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Abstract: Machine learning (ML) algorithms are crucial within the realm of healthcare applications.
However, a comprehensive assessment of the effectiveness of regression algorithms in predicting
alterations in lifting movement patterns has not been conducted. This research represents a pilot
investigation using regression-based machine learning techniques to forecast alterations in trunk, hip,
and knee movements subsequent to a 12-week strength training for people who have low back pain
(LBP). The system uses a feature extraction algorithm to calculate the range of motion in the sagittal
plane for the knee, trunk, and hip and 12 different regression machine learning algorithms. The
results show that Ensemble Tree with LSBoost demonstrated the utmost accuracy in prognosticating
trunk movement. Meanwhile, the Ensemble Tree approach, specifically LSBoost, exhibited the highest
predictive precision for hip movement. The Gaussian regression with the kernel chosen as exponential
returned the highest prediction accuracy for knee movement. These regression models hold the
potential to significantly enhance the precision of visualisation of the treatment output for individuals
afflicted with LBP.

Keywords: low back pain; lifting technique; camera system; sagittal plane; trunk; hip; knee; range of
motion; regression machine learning; forecast

1. Introduction

Low back pain (LBP) is a common and debilitating condition affecting millions world-
wide. Activities of daily living, such as repetitive lifting, have been associated with LBP.
Lifting is an intricate task that necessitates coordination of the lower limbs (such as the hip
and knee) as well as the trunk [1]. Poor lifting mechanics can occur for various reasons,
such as lifting objects that are too heavy, lifting an object from an inappropriate height,
lifting awkwardly shaped objects, or performing repetitive lifting tasks without proper
rest and recovery [2–4]. Therefore, understanding and monitoring the changes in lifting
movement could be critical for effective rehabilitation and prevention of work-related LBP.

LBP is also associated with changes in the lumbar spine, hip, and knee movements.
Current treatment options for LBP typically involve physical therapy. The common therapy
incorporates general strength training and aims to restore the baseline function of people
with LBP [5,6]. However, due to the absence of advanced technology in clinical practice,
clinicians typically rely on visual observation and patient questionnaires. These surveys
inquire about the level of pain experienced by patients and the functional activities they can
perform but provide little to no information on how the task (e.g., lifting task) is performed.
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Recent technological advancements, such as motion capture systems and machine
learning algorithms, have shown great potential in objectively identifying and correcting
movement patterns during lifting tasks or patient flow [7,8]. Motion capture systems can
capture detailed movement data during lifting tasks, including joint angles and velocity.
Machine learning algorithms can then be trained on these data to identify abnormal
movement patterns and provide personalised corrective feedback to the individual. There
are two main applications of machine learning: classification and regression. Recent
research has presented the potential of machine learning in clustering lifting movements
in people with LBP and healthy people [7] or classifying thyroid disease [9]. Regression
analysis is a commonly used statistical technique for modelling the associations among
variables. It entails forecasting a continuous output value by considering one or more input
variables. In recent years, with the rise of big data and advancements in machine learning
techniques, regression analysis has become a critical tool in various fields, including energy,
finance, healthcare, and marketing [10,11].

Regression machine learning algorithms are artificial intelligence that uses historical
data to learn from patterns and make predictions about future outcomes. These algorithms
can analyse large datasets, identify complex patterns, and predict continuous output
values with high accuracy. Currently, many regression machine learning models have been
developed. Regression machine learning has several advantages over traditional statistical
regression methods, including handling nonlinear relationships between variables and
incorporating multiple variables and interactions.

In recent years, regression machine learning algorithms have experienced rapid growth
due to their demonstrated high accuracy across a range of applications. For instance, re-
gression machine learning has been used to predict stock prices [12], diagnose diseases [13],
forecast weather patterns [14,15], and assess molecular similarity [16]. In addition, regres-
sion machine learning has been used to optimise processes and improve decision making in
industries such as manufacturing and transportation [17–20]. Some studies have suggested
that machine learning algorithms, particularly regression models, may have the potential
to predict treatment outcomes based on patient characteristics and movement patterns [21].
However, this technique has not been applied to analyse lifting movement in people with LBP.

Hence, the purpose of this study is to discover the potential application of regression
machine learning models for predicting alterations in joint movement during lifting tasks
following a 12-week general strength treatment for individuals with LBP. The output model
can be applied to provide insights into the potential achieved range of motion of a specific
body segment after 12 weeks of strength training. We hypothesise that our pilot study
will enhance comprehension regarding the potential of machine learning in forecasting
treatment outcomes for patients with LBP. Furthermore, it could pave the way for more
effective methods for visualising treatment outputs.

Recently, we conducted a research study applying machine learning to cluster joint
movements during lifting tasks based on the ROM of the sagittal plane in the trunk, hip,
and knee [7]. Our results showed that the Ward clustering method successfully identified
four distinct joint movement patterns. However, while clustering is a core application of
machine learning, its use with joint movement data for regression tasks remains unexplored.
Nevertheless, a separate study compared existing regression algorithms for predicting
brain age and yielded promising results [22]. This suggests the potential for applying the
existing regression approaches to joint movement data.

The core contribution of this paper is the innovative use of regression machine learning
methods to predict lifting movement patterns in participants with LBP following a 12-week
general strength treatment. This study is the first to use information on the range of motion
for the trunk, hip, and knee, along with a regression algorithm, to anticipate changes in
movement patterns in the sagittal plane.
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2. Materials and Methods
2.1. Participants

Sixty-nine participants, both males and females aged between 18 and 65 years old
(falling within the “adult” age range [23]) and experiencing lower back pain (33 of whom
were female), were enlisted from a prominent Physiotherapy clinic in Melbourne, Victoria,
Australia. Approval for this study was obtained from the University of Melbourne Be-
havioural and Social Sciences Human Ethics Sub-Committee. Inclusion criteria comprised
individuals reporting pain between the gluteal fold and the twelfth thoracic vertebra (T12)
level, with or without leg pain persisting for more than three months. Exclusion criteria
encompassed the presence of evident neurological signs, for example, muscle weakness
and loss of lower limb reflexes, a history of spine and lower limb surgery, diagnosis of
active inflammatory conditions like rheumatoid arthritis, a cancer diagnosis, or a lack of
proficiency in written or verbal English. All participants underwent evaluations of pain
using the pain self-efficacy questionnaire (PSEQ) [24]. Participants were recruited and
received strengthening exercise treatment for 12 weeks. During the 12 weeks of treatment,
participants joined exercise sessions twice per week. The assessments, in which participants
were asked to perform lifting tasks, were conducted on the first week, week 6, and week 12.

