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Abstract: During the growing season, olives progress through nine different phenological stages,
starting with bud development and ending with senescence. During their lifespan, olives undergo
changes in their external color and chemical properties. To tackle these properties, we used hyper-
spectral imaging during the growing season of the olives. The objective of this study was to develop
a lightweight model capable of identifying olives in the hyperspectral images using their spectral
information. To achieve this goal, we utilized the hyperspectral imaging of olives while they were
still on the tree and conducted this process throughout the entire growing season directly in the field
without artificial light sources. The images were taken on-site every week from 9:00 to 11:00 a.m. UTC
to avoid light saturation and glitters. The data were analyzed using training and testing classifiers,
including Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine on labeled
datasets. The Logistic Regression model showed the best balance between classification success rate,
size, and inference time, achieving a 98% F1-score with less than 1 KB in parameters. A reduction in
size was achieved by analyzing the wavelengths that were critical in the decision making, reducing
the dimensionality of the hypercube. So, with this novel model, olives in a hyperspectral image
can be identified during the season, providing data to enhance a farmer’s decision-making process
through further automatic applications.

Keywords: hyperspectral imaging; olives; precision agriculture; machine learning; pattern recognition

1. Introduction

Over the past three decades, global olive production has significantly increased from
2.403 million to 5.671 million tons between 1990/1991 and 2020/2021 [1]. This production
is divided into table olives and olive oil products, with the majority of these products
coming from Mediterranean basin countries such as Spain, Turkey, Greece, or Italy. Olive
cultivation is a significant industry in these countries, responsible for producing 32.6%,
15.1%, 14%, and 9.6%, respectively, of the world’s olives [1]. Monitoring the status of olives
to ensure optimal nutrition, water, and fertilizer is crucial for producing a high-quality final
product. Additionally, experts have traditionally classified olives using the well-known
Maturity Index (MI) through physical inspection [2–4]. This physical approach requires
the destruction of the olives, picking the olives from the tree and cutting them to see their
inside. An automatic technique should be developed to eliminate the need for constant
monitoring by an expert in the field. Precision agriculture, a technology-driven approach
to farming, has been increasingly utilized in recent years to achieve this goal.

Precision agriculture involves managing farm inputs to maximize output. In this
regard, the objective of the management policy could be to increase the yield and quality or
even to reduce the inputs to maximize profits [5]. Typical farm inputs include fertilizers,
irrigation water, herbicides, or plant additives. The plants’ requirements are monitored to
determine the precise quantity and type of product to apply [6]. To utilize this approach, it
is necessary to invest in sensor networks. Various types of sensors, including water flow
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sensors, humidity sensors, and soil sensors, must be deployed to measure the inputs [7].
Thus, these sensors must send the information using wireless communication to a platform
which will manage the information. This information can be process on the edge (edge
computing) or on the cloud (cloud computing). Nevertheless, a wireless sensor network or
the Internet of Things (IoT) paradigm is required to acquire the information of the physical
systems [8]. After aggregating the information and using support decision algorithms,
the next step is to make the necessary adjustments to the system. In this proposal, the
Cyber–Physical System (CPS) paradigm plays a major role [9]. A CPS digitalizes the
characteristics of a physical entity through the sensor monitoring of its variables. The
information is then sent to the digital world and processed using specific models and
algorithms. The decision criteria are applied to the control units to modify the entity’s
characteristic variables and change its operational state. Therefore, remote sensing is a
feasible technique for monitoring fields.

Three sources of information are available in the remote sensing paradigm: satellites,
aerial devices such as unmanned aerial vehicles (UAVs), and in-field devices [10]. Remote
sensing can be used to manage crops and develop the precision agriculture paradigm. The
use of satellites is particularly extensive and has been employed since the launch of Landsat
1 in 1972. The most recent Landsat satellite, Landsat 9, was launched in 2021 [11]. Landsat
is a satellite program of NASA, but there are also missions in other countries, such as the
Sentinel program in Europe [12]. These satellite missions collect data that are available for
the community, such as VIIRS [13], MODIS [14], or HSL [15], which contain a collaboration
between Landsat and Sentinel. The monitoring of natural environments and some crops
is available through these satellite missions. The first satellite mission had RGB imaging
capabilities, but nowadays a wide bandwidth of the spectrum is available for using with
these tools. Using these data, several indicators such as NVDI, WSI, and red-edge slope
are defined to evaluate and correlate the crops’ properties. This approach is used to obtain
general field information, but image resolution is not high enough to identify individual
olives. In our case, other approaches with higher resolution must be considered.

