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Abstract: In this paper, we propose an improved clustering algorithm for wireless sensor networks
(WSNs) that aims to increase network lifetime and efficiency. We introduce an enhanced fuzzy
spider monkey optimization technique and a hidden Markov model-based clustering algorithm for
selecting cluster heads. Our approach considers factors such as network cluster head energy, cluster
head density, and cluster head position. We also enhance the energy-efficient routing strategy for
connecting cluster heads to the base station. Additionally, we introduce a polling control method
to improve network performance while maintaining energy efficiency during steady transmission
periods. Simulation results demonstrate a 1.2% improvement in network performance using our
proposed model.

Keywords: hybrid routing protocol; energy efficiency; network lifetime; hidden Markov model; fuzzy
spider monkey

1. Introduction

Sensors, being the cornerstone of modern data acquisition systems, offer unparalleled
precision and versatility, enabling advancements in fields ranging from environmental
monitoring to healthcare diagnostics through the integration of technologies like MEMS,
optical sensing, and wireless communication [1,2]. Wireless sensor networks (WSNs) are a
novel type of wireless network that is rapidly gaining traction for both commercial and mil-
itary applications. A distributed network of sensor nodes makes up the automated network
systems. Wireless sensor networks consist of various components that work together to
enable data collection, communication, and processing. The primary component of a WSN
is the sensor node, which includes a sensing unit to capture data from the environment,
a processing unit to analyze and process the collected data, and a communication unit
to transmit the data wirelessly to the base station or other nodes in the network. These
sensor nodes are typically small, low-power devices equipped with sensors such as tem-
perature, humidity, light, or motion sensors [3]. The base station acts as a central point
for data aggregation, storage, and further processing. It serves as the gateway between
the WSN and external networks. In addition to sensor nodes and the base station, WSNs
may also include sink nodes, which act as intermediate relay nodes to extend the network
coverage. For WSN producers, keeping the network operational over an extended period is
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essential. Because of technological improvements, sensors are now usable in a wide range
of industries, including the military, healthcare, transportation, and security [4]. Hence, for
the past twenty years, creating energy-efficient protocols has transformed the state of the
art. These tiny devices gather data and transmit it throughout the entire network utilizing
routing algorithms that primarily make use of wireless sensor network capabilities and
ought to be created in a way that maximizes resources in order to create a new probabilistic
routing system. In order to process the data generated by sensor networks, new algorithms
have been created, and existing data mining approaches have been modified. Numerous
knowledge discovery methods, approaches, and algorithms have been put out in the last
ten years [5]. By balancing the amount of power utilized by the sensor batteries during the
multi-hop data distribution pattern of flat and hierarchical networks, the majority of the
created protocols attempted to increase the network’s lifetime [6]. Numerous algorithm
methods, such as focusing on classification, sequential patterns, association rules, cluster-
ing, and common patterns, have been successful when applied to on-sensor data. Yet due
to the massive scale (thousands of sensor nodes), constrained power supply, loss of the
communication environment, unsafe deployment, and high failure rate, sensor networks’
design and deployment provide particular research issues. Data collecting is one of the
energy-heavy processes, if not the energy-heavy process, that limits the network’s lifetime;
it is one of the most important difficulties with WSNs [7]. For that purpose, in this paper,
we are going to design our own approach that can improve the network lifetime (in terms
of energy, throughput, total energy, and resource utilization in the given network). Figure 1
presents the WSN structure.
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2. Related Work