2.2. Data Collection

The preceding investigation outlined the lifting task protocol [25,26]. Participants
started in a standing position, barefoot, with their arms alongside their bodies. They were
required to bend down as directed and perform lifting tasks with an 8 kg weight (equivalent
to the average weight of groceries [27]). The weight was placed between their feet. The
weight was lifted from the ground to their belly by using both hands. A lifting technique
of their preference was allowed to be used without any restriction. The first and second
lifting tasks were practice trials and, consequently, excluded from further analysis. The
participants were instructed to repeat the lifting task six times.

Kinematic data were gathered by affixing non-reflective markers to specific anatom-
ical points on the participants’ skin, including the head, trunk, pelvis, and upper and
lower limbs [26]. A motion analysis system consisting of 12 cameras (Optitrack Flex 13,
NaturalPoint, Corvallis, OR, USA) with a sampling rate of 120 Hz was applied to create
three-dimensional recordings of anatomical reference point. Optitrack Motive software
v2.0 (NaturalPoint, Corvallis, OR, USA) was used to process kinematic data with grouping,
naming, cleaning, and gap-filling. Following this, a pipeline with some modifications was
used for further processing using in Visual3D v5.01.6 (C-Motion, Inc., Germantown, MD,
USA) to extract the velocity and angular data of various joints in all planes. An overview
of the data collection process is summarised in Figure 1.
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2.3. Pre-Processing and Feature Extraction

The analysis involved utilising the angular rotation data from the three different joints
(trunk, hip, and knee) throughout the lifting process, which were used as the input for the
machine learning algorithm. This study selected a range of motion (ROM) of different body
segments to transform the complicated information into more manageable features. This
ROM was determined by computing the variance between the maximum and minimum
values of the rotational displacement for each respective joint as follows:

Range o f motion (ROM) = Max(∂)− Min(∂) (1)

where Max(∂) represents the maximum of the rotational displacement for the joint and
Min(∂) denotes minimum of the rotational displacement for the body segment.

This view of inter-joint coordination during manual lifting proposes a sequence ex-
tending from peripheral (further from the centre of the body) to central (closer to the centre)
for the vertebral joints of the knee, hip, and belt [28]. Furthermore, the motion of the knee,
hip, and lumbar areas is essential for completing the lifting task and performing diverse
lifting techniques. The processed data focused on extracting the ROM in the sagittal plane
for the trunk, hip, and knee, which was used for further analysis. The knee and hip each
used an average value between sides as no statistically significant differences in the ROM
were detected between the right and left sides.

2.4. Regression Machine Learning

Regression machine learning serves as a powerful instrument for forecasting continu-
ous values using input features. It includes instructing a model using a dataset containing
known input–output pairs and subsequently utilising the trained model to forecast the
output for new input data. Regression machine learning tries to discovery a mathematical
function in which the input features are mapped and predicted to the output values, such
that the predicted values are as close as possible to the true values.

This study used three different regression models to predict changes in trunk, hip, and
knee ROM over a 12-week treatment period, with predictions made every 6 weeks. The
input for the models consisted of a combination of trunk, hip, and knee ROM measurements
taken in the first and sixth weeks of treatment. The actual outputs used to evaluate the
models were the ROM measurements for the trunk, hip, or knee in the sixth week for the
first-week input and in the twelfth week for the sixth-week input, depending on which
regression model was used. The input was normalised before use as the input for the
regression model.

The regression algorithms that were assessed in this study for predicting the change
in trunk, hip, and knee movement are explained below.

2.4.1. Supported Vector Machine Regression

Support Vector Regression (SVR) is a machine learning algorithm suggested in line
with the Support Vector concept that was initially introduced [29,30]. SVR, as a form of
a supervised learning algorithm, aims to reduce the discrepancy between the forecasted
values and the true labels. This is achieved by identifying a hyperplane that effectively
divides the data into distinct classes. In contrast to traditional regression methods, in
which the squared error between the forecasted and true labels is reduced, with SVR, the
range between forecasted values and true labels is minimised. This makes it a more robust
algorithm, as it is not as sensitive to outliers in the data.

A primary benefit of SVR is its flexibility in dealing with complex geometries and the
transmission of data. This means that it can be used effectively even in cases where the
data are highly nonlinear or where there is noise in the data. Additionally, SVR provides
additional kernel functionality, in which the model’s capability is enhanced for forecasts by
reflecting the characteristics of features. The kernel functionality of SVR is one of its most
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significant strengths, as it allows the algorithm to convert the input data into a space with
higher dimensions, making the data more readily distinguishable.

2.4.2. Binary Decision Tree Regression

One type of supervised machine learning method involving a series of binary decisions
based on attributes is known as a Binary Decision Tree [31]. Every determination results in
one of two potential outcomes: it either leads to another determination or culminates in a
forecast. Using each independent variable, the model fits the target variable in a regression
tree. The next step involves dividing the data into groups based on different values of
the independent variables. At each point, the difference between the predicted and actual
values is squared to calculate the “Sum of Squared Errors” (SSE). By comparing the SSE
across all variables, the potential separated point will be selected at the point has the lowest
SSE value. This process recurs and continues until the final output value is predicted.