The use of UAVs or drones is a common approach in precision agriculture [16]. These
platforms improve data resolution and quality [17], and reduce the waiting period for
information compared to satellite data [18]. In addition, flights can be organized and
programmed to acquire all necessary field details. However, this approach has several
issues; for instance, it consumes a lot of power, which calls for the development of low-
consumption portable systems. Although the autonomy of UAVs has increased in recent
years, it may still be necessary to stop and change the battery of the system when monitoring
a crop and acquiring information [19]. Additionally, weather conditions can affect the flight
plan, and wind can impact data acquisition. The resolution of the UAV is limited, making
it insufficient for certain applications as it is in our case. Monitoring fruit, in particular, can
be challenging due to the high resolution required and the obstruction caused by canopies.

A methodology exists for analyzing fields directly on the surface. This is called in-field
monitoring, which involves using cameras or hand-held sensors to register the crops [20,21].
The purpose of this approach is to gather the required data by taking the equipment directly
to the field of interest. This ensures that resolution is not a problem when selecting which
area of the crops to monitor. This technique is particularly useful for applications where it
is not possible to detect and obtain information about fruits by flying UAVs over the canopy.
However, it is important to note that this technique can be costly due to the equipment
required and the need to deploy cameras or sensors in the field.

After monitoring the field and crop, the next step is to identify areas of interest or
the focus of the study. Classical image processing techniques can be used to identify
regions of interest in images. For example, patterns can be used to identify olive trees
in satellite images [10,22,23]. Using several indicators from satellite images, it is possible
to provide decision support to farmers. In addition to classical methods, patterns can
be searched for in the images. This is particularly useful in specific applications such as
fruit tree plantations, where the trees follow a specific pattern. However, in cases where
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there is no discernible pattern, such as in our case, these methods are not appropriate. In
addition to these solutions, it is possible to use artificial intelligence to identify objects
in images [24,25]. This approach involves processing the images to find a pattern that
has been previously identified in training. For RGB images, there are solutions based on
Artificial Neural Networks (ANNs) that are trained with the image and perform several
operations to identify patterns of interest. Convolutional Neural Networks (CNNs) are an
evolution of Artificial Neural Networks (ANNs) that are specifically designed for image
processing [26]. They use a kernel to reduce the dimension of the image and identify
patterns. Some state-of-the-art models based on CNNs include Yolo [27,28], ResNet [29],
and VGG [30], among others. However, these models are often criticized for their large size
and slow processing time [31]. For this purpose, we searched for a model that takes into
account both size and execution time. Moreover, images that have a similar background
color to the detected object may not provide sufficient information. This is especially
problematic when detecting green olives against a green background caused by leaves.
To address this chromatic issue, hyperspectral technology is used to gather more spectral
information. Multiple wavelengths in the visible and NIR spectra are used to evaluate the
quality of the olive, instead of relying solely on the three bands that contain red, blue, and
green values. This approach provides additional information [32].

In this type of model, a pretrained model is utilized and then the internal weights
of the network are adjusted for the specific application through transfer learning [33].
Additionally, there are transformer-based approaches for remote sensing applications
in image classification [34,35], as well as other approaches for regression [36,37], rather
than natural language processing. These models are modifications of the attention-based
model presented by Vaswani [38]. These models exhibit high performance, but they are
computationally intensive. Our objective is to develop a lightweight model capable of
identifying olives in images. Since the monitoring will be conducted directly in the field,
the deployed processing units must be able to load and execute inferences from the model
on the edge. For this purpose, spectral information is utilized along with machine learning
models such as Decision Trees, Logistic Regressors, and ANN with a MultiLayer Perceptron.
The MultiLayer Perceptron is a classical model with a few hidden layers and neurons [39].

The main contributions of the paper are as follows:

(1) A lightweight classifier is proposed for the real-time identification of olives in images
taken in olive groves, which is a problem that has not been extensively addressed in
the literature.

