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Abstract: The need for efficient video coding technology is more important than ever in the current
scenario where video applications are increasing worldwide, and Internet of Things (IoT) devices
are becoming widespread. In this context, it is necessary to carefully review the recently completed
MPEG-5 Essential Video Coding (EVC) standard because the EVC Baseline profile is customized
to meet the specific requirements needed to process IoT video data in terms of low complexity.
Nevertheless, the EVC Baseline profile has a notable disadvantage. Since it is a codec composed
only of simple tools developed over 20 years, it tends to represent numerous coding artifacts. In
particular, the presence of blocking artifacts at the block boundary is regarded as a critical issue
that must be addressed. To address this, this paper proposes a post-filter using a block partitioning
information-based Convolutional Neural Network (CNN). The proposed method in the experimental
results objectively shows an approximately 0.57 dB for All-Intra (AI) and 0.37 dB for Low-Delay (LD)
improvements in each configuration by the proposed method when compared to the pre-post-filter
video, and the enhanced PSNR results in an overall bitrate reduction of 11.62% for AI and 10.91% for
LD in the Luma and Chroma components, respectively. Due to the huge improvement in the PSNR,
the proposed method significantly improved the visual quality subjectively, particularly in blocking
artifacts at the coding block boundary.

Keywords: EVC; MPEG-5; video coding standard; post-filtering; CNN

1. Introduction

The current growth in global video applications, driven by consumer desire for high-
quality experiences, has expanded the relevance of devices dramatically [1]. This spike has
resulted in a significant increase in frame rates per second to support natural motion, lead-
ing to an increase in video content capacity. According to Cisco statistics [2], video-related
traffic accounts for around 80% of overall Internet traffic, highlighting the widespread
relationship between data transmission and video content. This trend is not confined to
2D movies; it includes 3D videos, volumetric stereoscopic images, 360-degree videos, and
VR/AR material, all of which require more data capacity [3].

At the same time, the increase in Internet of Things (IoT) systems has increased the
need for effective video coding technology [4]. The significant growth of video data in
IoT systems pursues dedicated coding and processing methods. As these systems focus
on local data processing for intelligent sensor nodes, the importance of minimizing data
volume while ensuring high-quality decoded images becomes important [5]. Thus, video
coding technology has importance in nodes that extend beyond traditionally used areas,
including small edge units of computing.

Traditionally, video compression technology has been developed through standards
created by organizations such as the ISO/IEC Moving Picture Experiences Group (MPEG) and
ITU-T Video Coding Experiences Group (VCEG). Standards such as MPEG-2/H.262 [6], Ad-
vanced Video Coding (AVC)/H.264 [7], and High Efficiency Video Coding (HEVC)/H.265 [8]
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have contributed significantly to the efficient compression and transmission of video data.
Recently, new video coding standards such as Versatile Video Coding (VVC)/H.266 [9] and
MPEG-5 Essential Video Coding (EVC) [10] have been introduced. While VVC/H.266 was
developed jointly by the MPEG and VCEG, EVC is a product exclusively for the MPEG.

In this context of the growth of video data in IoT systems, it is necessary to carefully
review the completed EVC standard. In particular, the EVC Baseline profile is customized
to meet the specific needs of handling IoT video data. Since this profile aims to build a
royalty-free codec using conventional coding techniques that are more than 20 years old,
focusing only on performing key functions, avoiding the integration of complex tools,
results in high-performance compression even at a low complexity [11]. Therefore, it is
believed that the EVC Baseline profile proves to be a proper video codec for sensor node
networks that require high-performance compression while operating at low power and
complexity, and it is expected to play a pivotal role in addressing the growing need for
high performance within the IoT ecosystem.

However, the EVC Baseline has a notable drawback. Being a codec comprised solely
of simple tools developed over 20 years, it tends to exhibit numerous coding artifacts.
Specifically, the presence of blocking artifacts at the block boundaries is considered a critical
issue that needs resolution. To address this, a post-filter leveraging block partitioning
information-based Convolutional Neural Network (CNN) is introduced in this paper. The
proposed filter aims to rectify the challenges associated with the EVC Baseline profile, char-
acterized by a high occurrence of coding artifacts. The proposed post-filter seeks to provide
a high-efficiency compression performance and enhanced image quality, making it suitable
for node sensor networks with low-complexity requirements. The main contributions of
this study can be summarized as follows:

(1) A CNN-based post-filter for the EVC Baseline profile was developed, offering a
promising video coding solution for IoT devices.

(2) An analysis of the major artifacts in the EVC Baseline profile was conducted, and a
method indicating the area where these artifacts appear was exploited.

(3) The incorporation of a guide map based on blocking partitioning information was
implemented to identify attention areas and enhance visual quality in the target image
and video.

(4) Consideration was given to IoT applications with low complexity, allowing IoT de-
vices to selectively add the post-filter based on the available extra computing power.