2.4.3. Ensemble Tree Regression

Ensemble learning utilises the strengths of multiple weak learners and produces
models with slightly better performance than random chance. This helps in building a
strong learner with significantly enhanced predictive performance [32,33]. This approach
often leads to better performance than using individual learners. One common form of
ensemble learning is ensemble trees, which combine the forecasts of multiple decision trees
in order to generate significantly more accurate prognostic information compared with
a single decision tree. The key principle behind ensemble trees is that a strong learner is
formed from the collective strength of multiple weak learners.

Several techniques are operated to function ensemble trees, including bagging and
least-squares boosting. Bagging is used with the main goal of decreasing the discrepancy
in a decision tree. This process involves randomly drawing data points from the original
dataset with replacement, producing multiple subsets [34]. These subsets play an important
role in training a decision tree, leading to the creation of an ensemble of diverse models.
The final forecast is obtained by averaging the forecasts from each individual tree in
the ensemble, resulting in a more robust forecast compared to relying solely on a single
decision tree. On the other hand, in least-squares boosting (LSBoost),regression ensembles
are determined by optimising the fitting of a new regression model at each step based on
the dissimilarity between the observed outcome and the current ensemble’s forecast [22].
The current ensemble’s forecast is generated by combining the forecasts of all previously
grown learners. The final step involves adjusting the ensemble to decrease the overall error
in its forecasts, measured by the mean squared error. This approach is particularly effective
for regression problems.

2.4.4. Gaussian Processes for Regression

A machine learning algorithm specifically designed for regression analysis tasks is
Gaussian Process regression [35]. In contrast to other regression methods that estimate
the parameters of a specific function, Gaussian Process regression distinguishes itself by
its ability to calculate the probability distribution over all possible functions, providing a
more flexible and data-driven approach to modelling complex relationships. For Gaussian
processes, there is a wide variety of available kernel functions including the following:

• Squared Exponential Kernel:

k
(
ai, aj

∣∣β) = τ2
f exp

[
−1

2

(
αi − αj

)T(
αi − αj

)
τ2

l

]
(2)

where ai and aj are n-dimensional input vectors, β represents the kernel parameters, τ2
f is

the signal standard deviation, which controls the overall scale of the function’s output, τ2
l

is characteristic length scale, which controls the smoothness and influence of distant points,
and

(
αi − αj

)2(
αi − αj

)
is squared Euclidean distance between ai and aj.
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• Exponential Kernel:

k
(
ai, aj

∣∣β) = τ2
f exp

(
− c

τl

)
(3)

where
c =

√(
αi − αj

)2(
αi − αj

)
(4)

• Matern 3/2:

k
(
ai, aj

∣∣β) = τ2
f

(
1 +

√
3 c
τl

)
exp

(
−
√

3 c
τl

)
(5)

• Matern 5/2:

k
(
ai, aj

∣∣β) = τ2
f

(
1 +

√
5 c
τl

+
5 c2

3 τ2
l

)
exp

(
−
√

5 c
τl

)
(6)

• Rational Quadratic Kernel:

k
(
ai, aj

∣∣β) = τ2
f

(
1 +

c2

2γτ2
l

)−γ

(7)

where γ represents a positive-valued scale-mixture parameter.
Gaussian Process regression is a non-parametric regression method, meaning it makes

no assumptions about the shape or form of the underlying function. Instead, the relation-
ship between the input and output variables is modelled as a distribution of functions.

2.4.5. Linear Regression

Linear regression is a parametric statistical method for modelling the linear rela-
tionship between a single continuous dependent variable and one or more independent
variables, also known as explanatory variables [36]. This approach involves constructing a
linear predictor function, which estimates the dependent variable’s value based on the inde-
pendent variables’ values. This method aims to find the straight line that best represents the
data points, revealing the underlying relationship between the variables. This relationship
is explained by the linear predictor function in a mathematical formula [36]. This function
is represented as a straight line in a two-dimensional graph, where the variable whose
value is predicted (dependent variable) is positioned on the y-axis, while the variable(s)
used for prediction (independent variable(s)) are positioned on the x-axis. The strength of
the relationship is represented by the slope of the line, and the y-intercept clarifies what the
dependent variable would be if the independent variable(s) were zero.

Linear regression models can be fitted using a variety of approaches, but the most
common method is the least-squares approach. This method aims to find the best fit by
minimising the total error between the forecasted and real values of the dependent variable.

2.5. Performance Evaluation

The predictive performance of various algorithms for estimating the ROM of the trunk,
hip, and knee was assessed using a 10-fold cross-validation approach on the training data.
This technique involved dividing the training set into 10 equal parts, training each algorithm
on a combination of 9 parts, and evaluating its prediction accuracy on the remaining part.
Performance analysis for a regression model involves evaluating the accuracy and reliability
of the model’s predictions. There are a few common ways to evaluate a regression model:
mean absolute error, R2, and root mean squared error.
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2.5.1. Mean Absolute Error (MAE)

A popular metric for assessing a regression model’s performance is the mean absolute
error (MAE). This metric measures and calculates the average of the absolute dissimilarity be-
tween the outcomes forecasted by the regression machine learning and the actual observation.

MAR =
1
m

× ∑
∣∣∣ypred − ytrue

∣∣∣ (8)

where ypred is the forecasted output, ytrue is the real observation, m is the number of
observations, and Σ is the sum of all observations.

The MAE shows how far off the predictions are on average. It is useful for models
where the absolute error is more important than the squared error and is not sensitive to
outliers, in contrast to the RMSE. A lower MAE indicates a finer fit of the model to the data,
meaning the forecasted outcomes are closer to the real observations on average.

2.5.2. R-Squared (R2)

In regression analysis, R2, or the coefficient of determination, is a key metric imple-
mented to measure the percentage of the discrepancy in the dependent variable, which
can be justified by the independent variables. This provides valuable insights into the
model’s capability to capture the connection between the input and output variables. R2

values, ranging from 0 to 1, represent the proportion of the explained discrepancy to the
total discrepancy in the dependent variable in a regression model. A value of 1 signifies a
perfect fit, meaning the independent variables completely explain the discrepancy in the
dependent variable, while a value of 0 signals that the regression machine learning offers
no explanatory power beyond the mean. This is commonly explained as the percentage
of the sum of the variation in the dependent variable that the model explains. R2 is often
used as a performance metric for regression models, with higher values indicating better
model performance.