(2) Spectral band analysis is used for wise dimensional reduction. A spectral band
analysis was performed to identify the critical bands for the identification problem
through wise dimensional reduction using wavelengths in the visible and NIR spectra.

(3) Comparison with other state-of-the-art techniques. We compared the state-of-the-art
techniques for real-time in-field object identification using a lightweight classifier.

2. Materials and Methods

Hyperspectral images of olives on the tree were captured periodically throughout
the olive season using a non-invasive, in-field approach. with the Specim IQ model from
Specim [40]. This device permits the acquisition of images with 512 × 512 pixels and
204 bands, covering a range of 397 to 1004 nm of the spectrum, with a resolution of 7 nm for
each band. Apart from the hyperspectral camera, a 5-megapixel RGB camera is available in
the device to acquire the scene information. The images of the olives were acquired at the
end of the fruit set phase, and the growth process was recorded until the olives reached the
maturity stage, characterized by their outer color turning to purple. The study is focused
on green olives, so the monitoring stage concludes with the color change that takes place
during the ripening phase. The monitoring period was conducted from May to September,
with images taken at a distance of 1 to 2 m from the tree and avoiding direct sunlight.
Specifically, they were collected between 9 a.m. and 11 a.m. UTC during the years 2021
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and 2022. The olive grove is located in Andalusia, southern Spain, near the city of Seville.
Its GPS coordinates are 37.393999, −6.122260.

A white reference tile made of PolyTetraFluoroEthilene (PTFE) was included in all
images to standardize illumination conditions. The tile measures 20 cm × 20 cm. PTFE
exhibits a uniform response across the electromagnetic spectrum in the 400 to 1000 nm
range [41], making it detectable by the camera.

2.1. Dataset and Data Management

The dataset consists of hyperspectral images, denoted by H ∈ R512×512×204, which are
referred to as hypercubes in the literature. The hypercube is formed by the two coordinates
of an image and a third dimension that has the information of the bands. While an RGB
image has 3 bands, hyperspectral images have more bands with reflectance values of the
wavelength of the spectral. In this paper, we denote the horizontal coordinate of the image
as x, and the vertical coordinate as y, while the wavelength of the image is denoted as
z. So, regarding these criteria, we have 3 vectors: x ∈ R512, y ∈ R512, and z ∈ R204. As
described before, the images are taken from May to September, creating a database of
400 hyperspectral images during the season of 2022. We evaluated the images at pixel level,
to identify if the pixel belongs to an olive or not, only by its spectral signature. In this
regard, the models that we discuss in this paper are not aware of the context. Each image
contains 204 values per pixel and has a resolution of 512 × 512 pixels, resulting in a total of
53.477 × 106 values per hyperspectral image that need to be processed.

The olives in the images were manually classified, and a mask file was generated to
indicate the classes. The two classes identified in this novel approach, which was conducted
under non-controlled lighting conditions, are ‘olive’ and ‘non-olive’, denoted by 1 and 0,
respectively. The resulting mask image, M ∈ R512×512, is used as the target class, so, for a
specific pixel of the image, we have:

i, j, k ∈ N and i, j ∈ [0, 511] and k ∈ [0, 203]

Hi,j = {z0, z1, z2, . . . , z202, z203}, where zk ∈ R

Mi,j ∈ {0, 1}

The output is an artifact we denoted as O ∈ R512×512, which contains elements that
belong to two classes resulting from binary classification, Oi,j ∈ {0, 1}. Three datasets were
created for the algorithm using images from the 2022 season. The training dataset contained
approximately 70% of the images, while the validation dataset contained 20% of the total
images. The validation dataset images were also taken during the 2022 season, the same
season as the training. Finally, the last 10% of the images were from a different season than
the training set, which we refer to as the cross-validation dataset. This dataset contained
hyperspectral images from the 2021 season, selected randomly to ensure a representative
sample. We also made sure to include samples from different days for both training and
validation. All images acquired during the 2021 season were used for testing, despite their
lower quantity compared to the 2022 season.