Demand-side management (DSM), load forecasting, power pricing laws, energy effi-
ciency initiatives, and customer classification are among the applications that can benefit
from the use of consumption pattern knowledge. It is necessary to employ data mining
tools to identify consumption patterns. Research has drawn attention to the problem of
routing in wireless sensor networks (WSNs). By using a clustering technique and offering a
bioinspired ensemble strategy based on the Firefly and SMO algorithms as a clustering-
based routing protocol for WSN, the energy in the sensor network can be distributed more
fairly [8–10]. These protocols lessen the chance of needless energy use by recycling data
between the source and sink nodes. Additionally, these protocols can choose the best cluster
heads for each round depending on a variety of factors, including intercluster distances
to the sink. Using cluster overlaps and node residual energy, the optimal routing path is
found. To achieve the optimal outcomes for the network’s requirements, the parameters of
the proposed solution can be adaptively changed during the clustering process [11]. Ant
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and K-means clustering is a unique WSN design that has been created using the colony
optimization technique [12]. The fuzzy Dstar-Lite routing technique was used to generate
the best information routing for HWSNs. It also elucidates the issue of UEDs within the
network and draws attention to the challenge of extending beyond the blockage situation.
In [11], a routing scheme for WSNs is put out. It enhances the architecture of the particle
swarm algorithm, enabling direct communication between particles as they proliferate,
increasing the network’s efficacy. The author [12] suggested choosing the optimal cluster
head by use of a genetic algorithm (GA). Four different factors are taken into account
when choosing a cluster head (CH) using GA: energy, node density, distance, and mixed
nodes’ capacity to build fitness functions. These factors facilitate the determination of the
hop count, power capacity, and optimal nodes for CHs within the cluster. The suggested
method by [13] increases the longevity of the network and fixes sensor node connection
issues. Every node should have a backup route, according to the EFRP, so that sources
and destinations can be swiftly relocated. The updated route path can be added to the
current one without interruption by employing this method in order to locate and promptly
report any oil traces to the washbasin. In [14], a unique ocean surface routing system that
integrates two-dimensional underwater sensor networks with sleep scheduling routing
was unveiled using a routing solution based on the K-NN algorithm and the clustering
method to reduce end-to-end latency and energy consumption [15]. This solution provides
the least number of distances through a clustering technique based on node categorization.
The authors of [16] made a new contribution to reduce the energy consumption in WSNs’
symmetric routing strategy using two unrelated channels. Every node has two different,
shorter paths to the sink in order to reduce network load. Refs. [17,18] described a novel
strategy for clustering the HWSNs approach. At this moment, the information bundle
receives the chaining technique. The cluster head node, the quantity of sensor nodes, and
the remaining energy were all correctly determined using this method. They recommended
using the SMORP swarm-based intelligence method in both heterogeneous HWSNs and
homogeneous WSNs. Using a set of routing parameters, this method finds the best path for
the network [19].

2.1. Summary of Related Work

Wireless sensor networks play a crucial role in different fields when we comprehen-
sively review and analyze the existing literature. The summary aims to identify and address
the current gaps, limitations, and challenges that exist within the domain of WSNs. By
identifying these problems, researchers can gain a deeper understanding of the research
landscape and develop innovative solutions to contribute to field issues, such as limited
scalability: WSNs are designed to operate in large-scale environments where hundreds or
thousands of sensors are deployed. However, scalability remains a significant challenge
due to issues such as network management, data aggregation, and energy efficiency [20].
Energy efficiency and power management: energy efficiency is a critical concern in WSNs,
as batteries typically power sensor nodes with limited capacity. Prolonging the network
lifetime and minimizing energy consumption is essential for successful deployment. The
related work section should highlight the existing approaches, protocols, and techniques
used to optimize energy consumption and manage power in WSNs. Data security and
privacy: WSNs often deal with sensitive data collected from various applications, including
environmental monitoring, healthcare, and surveillance. Therefore, ensuring data security
and privacy is of utmost importance. The related work section should explore the existing
research on security mechanisms, encryption algorithms, authentication protocols, and
privacy-preserving techniques for WSNs [21]. Data aggregation and fusion: WSNs generate
a vast amount of data, and efficient data aggregation and fusion techniques are necessary to
reduce redundancy, conserve energy, and enhance network performance. The related work
section should investigate existing methods, algorithms, and protocols for data aggregation
and fusion in WSNs, highlighting their advantages, limitations, and potential areas of
improvement. Quality of service (QoS) provisioning: WSN applications often require
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specific quality of service guarantees, such as low latency, reliability, and data accuracy.
However, providing QoS in resource-constrained WSN environments presents several
challenges [22].