2.5.3. Root Mean Squared Error (RMSE)

Root mean squared error (RMSE) is another performance metric frequently utilised
in regression machine learning tasks to assess the correctness of a model. It achieves
this by first determining the squared difference between each predicted value and its
corresponding actual value, averaging these squared differences, and then taking the
square root of the mean.

MAR =

√
1
m

× ∑
(

ypred − ytrue)2 (9)

where ytrue represents the real observations, ypred represents the forecasted outputs, and m
is the number of observations.

The RMSE measures the average magnitude of forecast errors, with lower values
signifying better performance. This metric uses the same units as the target variable,
enabling straightforward interpretation and comparison of different model capabilities.

3. Results

Eight-hundred and sixty-four data points were included in this study. This dataset
was broken into two sets: the training set (n = 692) and the testing set (n = 172). The
demographics of the study participants are summarised in Table 1 [26].

Figures 2–4 present a detailed comparison of the performance achieved by different
forecast algorithms for trunk, hip, and knee movements in the training dataset.
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Table 1. Description of participant demographics.

Variables (Units) Mean (SD)

Age (years) 45.9 (11.4)
Height (cm) 174.1 (9.8)
Weight (kg) 80.9 (17.5)

BMI (m/kg2) 26.7 (5.9)
Pain level (VAS out of 100) 52.5 (17.8)
Duration of pain (months) 60.1 (83.1)

ODI (%) 37.2 (11.2)
PSEQ (out of 60) 44.0 (10.0)

BMI = body mass index; ODI = Oswestry Disability Index; PSEQ = pain self-efficacy questionnaire. VAS = visual
analogue scale. SD = standard deviation.
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Figure 2. Summary of the performance results for several regression machine learning algorithms
utilised to forecast trunk movement in the training set.
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Figure 3. Summary of the performance results for several regression machine learning algorithms
utilised to forecast hip movement in the training set.
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Figure 4. Summary of the performance results for several regression machine learning algorithms
utilised to forecast knee movement in the training set.

For the trunk, hip, and knee regression model, based on the R2, for the training
set, Linear SVR, Polynomial SVR, and linear regression provided a low coefficient of
determination R2 (<0.6) while the other regression models presented a high coefficient of
determination R2. Hence, these regression models were not suitable for predicting the
change in trunk, hip, and knee movement.

The Ensemble Tree model (LSBoost) exhibited the optimal estimation accuracy in the
trunk regression task. This was evidenced by its significantly lower MAE (1.24 degrees) and
RMSE (1.95 degrees), coupled with its high R2 value (0.97) when compared with the other
models. In the training set, this superior performance could be attributed to the model’s
ability to achieve an almost precise fit to the data points. Linear SVR on the training dataset
showed significantly inferior performance compared with the other prediction models, as
evidenced by its considerably higher MAE (8.38 degrees) and RMSE (10.46 degrees) and
substantially lower R2 (0.11).

Similar to the trunk regression task, Ensemble Tree (LSBoost) exhibited the optimal
estimation accuracy in the hip regression task. This was demonstrated by its considerably
lower MAE (1.25 degrees) and RMSE (2.59 degrees), combined with its high R2 value (0.96).
Linear SVR on the training dataset for the hip presented significantly lower performance
compared with the other forecast regression model, as evidenced by its considerably higher
MAE (9.01 degrees) and RMSE (11.94 degrees) and substantially lower R2 (0.20).

With the training set for the knee, Ensemble Tree (LSBoost) also demonstrated optimal
prediction accuracy with its lower MAE (2.96 degrees) and RMSE (5.65 degrees), coupled with
its high R2 value (0.96) compared with the other regression model. The Linear SVR model
performed significantly worse than other models when applied to the training dataset. This
was evident from its high MAE (17.79 degrees) and RMSE (25.59 degrees) values, indicating
large average errors, and its low R2 value (0.13), signifying poor explanatory power.

The accuracy of several regression machine learning algorithms for forecasting trunk,
hip, and knee movement in the test set is shown in Figures 5–7.

It is noteworthy that most forecast regression models established remarkable accuracy
in their forecasts (high R2 values and a mean of the ROM delta close to zero) except for
Linear SVR, Polynomial SVR, and linear regression.
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Figure 5. Summary of the performance results for several regression machine learning algorithms
utilised to forecast trunk movement in the test set.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Summary of the performance results for several regression machine learning algorithms 
utilised to forecast trunk movement in the test set. 

 
Figure 6. Summary of the performance results for several regression machine learning algorithms 
utilised to forecast hip movement in the test set. 

8.
13

5

5.
12

6

7.
39

3

2.
22

9

2.
05

2

4.
34

8

2.
11

5

2.
08

8

2.
09

2.
09

5

2.
07

4

8.
13

9

10
.3

75

7.
31

9.
53

3

3.
37

2.
99

5

5.
67

7

2.
99

2

2.
96

2.
96

2

2.
97

2.
94

7

10
.2

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

Linear SVR Gaussian
SVR

Polynomial
SVR

Binary
Decision

Tree

Ensemble
Tree -

LSBoost

Ensemble
Tree - Bag

Gaussian 
Regression -

Kernel –
Squared 

Exponential

Gaussian 
Regression -

Kernel –
Exponential

Gaussian 
Regression -

Kernel –
Matern32

Gaussian 
Regression -

Kernel –
Matern52

Gaussian 
Regression -

Kernel –
Rational 

Quadratic

Linear
Regression

R2
 Sc

or
e

M
AE

/R
M

SE
 V

al
ue

 (D
eg

re
es

)