2.2. Evaluation Metrics

As we sought to develop a classification model, the analysis of model performance
would be performed using the metrics extracted from the confusion table. Precision,
accuracy, and F1-score [42] were selected as the evaluation metrics to characterize the clas-
sification performance. Additionally, we considered size and inference time to determine
which model performed better with fewer resources or less time. As is commonly under-
stood, the confusion matrix identifies four categories: True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN) [43]. To measure resource usage, we
compared model inference time in milliseconds and model size in bytes.
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3. Framework Presentation

The framework we present consists of three sections: data acquisition and preparation,
training loop, and validation and testing. These sections are illustrated in Figure 1, which
shows the workflow of information. The arrows indicate the flow of information between
points. The dataset is generated offline, and this process is used to train and validate
algorithms and models.
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Figure 1. Framework of the proposed model for the identification of the Gordal green olive variety in
hyperspectral images.

3.1. Data Acquistion and Preparation

The image was preprocessed to compensate the light conditions and then processed
with the algorithm. This process was performed by using the white and black reflectance.
These data were available in any image since there was a white PTFE plate present in all
images. The compensation expression is the following:

Hnormi,j,k =
Hi,j,k − wk

wk − bk
∀ i, j, k ∈ N0 ∧ k < 204 ∧ i, j < 512

where w, b ∈ R204, H is the raw hyperspectral image, Hnorm is the compensate hyperspectral
image, w is the mean reflectance values in the white reference plate, and b represents the
mean black values of the camera with the objective closed, acquired before the image
acquisition. H and Hnorm are hypercubes, as described in Section 2.1.

After compensation, the image was stored in a database for the labeling process. The
olives in the hyperspectral images were manually identified during this process using image
processing software developed by our research team. The software is similar to state-of-the-
art solutions for image labeling, such as LabelMe (Release3.0, v5.4.1) for Yolo Images [44].
The software is designed for hyperspectral images following the ENVI standard, while



Sensors 2024, 24, 1370 6 of 17

LabelMe is intended for RGB images. It generates a mask file associated with each processed
image, which is stored in a database.

3.2. Proposed Models and Training

In this section, several models were used to train the images and their associated
mask files. The models were evaluated using normalization techniques to tune the training
hyperparameters and improve performance based on evaluation metrics. As the model
needs to process a large amount of information, we looked for lightweight machine learning-
based classifiers. In this regard, models such as Decision Tree (DT), Logistic Regression
(LR), and Support Vector Machine (SVM) as a classifier, Random Forest (RF), and clustering
models such as k-means or Self-Organizing Maps (SOM) are suitable for our problem. The
SVM algorithm used was a C-SVM using a squared L2 penalty and a squared exponential
kernel in the isotropic variant using a length score of 0.004902.

These models were trained with the hyperspectral images, extracting the region of
interest labelled and reducing the information per image. In this regard, the dataset
S = {X, y}/X ∈ RN×204 ∧ y ∈ RN where X are the pixels identified as olives or non-
olives, and y is the binary target value of the mask, with 1 being an olive and 0 a non-olive.
N is the number of pixels that composed the dataset.

As shown in Figure 1, a normalization process was carried out for the model execution.
Normalization can be performed in various ways, and the decision of classification can be
improved by using normalization techniques [45]. We followed the analysis of the normal-
ization techniques used with hyperspectral images and applied them to our classifiers with
the normalized data. The normalization techniques used in this study were Z-norm, Band-
norm, and Max-min. Z-norm involved calculating the mean and standard deviation of the
reflectance values across all bands in the image. Bandnorm involved calculating the mean
and standard deviation of the values for each band per image. Max-min involved using the
maximum and minimum values of the image without normalization. The normalization
expressions are as follows:

Xzscorei,j,k =
Xi,j,k − µ

σ
∀ i, j, k ∈ N0 ∧ i, j < 512 ∧ k < 204

Xmaxmini,j,k =
Xi,j,k − minval

maxval − minval
∀ i, j, k ∈ N0 ∧ i, j < 512 ∧ k < 204

Xbandnormi,j,k
=

Xi,j,k − µk

σk
∀ i, j, k ∈ N0 ∧ i, j < 512 ∧ k < 204

where X is the hypercube of the hyperspectral image, X ∈ R512×512×204; µ, σ ∈ R are the mean
value and the standard deviation of the whole hypercube. The variables minval and maxval are
the minimum and maximum values of the hypercube, minval ∈ R : ∄ x in X | x < minval ,
maxval ∈ R : ∄ x in X | x > maxval . Then, µ, σ ∈ R204 are the mean and standard devia-
tion of the image for each of the bands of the image.

