results using MSAC.

4.3. Displacement Response

After generating correct point matches, displacement data were generated from the
selected points in each test. The seismic responses of all earthquake tests are given in
Figure 15, with peak and average values shown in Table 11. The directions of EQ 1 and
EQ 2 are lateral with increasing amplitude, which is clearly shown in the displacement
response. For example, using point N, the peak displacement rises from 53.07 mm and
−53.58 mm in EQ 1 to 105.73 mm and −120.54 mm as the response to EQ 2. As for pipeline
behavior in the North and South directions, both show identical trends in their lateral
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displacement histories, with closer values for their peak-to-peak displacement. From
Table 11, using EQ 2, point N results in 105.73 mm and −120.54 mm, while closer peaks of
105.47 mm and −119.04 mm are shown at point S. After uniaxial tests, two biaxial seismic
tests were also performed to simulate more real-life conditions, as most structures with
their components are subjected to loading in more than one direction during earthquakes.
The results are shown in Figure 15, with the peak displacements tabulated in Table 11.
From the figure, it is confirmed that the lateral direction is the weaker axis that generates
softer responses with higher amplitudes. Similar to uniaxial tests, the pipeline also shows
identical behavior on the North and South sides during biaxial seismic tests. For example,
under EQ 3, point N records maxima of 81.1 mm and −82.65 mm in the longitudinal
direction, while point S shows peaks at 79.31 mm and −80.93 mm. The increasing intensity
of earthquake motion is observed from EQ 3 to EQ 4, which is also shown in the responses.
In the longitudinal direction measured from point N, peak displacement increases from
81.1 mm and −82.65 mm during EQ 3 to 93.93 mm and −83.93 mm due to EQ 4. Similarly,
a rising peak is also seen in the lateral direction, as the peak increases to 101.44 mm and
−119.60 mm from 89.46 mm and −118.16 mm due to EQ 3.
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Figure 15. Pipeline seismic responses in lateral and biaxial directions. 

4.4. Frequency Response and Vibration-Based Damage Identification 

In addition to the displacement response, the frequency response is also essential to 

assess, as it identifies the resonant frequencies and damping of the pipeline structure. It 

was generated from white noise test data computed using the SSI-Cov algorithm, which 
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Table 11. Peak displacement responses in pipeline seismic tests.

Point

EQ 1 EQ 2

δy,max+

(mm)
δy,max−
(mm)

δy,max+

(mm)
δy,max−
(mm)

N 53.07 −53.58 105.73 −120.54

S 50.39 51.64 105.47 −119.07

Point

EQ 3 EQ 4

δx,max+
(mm)

δx,max−
(mm)

δy,max+

(mm)
δy,max−
(mm)

δx,max+
(mm)

δx,max−
(mm)

δy,max+

(mm)
δy,max−
(mm)

N 81.1 −82.65 89.46 −118.16 93.93 −83.93 101.44 −119.60

S 79.31 −80.93 93.39 −117.85 93.07 −84.19 102.06 −119.95
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4.4. Frequency Response and Vibration-Based Damage Identification

In addition to the displacement response, the frequency response is also essential to
assess, as it identifies the resonant frequencies and damping of the pipeline structure. It
was generated from white noise test data computed using the SSI-Cov algorithm, which
uses the table motion as input and the pipeline response as output. It was measured before
and after the earthquake tests to identify the initial and end states of the pipeline structure
in biaxial directions and to assess whether damages occur through frequency and damping
shifts. The Frequency Response Function (FRF) of the pipeline structure is plotted together
with poles, as shown in Figure 16. An order of 20 is selected to generate more stable poles
to assist the frequency selection. For completeness, the values of frequency and damping
in Figure 16 are listed in Table 12. It is used to verify the frequency and damping results by
comparing the computed values using points N and S in all five modes. It shows that the
difference ranges between 0% (lateral mode-5, initial state) to 4.83% (lateral mode-3, initial
state) for the frequency and slightly higher for damping, i.e., 0.25% (lateral mode-4, end
state) to 5.69% (longitudinal mode-4, initial state).
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nal directions.

Vibration-based damage identification is conducted by analyzing whether natural
frequency and damping shifts occur in both directions. Using point S, for example, the
natural frequency of the pipeline in the longitudinal direction in the initial state is measured
as 2.75 Hz, while after completing earthquake tests, it is calculated as 2.74 Hz. As for
damping, the values do not change before and after tests at 4.41%. Small changes in
frequency and damping are also monitored using the results of point N. A softer response
is shown in the lateral direction, which also verifies the previous displacement results.
A lower frequency of 1.43 Hz is measured using point N data with 7.61% damping. In
the end state, these values remain at 1.40 Hz with 7.38% damping. In vibration-based
damage detection, if the natural frequency decreases, it implies that structural damage
occurs that lengthens the period of the structure. The inherent damping is also expected to
be higher in the damaged state of the pipeline due to buckling or other energy-dissipating
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mechanisms, if they exist. Therefore, based on these evaluations, no damages occur either
in the longitudinal or in the lateral direction, as frequency and damping values do not
change significantly.

Table 12. The dynamic characteristics of a pipeline measured from white noise tests.