MAE RMSE R2

8.
11

8

5.
34

4

7.
51

8

2.
42

9

1.
95

5

4.
75

9

2.
03

8

2.
00

9

2.
01

7

2.
02

2.
00

9

8.
22

5

10
.7

45

7.
55

8

10
.0

9

3.
67

5

3.
09

2

6.
62

8

3.
15

2

3.
11

3.
13

3.
13

6

3.
12

10
.5

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

Linear SVR Gaussian
SVR

Polynomial
SVR

Binary
Decision

Tree

Ensemble
Tree -

LSBoost

Ensemble
Tree - Bag

Gaussian 
Regression -

Kernel –
Squared 

Exponential

Gaussian 
Regression -

Kernel –
Exponential

Gaussian 
Regression -

Kernel –
Matern32

Gaussian 
Regression -

Kernel –
Matern52

Gaussian 
Regression -

Kernel –
Rational 

Quadratic

Linear
Regression

R2
 Sc

or
e

M
AE

/R
M

SE
 V

al
ue

 (D
eg

re
es

)

MAE RMSE R2

Figure 6. Summary of the performance results for several regression machine learning algorithms
utilised to forecast hip movement in the test set.
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Figure 7. Summary of the performance results for several regression machine learning algorithms
utilised to forecast knee movement in the test set.
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For the trunk regression model, the range of the MAE was from 2.05 to 8.14 degrees.
Ensemble Tree (LSBoost) demonstrated the highest prediction accuracy in which the MAE
was 2.05 degrees, RMSE was 2.99 degrees, and R2 was 0.92 for the test dataset. Evaluation
of the testing set revealed that the performance of the Linear SVR algorithm fell short of
other forecast algorithms. This was demonstrated by its higher MAE (8.13 degrees) and
RMSE (10.37 degrees) values and its lower R2 (0.064).

For the hip regression model, the range of the MAE was from 1.955 to 9.23 degrees.
Ensemble Tree (LSBoost) also presented the highest prediction accuracy in which the MAE
was 1.95 degrees, RMSE was 3.09 degrees, and R2 was 0.94 for the test dataset. Linear SVR
on the test dataset for the hip showed significantly lower performance compared with the
other forecast regression model, as evidenced by its considerably higher MAE (8.12 degrees)
and RMSE (10.74 degrees) and substantially lower R2 (0.26).

For the knee regression model, since the knee was more flexible (the ROM of the
knee is much larger than that of the trunk and the hip), the range of MAE was higher
than the trunk and hip, as expected (from 9.42 to 28.07 degrees). Gaussian regression with
the kernel chosen as exponential provided the optimal estimation accuracy in the knee
regression task with the test dataset. This was demonstrated by its significantly lower MAE
(6.04 degrees) and RMSE (9.42 degrees), combined with its high R2 value (0.90) compared
with the other model. Linear SVR displayed unsatisfactory performance on this testing
set. The result for Linear SVR reported a high MAE and RMSE value and a low R2 value
(MAE = 19.83 degrees, RMSE = 28.07 degrees, R2 = 0.109).

4. Discussion

The application of regression machine learning in healthcare has seen significant
growth in recent years, with its use extending to various areas such as disease diagnosis,
prognosis prediction, and treatment recommendation. A thorough review of the existing
literature revealed that no prior research has investigated the application of regression
machine learning specifically for estimating the lifting movements in people with LBP after
a course of treatment. By leveraging the power of regression machine learning, which
has demonstrated its efficacy in various healthcare domains, we aim to provide valuable
insights into the predictive capabilities of these models for ROM changes in different joint
segments. These models can be valuable tools for evaluating health status, identifying
potential clinical issues, assessing the risk of musculoskeletal impairments in individuals,
or offering clinicians and researchers a reliable tool for evaluating treatment outcomes and
tailoring interventions to optimise patient outcomes. In contrast to the current technology,
which lacks the ability to discern how movement during the lifting task may change after
different training methods, the predicted values enable the clinic to potentially understand
where the target range of motion can be achieved using various training methods. This
guides clinicians in selecting the appropriate treatment for the patient. Motivated by the
critical role of the trunk, hip, and knee ROM in lifting tasks, the primary objective of
this study was to identify the most effective algorithms for forecasting these movement
parameters in individuals with LBP following a course of treatment.

In this study, a total of twelve regression models, both linear and nonlinear, were
assessed. In a previous research study, which focused on predicting brain age using
various existing regression machine learning algorithms, the results indicated that the
Quadratic Support Vector Regression algorithm performed the best, while the Binary
Decision Tree algorithm provided the worst predictions [22]. In contrast, our research
findings suggest that the Ensemble Tree (LSBoost) and Gaussian regression with Kernel
(chosen as Exponential) returned the highest prediction accuracy for trunk, hip, and knee
movements on the test set. Surprisingly, the Binary Decision Tree algorithm exhibited high
accuracy in trunk, hip, and knee movements, in contrast to its performance in predicting
brain age, where it yielded the lowest accuracy. These results suggest that the optimal
choice of a regression algorithm can vary significantly depending on the specific application
domain. For our study, the linear regression models examined were linear regression and
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Linear Support Vector Regression (SVR). On the other hand, the nonlinear regression
methods encompass SVR with Polynomial and Gaussian kernels, Ensemble Trees, Binary
Decision Tree, and Gaussian regression. The analysis of the regression models revealed that
linear regression models had the highest error rate compared with the other methods. This
outcome suggests that a linear relationship may not adequately capture the underlying
trend in the data. Its weak performance implies that the relationship between these variables
is likely more complex and nonlinear. Upon evaluating the various regression models, it
was observed that both Gaussian SVR and Polynomial SVR yielded similarly poor results
as linear regression. It is evident that the change in the trunk, hip, and knee ROM after a
course of treatment does not conform to a simple linear or polynomial relationship.