Several iterations were performed using different models, tuning their hyperparame-
ters to achieve the best results. Each of these well-known models has its own advantages in
terms of size, inference time, and classification performance. The criteria we established
for selecting the model was the one that achieved high classification performance with the
lowest cost. We defined cost as the time and size required to execute the model. The cost
associated with the model increases as its size or execution time increases. We defined three
classes in the image: olives, non-olive, and white reference. The white reference class is
present in all images and has a known signature pattern, which reduces variability with
the other classes. The decision is made for each pixel of the image. Therefore, each of the
512 × 512 pixels is evaluated with the model and assigned to one of three classes: olive,
non-olive, or white.
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3.3. Test and Validation

After training and saving the model, it was evaluated using validation images that
were not seen during training. The evaluation metrics were calculated for each model and
compared to determine their performance. The validation dataset consisted of hyperspec-
tral images from several days of the same season as the model’s training. Additionally, to
assess the models’ performance across multiple seasons, they were tested using hyperspec-
tral images from a different season. This is referred to as cross-validation data. The results,
including evaluation metrics for both the validation and test datasets, are presented in the
results section.

4. Results and Discussion
4.1. Model Results

In this section, we present the results of the models comparing the classifiers results
with the data normalized using the techniques described in Section 3.2. Table 1 contains
information about the evaluation metrics of precision accuracy and F1-score. The F1-score
is the best metric for comparing the models and selecting the best performance. Accuracy
is a simple metric that can cause problems with classification in situations of imbalanced
data. Precision only uses the ratio of true cases and is very sensitive to data distribution.
Instead, the F1 metric should be used as it provides information on the functionality of the
classifier and is less sensitive to imbalanced data than accuracy and precision [42]. For this
study, three classes were defined for the classification: white reference, olive, and non-olive.
It is worth noting that the number of non-olive pixels is significantly higher than that of
olive and white reference pixels in every image. Additionally, we compare the data from
one season to another season dataset. Table 1 includes information on the cross-validation
dataset, labeled as the ‘test’ column.

Table 1. Evaluation metrics of the validation and test metrics of the models using normalization
techniques with the validation and test dataset.

Normalization Classifier Precision (%) Accuracy (%) F1-Score (%)