2.2. Issue Still Exists

The energy constraint of sensor nodes is a major issue in WSNs since the nodes are
battery-powered, and their energy consumption must be minimized to extend the network
lifetime. The cluster-based routing protocol is an effective approach to reduce the energy
consumption of sensor nodes in WSNs, and the selection of an appropriate cluster head
(CH) is a crucial factor in this protocol [23]. This paper proposed a hybrid approach for
implementing cluster head selection in WSNs. The proposed approach combines both
centralized and distributed approaches and takes into account the network topology, node
energy, and residual energy of nodes to select the appropriate cluster head. This paper’s
goal is to assess the efficiency of the suggested strategy in reducing energy consumption
and prolonging the network lifetime compared to existing approaches.

3. WSN Cluster Head Architecture

Numerous restrictions, including scalability, fault tolerance, and energy efficiency,
to mention a few, are constantly present and have an impact on the WSN design. By
strategically placing sensor nodes, the cluster head selection goal is to determine the
minimal transmit power from each node. The edge-bearing sensors will constantly scan
their immediate vicinity for nearby sensors to communicate data to while consuming the
least amount of transmit power [24]. However, nodes pointed towards network edges often
receive complete connectivity from the sensors located between edges. Checking every
sensor’s position to verify optimality becomes a computationally difficult process as the
network scale increases. To discover the best answer, metaheuristic search strategies are
used. Actually, when searching for the best solution—in this case, CH selection and flexible
network scaling—there is always a trade-off between accuracy and complexity [25]. The
optimization of clustering in wireless sensor networks is shown in Figure 2.
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In a clustered architecture, the sensor nodes are methodically organized into clusters,
each of which is controlled by a single high-energy CH. Every network cluster’s sensor
participates in message transfer across the matching CH, and the CH then transmits the
data collected to the BS, which is typically seen as an access point (AP) connected to a
wired network. Because of data aggregation and transmission, sensor networks benefit
from a clustered network design. Cluster determination in the hierarchical method of
network routing is often calculated in relation to the energy retained by the sensors and
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the geometric proximity of each sensor to the relevant cluster head (CH) [26,27]. While
other sensor nodes just transfer their signals to the CH, the CH of each cluster is sufficient
to provide all necessary information to the BS. The necessity of maintaining a central
node to synchronize every connected node is reduced by clustering. Current wireless
sensor networks are always comprised of clusters. When compared to other standard
routing techniques, the sensor networks perform well with the aid of clustering, allowing
for flexible data exchange and a longer network life [28]. When there are enough sensor
nodes, WSNs may be organized on an as-needed basis. The routing table’s dimension
decreases because clustering contributes to the maintenance of communication bandwidth.
The requirement to maintain the existing network topology is removed by clustering. An
energy-efficient clustered WSN uses less energy overall. Every sensor node’s battery life is
increased because of the network’s predicting behavior, and in the event that clustering is
done correctly, upscaling of the network is conceivable. The size of the clusters, intracluster
contact, mobility of the sensors and cluster heads, sensor variety and location, various
levels, and overlaps are the main design factors taken into account while building up
a network clustering [29]. Connectivity, rotating cluster head functions, medium access
control layer drawing, sensor duty cycle, optimal cluster dimension, and sensor harmony
with peer nodes are some of the major clustering issues. Every time a node is moved
from one to the other, the CH accumulated data are updated. The process of choosing
the best communication path for data packets to take from a source node to a destination
node is known as path selection in a wireless sensor network (WSN). In WSNs, where
sensor nodes are frequently resource-constrained in terms of energy, computing power,
and communication range, this technique is essential for effective and dependable data
transmission [30,31]. Figure 3 presents the path selection in a WSN.
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The process of choosing a path entails figuring out which intermediary nodes the data
packets will pass through in order to reach their final destination. To guarantee efficient
communication and low energy usage, the chosen channel should take into account a
variety of criteria [32]. Given that WSNs are frequently used in vital applications, including
healthcare, industrial monitoring, and military surveillance, security is an essential compo-
nent of these networks. The are some typical WSN security problems: data confidentiality,
data integrity, authentication, energy efficiency, scalability, and location privacy; for the
improvement of security, we can contribute to this section.