In the analysis of the trunk, hip, and knee models, it was observed that the Gaussian re-
gression model consistently exhibited similar performance across different kernel functions.
This implies that the choice of kernel function did not significantly impact the predictive
capabilities of the Gaussian regression model for these particular models. The stable and
consistent performance of the Gaussian regression model across various kernel functions
suggests that it possesses inherent robustness and adaptability in capturing the underlying
relationships between the predictor variables and the ROM outcomes for the trunk, hip,
and knee. This finding highlights the versatility of the Gaussian regression model and its
ability to provide reliable predictions regardless of the specific kernel function utilised.
In some previous studies, Gaussian regression showed similar positive results in other
applications, such as developing forecasts of upper limb rehabilitation success for brain
injury survivors based on clinical and wearable sensor data [37] and predicting atomic
energies and multipole moments [38].

The results of the regression models also revealed that the MAE for the knee model
was higher than that for the trunk and hip models. Given the diverse age range of the par-
ticipants, even though it falls within the “adult” age range, this variability could potentially
be a correlation factor. However, we conducted a further analysis to explore whether age
correlates with the high MAE for the knee model. Examining the MAE values from the best
regression model for the knee in the testing set (Gaussian regression with the kernel chosen
as exponential) and age, we identified that there appears to be no correlation between age
and the MAE of the knee, as the MAE values were high across all age groups. Figure 8
outlines the MAE values for the knee regression model and the age of the participants.
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Figure 8. Summary of the comparison between the MAE values for the Gaussian regression with the
kernel chosen as exponential and the age of participants.

The box plots for the ROM delta (the actual ROM subtracted from the predicted ROM)
for the trunk, hip, and knee between the various regression models over the testing set are
visualised in Figures 9–11, respectively. The labels on the box plots are related to the serial
numbers (S.Nos) of the regression machine learning listed in Figures 2–7. The box plots
show that the test set’s ROM delta is almost zero for the trunk, hip, and knee. However, the
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interquartile range (IQR) was slightly larger in the Linear SVR, Gaussian SVR, Polynomial
SVR, Ensemble Tree (Bag), and linear regression models for the trunk, hip, and knee.
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Based on the box plots, we can observe the presence of outliers in both cases. For the
best trunk model (Ensemble Tree (LSBoost)), the number of outliers is seven (around 4.1%).
For the best hip model (Ensemble Tree (LSBoost)), the number of outliers is 16 (around
9.3%). For the best knee model (Gaussian regression (kernel—exponential)), the number of
outliers is 14 (around 8.1%). These outliers can be attributed to the fact that participants
transitioned to a completely different lifting technique after the 12 weeks of treatment,
which significantly deviates from their previous lifting technique. On the other hand, this
also means that after 12 weeks of treatments, the regression machine learning suggests that
there is a 5% chance that participants will significantly change their movement pattern in
the trunk, 10% in the trunk, and 9% in the knee. Additionally, regarding the regression for
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trunk, hip, and knee movements, the variation between the forecasted and real values is
quite minimal, with a difference of less than 5 degrees. This implies that the regression
model effectively forecasts the alteration of movements after 12 weeks of treatment in most
situations. By combining the regression machine learning model for the trunk, hip and
knee, a real-time prediction model can be constructed. The proposed structure of the real
time model is presented in Figure 12.
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One of the limitations of this study is that the experiment solely focused on measuring
the trunk, hip, and knee ROM in the sagittal plane, neglecting movements in the coronal
and axial planes. Although alternative approaches could have been considered, the chosen
method remained appropriate as the symmetrical lifting task largely involved movement
within the sagittal plane, focusing primarily on the lumbar spine, hip, and knee. Future
research is recommended to investigate regression models that incorporate the ROM of
these joints in all planes to gain a more comprehensive understanding. This innovative
approach holds promise for guiding more informed assessments and targeted rehabilitation
strategies for individuals with LBP. Future clinical trials are needed to fully validate its
effectiveness in real-world settings. Authors should engage in a comprehensive discussion
that examines the results in relation to the existing literature, the initial research hypotheses,
and their broader implications for the field. This discussion should encompass the full scope
of the findings and their potential applications, outlining promising directions for future
research. Finally, the regression machine learning model failed to achieve 100% prediction
accuracy for changes in movement patterns following the treatment in this study, suggesting
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potential limitations in its ability to perfectly capture the underlying relationships between
variables. To gain a deeper understanding of this group and its unique characteristics,
additional research should be undertaken. Exploring potential factors contributing to
the unexplained variance could uncover valuable insights and help refine the predictive
model for more accurate assessments in future studies. Alternatively, in future research,
researchers can aim to explore the transition from the ROM of trunk, hip and knee data to
image data extraction using a similar motion analysis system equipped with 12 cameras.
Adopting this approach can harness the capabilities of deep learning models, specifically
Convolutional Neural Networks (CNNs), for a more nuanced understanding of motion
patterns. This shift holds the potential to elevate the precision and depth of the analysis,
paving the way for enhanced insights into motion dynamics.

5. Conclusions

Based on our comprehensive examination of relevant scholarly publications, this
research is the earliest pilot research exploration using regression machine learning to
predict changes in trunk, hip, and knee movement after 12 weeks of strength training.
To predict trunk movement, the Ensemble Tree (LSBoost) returned the highest prediction
accuracy. The Ensemble Tree (LSBoost) returned the highest prediction accuracy for hip
movement prediction. The Gaussian regression with the kernel chosen as exponential
returned the highest prediction accuracy for knee movement. This innovative approach
offers the potential for more precise evaluation and clearer visualisation of how treatment
impacts patients with LBP.

Author Contributions: Conceptualisation, T.C.P., A.P. and R.C.; methodology, T.C.P., A.P. and R.C.;
software, T.C.P.; validation, T.C.P., A.P. and R.C.; formal analysis, T.C.P.; investigation, T.C.P., A.P., J.F.,
A.B., H.T.N. and R.C.; resources, A.P., J.F., A.B., H.T.N. and R.C.; data curation, T.C.P.; writing—original
draft preparation, T.C.P., A.P., J.F. and R.C.; writing—review and editing, T.C.P., A.P., J.F., A.B., H.T.N.
and R.C.; visualisation, A.P. and R.C.; supervision, A.P. and R.C.; project administration, T.C.P., A.P.,
H.T.N. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research acknowledged no external funding.