Validation Test Validation Test Validation Test

Bandnorm

LR 98.598 98.988 98.791 99.232 98.641 99.139
DT 95.777 95.381 96.209 95.142 95.731 94.431

SVM 98.361 99.008 98.521 99.203 98.335 99.105
RF 93.481 85.647 94.500 87.569 93.872 86.606

Maxmin

LR 99.225 99.056 99.188 98.835 99.084 98.680
DT 97.065 96.460 96.613 95.175 96.120 94.367

SVM 98.967 98.181 99.004 98.218 98.877 97.987
RF 94.252 96.306 93.772 95.090 92.793 94.273

Z-score

LR 98.865 87.855 99.006 89.534 98.882 88.867
DT 97.362 93.765 96.855 93.786 96.396 92.882

SVM 98.720 95.197 98.861 96.068 98.719 95.621
RF 97.159 92.495 96.246 93.025 95.660 92.081

No
normalization

LR 98.949 98.298 99.112 98.501 99.002 98.314
DT 97.605 96.182 97.777 95.792 97.493 95.173

SVM 98.348 98.741 98.535 98.831 98.352 98.684
RF 93.524 85.916 94.518 87.759 93.887 86.889

As it can be seen, the results of the models are very promising, with results in the
classification higher than the 95% in F1-score. This metrics were calculated from a multiclass
confusion matrix, averaging the precision in the classification of the three classes. The
white reference class validated the image, indicating that it was well taken. The non-olive
and white reference class pixels were merged into a single class called non-olive.
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Two examples of the confusion matrix of Table 1 were obtained and can be seen
in Figure 2. Figure 2a stands for the results of the LR classifier using the Bandnorm
technique in the image, while Figure 2b displays the results of the LR classifier without
using normalization. Figure 2c,d show the confusion matrix of the SVM with and without
normalization, respectively. Furthermore, Figure 3 presents the results obtained from the
test dataset.
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The data suggest that adjusting image values after white compensation did not signifi-
cantly enhance classification. The Z-score evaluates the variation of the signatures around
a mean and the variation of the values of the images. Then, the bandnorm technique
normalizes over each of the bands, so the information of different values of illumination
produces major changes which causes an increase in the detection failures. Therefore,
illumination conditions have a great impact on this kind of normalization technique. The
normalization of the bands affects the values of each band, which can have a negative
impact on images with varying illumination conditions. Depending on the dataset, the
normalization technique should be evaluated using hyperspectral images [45].
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After analyzing the classification performance, we conducted an analysis of the cost of
the classifier. To do this, we evaluated each classifier during the inference of the validation
dataset on the same machine and with the same input. We compared the performance of
the classifiers and evaluated their relative time with respect to the lowest value. Table 2
displays the results, indicating that the LR classifier is the lightest and fastest. The system
used to perform the inference was a personal computer with an Intel Core i5-8265U CPU
with four cores and eight threads working at 1.60 GHz with 8 GB of Ram and an integrated
graphical unit.

Table 2. Comparison of the evaluation metrics of the models without the normalization technique.

Classifier F1-Score (%) Inference Time (ms) Size (KB)

DT 95.17 164.63 245.97
SVM 98.35 720,248.31 20,841.96
LR 99.00 231.91 5.51
RF 93.89 4855.78 739.96

The results indicate that the SVM classifier is the slowest and heaviest model, while the
RF classifier is lighter and faster than the SVM but not as fast as the DT and LR classifiers.
In terms of classification performance, the RF model is the worst, while the DT and LR
models are both better suited for olive identification due to their low resource usage and



Sensors 2024, 24, 1370 10 of 17

high classification performance. The DT classifier is the fastest, although its F1-score is
lower than that of the SVM and LR models. The LR model, despite being 44 times smaller
than the DT model, has a 31% lower inference time. However, it shows a better F1-score
with almost a 4% improvement compared to the DT model. Therefore, for this purpose,
the LR model is the best option to use. It is a lightweight model, only 5.5 KB, with an
inference time of 231 ms for each hyperspectral image, and a 99% classification F1-score. As
an example of this model’s inference, Figure 4a,b display the RGB image converted from a
hyperspectral image. The model classifies into three distinct categories: olives, non-olives,
and white reference. The non-olives and white reference categories are combined and
colored red for visualization purposes, while the olive category is colored green. Figure 4b
shows the result of overlaying this mask image onto Figure 4a. The model was tested using
data from different seasons. Open data on table olives from the 2021 season are available
on the internet [46]. The model was also evaluated to determine if olives from different
seasons can be identified. The results of the model can be seen in Figure 5a,b. Furthermore,
Figure 6 shows several images of the validation and test datasets overlapped with the
classifier’s segmentation.
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4.2. Critical Band Evaluation

Although the model is small, working with hyperspectral images requires high com-
puting capabilities and hyperspectral sensors. To reduce computing requirements and the
number of bands used, an analysis of the most significant bands was carried out, and the
contribution of each band was measured for the LR classifier without normalization. This
process involves calculating the difference between a baseline metric and a permutation of
features. The metrics were calculated by permuting a column of features from the dataset
1000 times, with each feature being changed. Figure 7 depicts the contribution of the
T1 significant bands for the LR model. For visualization purposes, only one third of all
bands, ranked in order of importance to the classification, were plotted. These values were
randomly selected to determine if there are significant differences between bands.
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Figure 7 shows that only a few bands contribute significantly to the normalization
process. Therefore, we can infer the information using only the upper bands without
significantly decreasing the prediction performance. This reduces the model size and the
required data for information inference. To test the hypothesis, the models underwent
training with a reduced feature set. The original 204 bands were reduced to one third, one
quarter, one tenth, and the fifth percentile of the most significant bands. The evaluation
metrics and cost were calculated for the models using 33%, 25%, 10%, and 5% of the most
significant bands, denoted as P33, P25, P10, and P5 in this paper. The model used for this
experiment was the LR model without normalizing the data, as depicted in Table 3. Table 3
displays the results, indicating that the F1-score increases with the number of bands. The
SVM model had the least reduction in F1-score, but also the longest inference time, as
previously discussed. On the other hand, the LR model remains the smallest and has the
shortest inference time when only the top 5% most significant bands are used as input.
These bands are 204, 106, 105, 108, 104, 107, 109, 103, 192, and 102, which, respectively,
stand for the following wavelengths in nm: 1003.58, 705.57, 702.58, 711.56, 699.60, 708.57,
714.55, 696.61, 966.55, and 693.62.
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Table 3. Comparison of the evaluation metrics with the different models reducing the feature set of
the data without normalizing.