Mathematical Model of Path Selection in WSN

In wireless sensor networks (WSNs), mathematical models for path selection are
frequently created to optimize a variety of goals, such as energy efficiency, latency reduction,
or dependability. Graph theory and optimization methods are frequently used in these
models. A condensed mathematical model that illustrates the process of path selection
based on the fundamental goal of minimizing overall energy usage in a WSN is provided
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in [33]. G = (V, E) represents the communication graph of the WSN, where V is the set of
sensor nodes and E is the set of communication links between nodes. s denotes the source
node, d denotes the destination node, P represents the selected path from s to d, En is the
energy level of node n, Cn is the energy consumption rate of node n when transmitting data,
Lij represents the link quality or reliability between nodes i and j. D represents the data rate.
Objective: minimize the total energy consumption along the selected path P. Constraints:
connectivity; ensure that the selected path P is connected in the communication graph
G energy constraint [34]. The energy consumption along the path should not exceed the
energy available at any node. Mathematically, for each node n along path P, the following
constraint should hold:

∑ i∈PCi ≤ En (1)

Optimization problem: formally, the problem can be represented as an optimization
problem: minimize [30].

∑ i∈PCi (2)

Subject to s to d connectivity constraint. Energy constraint for each node n along path
P. Mathematical model: depending on the particular needs and limitations of the WSN,
this optimization issue may be tackled using linear programming, integer programming, or
other optimization approaches. The goal is to identify path P that satisfies the connection
and energy limitations while minimizing overall energy use. It is vital to keep in mind that
this is a mathematical model that has been simplified and that in real-world path selection
in WSNs, more complicated factors like routing protocols, changing network circumstances,
and QoS need to frequently come into play [31]. The mathematical model may need to be
adjusted or modified based on the unique application and goals. Master node selection:
a master node selection is the process of selecting one particular sensor node among the
sensor nodes in a wireless sensor network (WSN) to act as the master or central node.
The network and other sensor nodes’ operations are often managed and coordinated in
large part by the master node. The network’s overall effectiveness and efficiency may be
significantly impacted by the choice of a master node [32].

4. Proposed Model

In this section, the proposed framework of fuzzy spider monkey optimization (FSMO)
and a hidden Markov model (HMM) are briefly introduced. Every protocol round has two
distinct phases: setup and steady state. During setup, the CH selection process is simplified.
BS uses SMO as a tool during the setup phase to construct energy-efficient clusters for a
specific NAN sensor, network remaining energy, and no overlapping distance. During
the steady-state phase, the CHs collect data from the individuals in their own cluster and
transmit it to a base station (BS) [33]. Figure 4 presents the proposed model architecture.
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As we know, there are different techniques used for the selection of a routing path
in a WSN, but for our approach, we used the multipath routing approach; the details for
the approach are mentioned and discussed in the next section. A mathematical model of a
hidden Markov model (HMM) describes the probabilistic linkages and transitions between
hidden states and observable data in a wireless sensor network (WSN). In WSNs, temporal
data like sensor readings, outside circumstances, or network states are frequently modeled
using HMMs. An HMM in the context of a WSN is represented mathematically in the
following manner.