Longitudinal Mode—x

Initial

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Point f1 (Hz) ∆ f1 (%) f2 (Hz) ∆ f2 (%) f3 (Hz) ∆ f3 (%) f4 (Hz) ∆ f4 (%) f5 (Hz) ∆ f5 (%)

N 2.72
1.09

5.37
1.28

5.83
0.34

8.11
0.25

10.73
1.28

S 2.75 5.44 5.85 8.09 10.87

Point ζ1 (%) ∆ξ1 (%) ζ2 (%) ∆ξ2 (%) ζ3 (%) ∆ξ3 (%) ζ4 (%) ∆ξ4 (%) ζ5 (%) ∆ξ5 (%)

N 4.63
4.75

3.96
1.76

2.22
0.45

1.49
5.69

1.36
5.15

S 4.41 3.89 2.23 1.58 1.29

End

Point
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f1 (Hz) ∆ f1 (%) f2 (Hz) ∆ f2 (%) f3 (Hz) ∆ f3 (%) f4 (Hz) ∆ f4 (%) f5 (Hz) ∆ f5 (%)

N 2.75
0.36

5.44
0.18

5.93
0.34

8.10
0.61

10.25
1.35

S 2.74 5.43 5.91 8.15 10.39

Point ζ1 (%) ∆ξ1 (%) ζ2 (%) ∆ξ2 (%) ζ3 (%) ∆ξ3 (%) ζ4 (%) ∆ξ4 (%) ζ5 (%) ∆ξ5 (%)

N 4.66
5.36

3.60
5.51

2.64
3.65

1.56
3.70

1.42
2.74

S 4.41 3.81 2.74 1.62 1.46

Lateral mode—y

Initial

Point
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f1 (Hz) ∆ f1 (%) f2 (Hz) ∆ f2 (%) f3 (Hz) ∆ f3 (%) f4 (Hz) ∆ f4 (%) f5 (Hz) ∆ f5 (%)

N 1.43
2.09

2.53
3.43

4.73
4.83

7.89
1.90

9.06
0

S 1.40 2.62 4.97 7.74 9.06

Point ζ1 (%) ∆ξ1 (%) ζ2 (%) ∆ξ2 (%) ζ3 (%) ∆ξ3 (%) ζ4 (%) ∆ξ4 (%) ζ5 (%) ∆ξ5 (%)

N 7.61
0.39

4.06
2.17

4.15
0.48

2.45
1.61

1.45
3.97

S 7.64 4.15 4.13 2.49 1.51

End

Point
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f1 (Hz) ∆ f1 (%) f2 (Hz) ∆ f2 (%) f3 (Hz) ∆ f3 (%) f4 (Hz) ∆ f4 (%) f5 (Hz) ∆ f5 (%)

N 1.40
3.45

2.20
0.91

3.36
0.29

5.03
4.57

6.40
2.97

S 1.45 2.18 3.37 4.80 6.21

Point ζ1 (%) ∆ξ1 (%) ζ2 (%) ∆ξ2 (%) ζ3 (%) ∆ξ3 (%) ζ4 (%) ∆ξ4 (%) ζ5 (%) ∆ξ5 (%)

N 7.38
1.73

4.51
1.33

4.51
3.63

4.02
0.25

2.55
2.35

S 7.51 4.45 4.68 4.03 2.49

5. Conclusions

This study aims at deploying UAV-based SHM for seismic and safety assessments of
linear infrastructures by implementing computer vision algorithms to detect, extract, and
match features of interest from UAV imageries. The main contributions are the filling of
research gaps, i.e., the exploration of the UAV potential for the seismic vibration monitoring
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of linear infrastructures, focusing on pipeline systems, and the investigation of the impact
of selecting several parameters for the applied computer vision algorithms on the feature
matching accuracy. The study used several validation tests to quantify the effect of the algo-
rithm threshold and dimension selection on the matching accuracy. They later accelerated
data processing in pipeline seismic tests, as they provided an estimation of which values of
threshold and dimension should be selected not only based on the matching accuracy but
also based on the field of view. The main conclusions and key findings of this study are
as follows:

• MSER TH delta and the KNN TH selection have less of an impact in improving
the feature matching accuracy when they are either combined with SURF or refined
further with MSAC. A lower MSER TH detects more regions, yet the matching accuracy
only increases slightly, regardless of which algorithm combinations are implemented.
Similarly, the selection of a lower or higher KNN threshold also has less of an impact
in improving the feature matching accuracy when it is combined either with SURF or
with SURF and MSAC.

• Modifying the SURF and KNN results with MSAC leads to an increased number of
correct pair matches as well as improved feature matching. The selection of a higher
dimension of SURF 128-D with KNN and MSAC proves to be the superior combination;
however, SURF 64-D also performs effectively as long as the output is refined with
MSAC. Similar to the higher SURF dimension, a lower MSAC threshold also delivers
a more efficient performance in enhancing the number of correct matching pairs, as
well as the matching accuracy. However, the selection needs to consider that using a
lower MSAC TH may eliminate some features of interest on the test object.

• Validation tests successfully generated a harmonic response from the test object using
the proposed procedure. In the frequency response, the results are comparable to
the reference frequency, ranging from a 0.53% to 2.98% difference from the natural
frequency measured from the reference data.

• The pipeline seismic test verifies the potential and accuracy of the proposed method
for both displacement and frequency responses. The displacement responses show a
similar trend in the North and South directions in uniaxial and biaxial seismic tests,
with softer responses in the lateral direction. The frequency content of the pipeline
computed in both directions also differs within the 0% to 4.83% range, while a slightly
larger difference is measured for damping at 0.25–5.69%. By comparing the frequency
and damping values in the initial and end states of the pipeline, it is confirmed that no
damage occurs on the pipeline structure in either the longitudinal or lateral direction.

• Overall, it is concluded that the proposed method has potential for implementation in
UAV-based vibration SHM. The combination of the MSER, SURF, KNN, and MSAC
algorithms is proven to be effective and is recommended to detect, extract, and match
features of interest, with their accuracies validated for the first time in this study.
Their application is also verified for the first time on pipeline structures using several
uniaxial and biaxial seismic tests that provide evidence of their benefits for seismic
safety measures of linear infrastructures.
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