Percentile Classifier F1-Score (%) Inference Time (ms) Size (KB)

P33

DT 97.094 87.063 270
LR 98.839 109.156 2.29

SVM 98.462 470,580.587 6500
RF 94.287 4854.568 756

P25

DT 97.423 89.960 281
LR 98.641 94.093 1.92

SVM 98.330 446,215.157 5110
RF 93.960 4711.796 768

P10

DT 96.193 81.218 367
LR 98.079 83.616 1.19

SVM 98.106 515,363.557 2840
RF 92.933 5137.557 770

P5

DT 94.375 85.020 462
LR 98.034 59.558 0.982

SVM 98.188 762,950.853 2460
RF 91.202 5259.811 766

In this regard, it is possible to reduce the model size to 1 KB and achieve a 98% F1-score
for olive detection using 10 bands. The same images used in Figure 6 were also tested
with the P5 LR model to observe the impact of a 1% reduction in F-score, as shown in
Figure 8. Furthermore, precision agriculture approaches utilize visible images to detect
objects such as tomatoes, apples, and strawberries. A visible image is a three-dimensional
artifact that represents the color space. By using visible and NIR wavelengths, we can
obtain more information about the objects present in the images. According to the analysis
carried out in Table 3, these methods should be efficient in terms of time and size. However,
as shown in Table 4, a comparison with state-of-the-art techniques was conducted. This
table compares the approach of other researchers to acquiring in-field images using deep
learning techniques. As far as we know, there are no studies on the identification of olives
directly on the field, so other crops were used to compare our model. The aim of our
research is different as we focus on real-time applications and use machine learning models
to reduce size and computing time. In our case, identification is performed at the pixel level,
while other researchers create sub-images using CNNs to classify the presence of olives.

Table 4 demonstrates that our model has been reduced in size, processing time, and
F1-score. Although these results are promising, this novel approach should be tested under
different conditions and seasons, with varying light conditions. To improve the robustness
of this novel model, it is necessary to increase the variability of images under different light
conditions, as a reduction in light conditions can increase the probability of misclassifica-
tion. As exposure time decreases, the measurement range also decreases. Objects in the
background may not provide accurate information due to the shorter exposure time.

Table 4. Comparison of the evaluation metrics of the models with state-of-the-art models.

Object Detection F1-Score (%) Parameters

InceptionV3 * 83.89 23.90 M
Inception-ResNetV2 * 84.01 55.90 M

Our model 98.03 30.00
* Reference of these results: [24].
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5. Conclusions

In this work, a framework for identifying olives in hyperspectral images was presented.
The hyperspectral images were acquired directly in the field without controlled lighting
conditions. The reflectance values were compensated using a white PTFE reference, and the
image was normalized before the inference of the ML model. The model generated a binary
classification output at the pixel level, which was used to segment the image into olive and
non-olive categories. A comparison of the DT, LR, SVM, and RF models was conducted
to evaluate their performance using normalization techniques. Precision, accuracy, and
F1-score metrics were compared. The models achieved a success rate of around 98% in
classifying the presence of olives. However, it was observed that the way the image was
taken was crucial, as several images identified leaves as olives. The analysis focused on the
most important bands in the hyperspectral images. It was found that by using only the
top 5% of significant bands, the LR size was reduced by 80% and the inference time was
reduced by 74%. However, the model showed a 1% reduction in F1, so it is important to
evaluate this F1 reduction for real-time applications.

Future Work

Subsequent studies should focus on comparing olive identification using only RGB
information. Additionally, the dataset should be expanded to include different light
conditions and multiple years, creating a comprehensive database of olives during their
respective seasons. State-of-the-art complex models can be analyzed to determine the most
effective method for detecting olives directly in the field. The dataset can be expanded to
include more seasons and different varieties, such as Manzanilla, Hojiblanca, or Arbequina.
Other potential applications include evaluating olive maturity, determining the number
and size of olives in the image, or implementing global parameters to assist farmers
in decision-making.
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