Institutional Review Board Statement: This study was managed in accordance with the Declaration
of Joshua and approved by the University of Melbourne Behavioural and Social Sciences Human
Ethics Sub-Committee (reference number 1749 845 and 8 August 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from the University of Melbourne and are available [from Pranata, A et al. [25]/at https://www.
sciencedirect.com/science/article/pii/S0021929018301131, (accessed on 26 July 2020)] with the
permission of the University of Melbourne.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wai, E.K.; Roffey, D.M.; Bishop, P.; Kwon, B.K.; Dagenais, S. Causal assessment of occupational lifting and low back pain: Results

of a systematic review. Spine J. 2010, 10, 554–566. [CrossRef] [PubMed]
2. Jia, N.; Zhang, M.; Zhang, H.; Ling, R.; Liu, Y.; Li, G.; Yin, Y.; Shao, H.; Zhang, H.; Qiu, B.; et al. Prevalence and risk factors

analysis for low back pain among occupational groups in key industries of China. BMC Public Health 2022, 22, 1493. [CrossRef]
3. Kingma, I.; Faber, G.S.; van Dieën, J.H. How to lift a box that is too large to fit between the knees. Ergonomics 2010, 53, 1228–1238.

[CrossRef] [PubMed]
4. van Dieën, J.H.; Hoozemans, M.J.M.; Toussaint, H.M. Stoop or squat: A review of biomechanical studies on lifting technique.

Clin. Biomech. 1999, 14, 685–696. [CrossRef]
5. Hayden, J.A.; Ellis, J.; Ogilvie, R.; Malmivaara, A.; van Tulder, M.W. Exercise therapy for chronic low back pain. Cochrane Database

Syst. Rev. 2021, 2021, CD009790. [CrossRef]
6. Ferreira, M.L.; Ferreira, P.H.; Latimer, J.; Herbert, R.D.; Hodges, P.W.; Jennings, M.D.; Maher, C.G.; Refshauge, K.M. Comparison

of general exercise, motor control exercise and spinal manipulative therapy for chronic low back pain: A randomized trial. Pain
2007, 131, 31–37. [CrossRef]

https://www.sciencedirect.com/science/article/pii/S0021929018301131
https://www.sciencedirect.com/science/article/pii/S0021929018301131
https://doi.org/10.1016/j.spinee.2010.03.033
https://www.ncbi.nlm.nih.gov/pubmed/20494816
https://doi.org/10.1186/s12889-022-13730-8
https://doi.org/10.1080/00140139.2010.512983
https://www.ncbi.nlm.nih.gov/pubmed/20865606
https://doi.org/10.1016/S0268-0033(99)00031-5
https://doi.org/10.1002/14651858.CD009790
https://doi.org/10.1016/j.pain.2006.12.008


Sensors 2024, 24, 1337 16 of 17

7. Phan, T.C.; Pranata, A.; Farragher, J.; Bryant, A.; Nguyen, H.T.; Chai, R. Machine Learning Derived Lifting Techniques and Pain
Self-Efficacy in People with Chronic Low Back Pain. Sensors 2022, 22, 6694. [CrossRef]

8. El-Bouri, R.; Taylor, T.; Youssef, A.; Zhu, T.; Clifton, D.A. Machine learning in patient flow: A review. Prog. Biomed. Eng. 2021,
3, 022002. [CrossRef]

9. Salman, K.; Sonuç, E. Thyroid Disease Classification Using Machine Learning Algorithms. J. Phys. Conf. Ser. 2021, 1963, 12140.
[CrossRef]

10. Krupp, L.; Wiede, C.; Friedhoff, J.; Grabmaier, A. Explainable Remaining Tool Life Prediction for Individualized Production
Using Automated Machine Learning. Sensors 2023, 23, 8523. [CrossRef]

11. Giamarelos, N.; Papadimitrakis, M.; Stogiannos, M.; Zois, E.N.; Livanos, N.-A.I.; Alexandridis, A. A Machine Learning Model
Ensemble for Mixed Power Load Forecasting across Multiple Time Horizons. Sensors 2023, 23, 5436. [CrossRef]

12. Parray, I.R.; Khurana, S.S.; Kumar, M.; Altalbe, A.A. Time series data analysis of stock price movement using machine learning
techniques. Soft Comput. 2020, 24, 16509–16517. [CrossRef]

13. Stonnington, C.M.; Chu, C.; Klöppel, S.; Jack, C.R.; Ashburner, J.; Frackowiak, R.S.J. Predicting clinical scores from magnetic
resonance scans in Alzheimer’s disease. NeuroImage 2010, 51, 1405–1413. [CrossRef]

14. Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation
from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2557–2570.
[CrossRef]

15. Shmuel, A.; Heifetz, E. Developing novel machine-learning-based fire weather indices. Mach. Learn. Sci. Technol. 2023, 4, 15029.
[CrossRef]

16. Fabregat, R.; van Gerwen, P.; Haeberle, M.; Eisenbrand, F.; Corminboeuf, C. Metric learning for kernel ridge regression:
Assessment of molecular similarity. Mach. Learn. Sci. Technol. 2022, 3, 35015. [CrossRef]

17. Sarker, I.H. Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications
Perspective. SN Comput. Sci. 2021, 2, 377. [CrossRef] [PubMed]

18. Baturynska, I.; Martinsen, K. Prediction of geometry deviations in additive manufactured parts: Comparison of linear regression
with machine learning algorithms. J. Intell. Manuf. 2021, 32, 179–200. [CrossRef]

19. Zhang, Z.; Yang, X. Freeway Traffic Speed Estimation by Regression Machine-Learning Techniques Using Probe Vehicle and
Sensor Detector Data. J. Transp. Eng. Part A 2020, 146, 04020138. [CrossRef]