(5) A scenario-based CNN-based post-processing network was developed for real IoT
applications, whether in image-based or real-time broadcasting/streaming services.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the EVC Baseline profile, related works of CNN-based filtering technologies, and standard
activity. The proposed method is presented in Section 3. Section 4 provides an overall
performance evaluation and analysis. Finally, Section 5 concludes this paper.

2. Related Work

To examine the relevant work of the proposed method, this section initially offers
background information on EVC Baseline profiles. Following that, it explores CNN-based
filtering for video coding, encompassing both in-loop filtering and out-loop filtering. Finally,
it will outline the recent developments in standards for neural network-based video coding
at the Joint Video Exploration Team (JVET), a collaboration between the MPEG and ITU-T.

2.1. Overview of EVC Baseline Profile

The block structure of the EVC Baseline profile is based on a partitioning method
that supports quadtree division based on 64 × 64 blocks. The maximum block size of the
coding unit is 64 × 64 and the minimum size is 4 × 4. For intra prediction, the process is
performed based on the coding unit block, incorporating five supported prediction modes.
The intra prediction supported by the Baseline profile would be impossible to accurately
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predict direction, but the major intra directionality can be predicted, thereby reducing the
redundancy of directional information within a frame.

The residual value generated in the prediction process is converted into a frequency
value through Discrete Cosine Transform (DCT), and the converted coefficient value is
converted into a quantized coefficient value through a quantization process. The size
of the transformation aligns with the size of the prediction block, and a process with a
quantization parameter (QP) in the range of 0 to 51 is used for quantization. After the
quantization process, the quantized coefficient values are scanned through a zigzag scan
order and are then binarized through a basic run-level coding method, and the binarized
values are streamed to the entropy coding engine as described in JPEG Annex D [12]. In
the case of the filtering tool in the Baseline profile, an initial version of the deblocking filter
in AVC/H.264 was applied to improve the objective and subjective image quality. The
method is the same as that applied to H.263 Annex J [13].

For the EVC Baseline profile, it has been reported that it achieves approximately
30% bit savings in the objective evaluation and about 40% in the subjective evaluation
compared to AVC/H.264, which is widely utilized on the Internet, while maintaining the
same quality [14]. Moreover, in terms of complexity, it exhibits one-fourth of the algorithmic
complexity when compared to AVC/H.264, making it a promising candidate as an optimal
compression codec for next-generation sensor nodes [15].

2.2. CNN-Based Filtering Technologies for Video Coding

To improve coding artifacts during the encoding and decoding process, the latest
video coding standard comes equipped with an in-loop filter designed. In the case of
the VVC/H.266 standard, it incorporates three traditional in-loop filters: Deblocking
Filter (DBF), Sample Adaptive Offset (SAO), and Adaptive Loop Filter (ALF). These filters
are sequentially applied to the reconstructed frames. The DBF focuses on suppressing
blocking artifacts at the block boundaries, while the SAO filter and the ALF aim to eliminate
artifacts resulting from quantization. Despite the effectiveness of these filters, there is still
considerable room for improvement in terms of visual quality.

Recently, developments have seen an active pursuit of research aimed at minimizing
video coding artifacts using neural networks. That research focuses primarily on two
aspects: (1) the design of a filter using a neural network for an in-loop filtering method
applicable within the codec, similar to the DBF, SAO, and ALF, and (2) the investigation of
a post-filter method that can be selectively applied outside the codec as needed.

Park et al. [16] introduced a CNN-based In-Loop Filter (IFCNN) capable of replacing
the SAO in HEVC/H.265, and the proposed IFCNN showed a promising coding perfor-
mance on Bjontegaard Delta bitrate (BD-BR) [17], with reductions of 2.6% and 2.8% for the
Random-Access (RA) and Low-Delay (LD) configurations, respectively. Dai et al. proposed
a Variable Filter Size Residual Learning Convolutional Neural Network (VRCNN) [18],
designed to replace conventional filters in HEVC/H.265, such as the DBF and SAO, in
HEVC/H.265. The proposed method in [18] utilized the variable block size of transform
in HEVC/H.265; thus, residual learning led to faster convergence. According to [18], the
VRCNN reduced the BD-BR by an average of 4.6% in the All-Intra (AI) configuration.
Similar to the motivation of earlier methods, Kang et al. introduced a multi-scale CNN
(MMS-net) [19] that could replace the DBF and SAO in HEVC/H.265 by utilizing skip
connections with different scales from subnetworks to enhance the restoration process. The
proposed MMS-net’s performance on the BD-BR showed a reduction of 8.5% for the AI
configuration. Wang et al. [20] proposed an attention-based dual-scale CNN (ADCNN),
which utilized the encoding information, such as the QP and partitioning information,
and the proposed ADCNN’s performance on the BD-BR showed reductions of 6.5% and
2.8% for the AI and RA configurations, respectively. The residual highway CNN (RHCNN)
in [21] utilized residual units with a progressive training scheme for the QP bands, and
the proposed RHCNN’s performance on the BD-BR showed reductions of 5.7%, 4.4%,
and 5.7% for the AI, RA, and LD configurations, respectively. Similar to the approach
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of [21], Wang et al. [22] applied a neural network-based in-loop filter (CNNLF) in the
conventional video coding framework in VVC/H.266 by conducting the modules of fea-
ture extraction and image quality enhancement. Compared with VTM-15.0, the proposed
CNNLF improved the PSNR by 0.4 dB and 0.8 dB at 0.1 Mbps, respectively, and by 0.2 dB
and 0.5 dB at 1 Mbps, respectively. Huang et al. [23] also added the CNN-based network
to the conventional video coding framework specifically between the DBF and SAO in
VVC/H.266. The proposed method based on a variable CNN utilized an attention module
into a residual block to extract informative features, and the proposed method in [23]
showed reductions of 3.6%, 3.6%, and 4.2% in performance on the BD-BR for the AI, RA,
and LD configurations, respectively.