State space:
Hidden states: Q = {q1, q2, . . . , qN}, where qi represents the i-th hidden state.
Observation space:
Observed symbols: O = {o1, o2, . . . , oT}, where ot represents the t-th hidden state.
Model parameters:
Initial state distribution: π = [π1, π2, . . . , πN ], where πi is the probability of starting

in state qi.
State transition probability matrix: A =

[
aij

]
, where aij is the probability of transition-

ing from state qi to state qj.
Observation probability matrix: B =

[
bj(k)

]
, where bj(k) is the probability of observ-

ing symbol k from hidden state qj [35].
HMM components:
State transition probabilities:

aij = P
(
qt + qj

∣∣qt−1 = qi
)

f or 1 ≤ i, j ≤ N

Observation probabilities:

bj(k)= P(ot = k|qt = qj
)

f or 1 ≤ j ≤ N, 1 ≤ k ≤ M

Forward algorithm: computes the probability of observing a sequence O given the
HMM parameters.

Viterbi algorithm: finds the most likely sequence of hidden states Q given the observed
sequence, O.

Baum–Welch algorithm: estimates the HMM parameters, π, A, and B from train-
ing data.

Utilizing the SMO approach, the network lifespan is improved. If a node is unable
to send data owing to damage, work with surrounding nodes to replace it. By employing
node replacement, the cluster head SMO version disclosed in this study enhances the
performance of the prior SMO. The challenge of keeping them contained in a small space
led to the development of the spider monkey strategy. The mathematical model for SMO is
given by Equation (3).

Tx
y =

{
ETy + q1

[(
VCy − NCy

)
q2 + NCy

]
q3 ≥ 0

ETy − q1
[(

VCy − NCy
)
q2 + NCy

]
q3 < 0

(3)

where q1, q2 are random integers based on the interval [0, 1], NCy is the upper bound in
the yth dimension, ETy is the position of the food source in the yth dimension, and Tx

y is
the first cluster head position in the yth dimension. The most important component is the
significant coefficient q1, which is used in Equation (4) to balance the processes of food
acquisition and consumption.

q1 = 2 f−( 4m
M )

2

(4)

The most recent round is denoted by L, the most rounds by M, and the significant SSA
coefficient is denoted by q1. The generated routing route is utilized frequently (rounds) in
FSMO, and each node’s state is assessed along the way to determine whether to use the
same path for the subsequent round. The prior assumption states that the sink has access
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to up-to-date data on the battery life, position, and network traffic load of every node. The
fitness of a contiguous node (ni) can be found using the following formula [33].

f it(ni) = f uzzy(RE(ni), TL(ni), D(ni)) (5)

The residual energy, traffic load, and distance to the destination for node n, denoted
as RE(n), TL(n), and D(n) accordingly, are the inputs to the fuzzy technique that will
determine the node n’s fitness value. The GLSM then evaluates the data obtained from
each of LLSM’s neighbor nodes and selects the best node with the highest probability P
and the given probability value:

P(ni) =
f it(ni)

∑n
i=1 f it(ni)

(6)

N is the number of neighbor nodes, ni, f it(ni) is the fitness associated with node n,
and P(ni) is the probability associated with node n. A fuzzy inference engine processes all
of these rules concurrently. The solution fuzzy space is reduced to a single, clean output
value using defuzzification. This figure represents the fitness function value of node s [35].

f it(n) =
∑n

i=1 Ui ∗ Ci

∑n
k=1 Uk

(7)

Six steps make up the scientific model of SMO’s search behavior for optimization
jobs. When spider monkey populations are first created, SMO randomly creates colonies of
them. Spider monkeys are represented as D-dimensional vectors. Let Qab represent the bth
dimension of each person. The initialization of each Qab in spider monkey optimization is
as follows:

Qab = Qminb + S(0, 1)× (Qmaxb − Qminb) (8)

where Qminb and Qmaxb are upper and lower bounds in bth direction for Qa and S (0, 1)
indicates a random amount between the range [0, 1]. Initialization stage: the Bernoulli
procedure is employed in the first phase of the SMO method to randomly initialize a
population of N spider monkeys (SM) [36].