20. Antunes, L.M.; Butler, K.T.; Grau-Crespo, R. Predicting thermoelectric transport properties from composition with attention-based
deep learning. Mach. Learn. Sci. Technol. 2023, 4, 15037. [CrossRef]

21. Shim, J.-G.; Ryu, K.-H.; Cho, E.-A.; Ahn, J.H.; Kim, H.K.; Lee, Y.-J.; Lee, S.H. Machine Learning Approaches to Predict Chronic
Lower Back Pain in People Aged over 50 Years. Medicina 2021, 57, 1230. [CrossRef]

22. Beheshti, I.; Ganaie, M.A.; Paliwal, V.; Rastogi, A.; Razzak, I.; Tanveer, M. Predicting Brain Age Using Machine Learning
Algorithms: A Comprehensive Evaluation. IEEE J. Biomed. Health Inform. 2022, 26, 1432–1440. [CrossRef]

23. Shenoy, P.; Harugeri, A. Elderly patients’ participation in clinical trials. Perspect. Clin. Res. 2015, 6, 184–189. [CrossRef]
24. Nicholas, M.K. The pain self-efficacy questionnaire: Taking pain into account. Eur. J. Pain 2005, 11, 153–163. [CrossRef]
25. Pranata, A.; Perraton, L.; El-Ansary, D.; Clark, R.; Mentiplay, B.; Fortin, K.; Long, B.; Brandham, R.; Bryant, A.L. Trunk and lower

limb coordination during lifting in people with and without chronic low back pain. J. Biomech. 2018, 71, 257–263. [CrossRef]
[PubMed]

26. Farragher, J.B.; Pranata, A.; Williams, G.; El-Ansary, D.; Parry, S.M.; Kasza, J.; Bryant, A. Effects of lumbar extensor muscle
strengthening and neuromuscular control retraining on disability in patients with chronic low back pain: A protocol for a
randomised controlled trial. BMJ Open 2019, 9, e028259. [CrossRef] [PubMed]

27. Silvetti, A.; Mari, S.; Ranavolo, A.; Forzano, F.; Iavicoli, S.; Conte, C.; Draicchio, F. Kinematic and electromyographic assessment
of manual handling on a supermarket green- grocery shelf. Work 2015, 51, 261–271. [CrossRef]

28. Burgess-Limerick, R.; Abernethy, B.; Neal, R.J.; Kippers, V. Self-Selected Manual Lifting Technique: Functional Consequences of
the Interjoint Coordination. Hum. Factors 1995, 37, 395–411. [CrossRef] [PubMed]

29. Drucker, H.; Burges, C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process Syst.
1997, 28, 779–784.

30. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
31. Breiman, L.; Freidman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall: Boca Raton, FL, USA, 2017.
32. Ren, Y.; Zhang, L.; Suganthan, P.N. Ensemble Classification and Regression-Recent Developments, Applications and Future

Directions. IEEE Comput. Intell. Mag. 2016, 11, 41–53. [CrossRef]
33. Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,

115, 105151. [CrossRef]
34. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
35. Rasmussen, C.E. Gaussian Processes in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–71.
36. Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends

2020, 1, 140–147. [CrossRef]

https://doi.org/10.3390/s22176694
https://doi.org/10.1088/2516-1091/abddc5
https://doi.org/10.1088/1742-6596/1963/1/012140
https://doi.org/10.3390/s23208523
https://doi.org/10.3390/s23125436
https://doi.org/10.1007/s00500-020-04957-x
https://doi.org/10.1016/j.neuroimage.2010.03.051
https://doi.org/10.1109/TGRS.2018.2874950
https://doi.org/10.1088/2632-2153/acc008
https://doi.org/10.1088/2632-2153/ac8e4f
https://doi.org/10.1007/s42979-021-00765-8
https://www.ncbi.nlm.nih.gov/pubmed/34278328
https://doi.org/10.1007/s10845-020-01567-0
https://doi.org/10.1061/JTEPBS.0000455
https://doi.org/10.1088/2632-2153/acc4a9
https://doi.org/10.3390/medicina57111230
https://doi.org/10.1109/JBHI.2021.3083187
https://doi.org/10.4103/2229-3485.167099
https://doi.org/10.1016/j.ejpain.2005.12.008
https://doi.org/10.1016/j.jbiomech.2018.02.016
https://www.ncbi.nlm.nih.gov/pubmed/29499832
https://doi.org/10.1136/bmjopen-2018-028259
https://www.ncbi.nlm.nih.gov/pubmed/31431445
https://doi.org/10.3233/WOR-141900
https://doi.org/10.1518/001872095779064537
https://www.ncbi.nlm.nih.gov/pubmed/7642185
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/MCI.2015.2471235
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1007/BF00058655
https://doi.org/10.38094/jastt1457


Sensors 2024, 24, 1337 17 of 17

37. Lee, S.I.; Adans-Dester, C.P.; Obrien, A.T.; Vergara-Diaz, G.P.; Black-Schaffer, R.; Zafonte, R.; Dy, J.G.; Bonato, P. Predicting and
Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Trans.
Biomed. Eng. 2021, 68, 1871–1881. [CrossRef] [PubMed]

38. Burn, M.J.; Popelier, P.L.A. Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments. J. Chem.
Theory Comput. 2023, 19, 1370–1380. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TBME.2020.3027853
https://www.ncbi.nlm.nih.gov/pubmed/32997621
https://doi.org/10.1021/acs.jctc.2c00731

	Introduction 
	Materials and Methods 
	Participants 
	Data Collection 
	Pre-Processing and Feature Extraction 
	Regression Machine Learning 
	Supported Vector Machine Regression 
	Binary Decision Tree Regression 
	Ensemble Tree Regression 
	Gaussian Processes for Regression 
	Linear Regression 

	Performance Evaluation 
	Mean Absolute Error (MAE) 
	R-Squared (R2) 
	Root Mean Squared Error (RMSE) 


	Results 
	Discussion 
	Conclusions 
	References