SMOu,v =

{
1, a < prob
0, otherwise

(9)

where SMOu,v is the vth dimension of uth spider monkey, a random number distributed
uniformly within the interval [0, 1], and prob, a probability with a value of 0.5. The
appropriateness SMOu of a randomly generated solution (for the minimization problems)
is assessed as follows:

f itnessu =

{
1 + | fu|, Fu ≤ 0,

1
1+Fu

, Fu ≥ 0 (10)

where f itnessu is the issue under consideration’s fitness function stage of the local leader.
Stage two entails revising the solution in light of the team’s and the local leader’s expe-
riences. A binary optimization problem has been addressed using the logical OR, AND,
and XOR operators. Each SM changes its position or velocity update equation in the third
phase using the knowledge that the group leader and other members have [37]. Hence, the
given section reduces the distance from the source node to the destination and helps in the
path selection of the master node in the WSN. The cluster head selection method works
dynamically because the process needs to be continuous in the network. Clustering is typi-
cally achieved in WSNs with the combination of different sections, which are initialization,
node election, cluster head formation, cluster formation, and communication setup. These
steps are discussed with mathematical representation as in the above section with details.
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5. Simulation and Evaluation Parameters

The tests are run to gauge how well the suggested algorithms work. On the Anaconda
(Spyder) IDE, the simulations are programmed in the Python language. The tests were
performed on a computer with an Intel(R) Core (TM) i7 8700 @3.20 GHz processor clocked
at 3.19 GHz and 16 GB RAM. Time spent missing deadlines, makespan, energy utilized,
overall cost, and degree of imbalance (DI) are the measures used to assess performance.
Table 1 presents the simulation parameters.

Table 1. Parameters simulation.

Parameters Measurements Parameters Measurements

Number of Nodes 50–100 Packet Size 1024 bits

Area Size 100 m × 100 m Communication Range 30 m

Base Station Coordinate 50, 50 Buffer Size 20 packets

Communication Range 30 m Data rate 4096 bit/round

Cache queue length 50 packets Traffic Pattern Constant Bit Rate

6. Results and Discussion

Table 2 provides these circumstances specifics. As shown in Table 3, the suggested
strategy was put to the test in five different scenarios with varying network area sizes,
grid/cluster counts, and total node counts. In these scenarios, the number of grids varies
depending on the case and ranges from 8 to 40, while the node population varies depending
on the network area size, ranging from 100 to 400.

Table 2. Comparison of alive nodes.

Round Number of Alive Nodes in
First Simulation

Number of Alive Nodes in
Second Simulation

Number of Alive Nodes in
Third Simulation

100 100 100 100

150 89 87 80

200 67 65 70

250 56 59 50

300 40 58 30

350 23 15 10

400 5 7 0

Table 3. Network lifetime based on rounds.

Rounds FPS-R Algorithm JR-EMCA.EMCA
Algorithm

HSBWSO-RSP
Algorithm

Proposed
Algorithm

100 5600 5500 5700 5710

150 5800 5810 5780 5900

200 6000 62,000 5990 6050

250 6400 6200 6300 6050

300 6800 6890 6789 6889

350 7000 6789 7010 7089

400 7050 7100 7400 7550

Figures 5 and 6 present the comparison data of the network lifetime after the findings
spanning different node densities and network grids were studied. The comparative
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measures were first node dead (FND), half node dead (HND), and final node dead (LND).
Based on the given result, the worst case was the FPS-R algorithm, and the best case was
the proposed algorithm. The overall result of the network lifetime is mentioned in Table 3
with details, and Table 4 presents the result of throughput in terms of megabits per second
(Mbps), which is calculated for the initial time to finish for the network time.
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Table 4. Throughput/Mbps.

Rounds FPS-R Algorithm JR-EMCA.EMCA HSBWSO-RSP Proposed Algorithm

100 0.9980 0.9963 0.9976 0.9963

150 0.9887 0.9800 0.9898 0.9800

200 0.9770 0.9770 0.9770 0.9770

250 0.9678 0.9642 0.9687 0.9639

300 0.9578 0.9576 0.9575 0.9566

350 0.9990 0.9890 0.9956 0.9867

400 0.9990 0.9890 0.9956 0.9867

Figures 7 and 8 present the comparison data of the throughput in the given network
in terms of Mbps. The measure was conducted from source to destination. Based on the
given result, the worst case was the FPS-R algorithm, and the best case was the proposed
algorithm. The overall result is that 0.9867% of nodes are missing to reach the destination.
In the worst case, 0.9990% is taken by the FPS-R algorithm. The details of the result
are mentioned in Tables 4 and 5, which present the result of energy consumption/Mj in
the network.

Sensors 2024, 24, x  12 of 18 
  

 

 
Figure 7. Network throughput/Mbps. 

 
Figure 8. Throughput/Mbps. 

Table 5. Energy consumption/mJ. 

Rounds FPS-R Algorithm JR-EMCA.EMC HSBWSO-RSP Proposed Algorithm 
100 13 22 11 11 
150 20 17 22 20 
200 26 21 26 26 

Figure 7. Network throughput/Mbps.

The BS was positioned at the network’s edge, as seen in Figures 9–15, in order to finish
the investigation and assess the effectiveness of the suggested method. This study made
it possible to assess the proposed model performance when the base station is situated
on the edge of a configuration with 100–400 nodes. From Figures 6 and 9, different types
of energy utilization are measured, such as energy use by node and total node in the
cluster. The proposed model in this study also showed noteworthy gains in a number of
performance indicators.
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The substantial increase in the quantity of packets transmitted to the BS is shown
in Figures 9–12 and Tables 3 and 4, with an improvement of 3.34 death nodes and a
97% alive node ratio, respectively. Figures 12 and 15 illustrate how the proposed model
performed in terms of packet delivery ratio. The details of the given result are mentioned
in Tables 5 and 6 with details. The proposed model improves the network in terms of
throughput, energy, packet loss, and active node based on the result of a 1.2% improvement
in the result as compared with the standard and research proposed algorithm.
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Table 6. Packet delivery ratio/%.

Network Lifetime
(Rounds) FPS-R JR-EMCA.EMCA HSBWSO-RSP Proposed Algorithm

100 97% 98% 98% 99%

150 98% 96% 94% 98%

200 95% 97% 93% 99%

250 96% 98% 93% 98%

300 95% 93% 92% 97%

350 93% 96% 94% 97%

400 88% 86% 92% 94%

7. Conclusions

The aim of the study was to create a hybrid model based on the FSMO and HMM
models in order to increase the network lifetime in a WSN environment. In this technique,
the optimum choice of the cluster head (CH) is enabled by a trust model among the
stationary nodes after network construction, enabling reliable data broadcast from the
sensor nodes to the CH. The proposed method of building simulation environments and
conducting five separate tests with random pathways and node sizes ranging from 100 to
400 helps the optimization algorithm identify the best methods for delivering data packets
to the sink node as quickly as possible. It is possible to select the optimal routes from the
random roads by considering factors like route score, total hop counts, residual energy,
power used, and the number of received and delayed packets. Because these routes can
reliably transfer packets, higher residual energy can be achieved. In all five case studies, the
suggested model led to longer network lifetimes than the present proposed model method,
which involves faster route selection. The fact that, after several iterations, the percentage
of dead nodes in the network was far lower than that of the alternative protocol indicates
how successful the current method is. The current effort aims to develop the work that has
already been provided in the direction of data reduction in conjunction with security in
order to further enhance network efficiency and privacy. Deep learning algorithms may be
used in the future to create bufferless systems that can process incoming data from several
IoT devices at a speed that matches. In addition, a cross-layer strategy will be investigated
in future studies to improve network lifespan and efficiency in the event of node failures.
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