The purpose for post-filtering approaches is similar to that of in-loop filtering; how-
ever, it is used outside of the codec architecture. Thus, CNN-based post-filtering algorithms
can be selectively applied to decoded images to improve visual quality. Dong et al. [24] in-
troduced a CNN-based artifact removal method (AR-CNN) designed for JPEG compressed
images, which was an extension of the super-resolution CNN (SRCNN) from previous
studies. The results presented in [24] demonstrated a 1 dB improvement achieved by the
proposed AR-CNN when compared to JPEG images. Li et al. [25] presented a method
employing a twenty-layer CNN architecture with residual learning. An interesting aspect
of the method proposed in [25] involved transmitting side information related to video
content complexity and quality indicators from the encoder to the decoder at each frame.
The performance of the method, as reported in [25], demonstrated a 1.6% BD-BR reduction
compared with HEVC/H.265 on the six sequences given in the 2017 ICIP Grand Challenge.
Zhang et al. [26] introduced a post-processing architecture based on a CNN for VVC/H.266
compressed video sequences. This architecture utilized 16 identical residual blocks and
incorporated three types of skip connections, and it was reported that the proposed method
in [26] showed a reduction of 3.9% in performance on the BD-BR for the RA configuration
compared to VVC/H.266. The authors extended the [26] method, incorporating a genera-
tive adversarial network (GAN)-based training strategy to improve the visual quality of
VVC/H.266-decoded images. The proposed method in [27] showed a notable enhancement
in perceptual visual quality, achieving a reduction of 3.9% in performance on the BD-BR
for the RA configuration compared to VVC/H.266. Bonnineau et al. [28] introduced a
multitask learning-based approach that employed a QP map to generalize the model with
various QPs by sharing parameters within a single network and task-specific modules. The
method presented in [28] exhibited a significant improvement in perceptual visual quality,
achieving a reduction of 2.8% in performance on the BD-BR for the RA configuration
compared to VVC/H.266. Wang et al. [29] aimed to enhance the visual quality of decoded
images by incorporating partitioning information with QP information, introducing a
three-branch network. The method described in [29] demonstrated a notable improvement
in perceptual visual quality, achieving a reduction of 6.5% in performance on the BD-BR
for the AI configuration compared to VVC/H.266. Meng et al. [30] presented a network
for enhancing visual quality, combining temporal motion and spatial information through
a fusion subnet and an enhancement subnet. The approach outlined in [30] showed a
significant improvement in perceptual visual quality, achieving a 0.29 dB enhancement
compared to VVC/H.266-decoded images.

2.3. Neural Network-Based Video Coding

Meanwhile, various applications have recently explored the advancement in neural
network (NN) technology. For instance, machine learning is leveraged in natural language
processing and computer vision to overcome performance barriers. This trend is also
making an impact on the development of video coding. The JVET is actively monitoring
the adoption of NN technology and has initiated research into Neural Network-based
Video Coding (NNVC) [31]. During the 130th MPEG meeting and 19th JVET meeting, two
independent Ad Hoc Groups (AHGs) related to NNVC were formed, both focusing on the
development of (1) an end-to-end (E2E) video coding framework and (2) the integration of
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NN in a hybrid video coding framework. Subsequently, these two AHGs were consolidated
under the JVET, with the merged group tasked with assessing the feasibility of NNVC for
potential coding gains compared to traditional video coding standards based on signal
processing technology. Currently, the development of in-loop filtering mainly using neural
networks is being actively discussed in the JVET. It should be noted that in JVET activities,
the main architecture of the network is based on a res-block CNN structure. Considering
the fact that video coding generally uses a residual-based encoding/decoding approach
that relies on accurate predictions about intra/interframes, the focus for improvement is
mainly on preserving the details expressed through content distribution without changing
the DC value. Thus, this approach, using the res-block basis CNN architecture, aligns well
with the overall architecture of video coding, proving effective for in-loop filtering.

3. CNN-Based Post-Filtering with Block Partitioning Information

In the previous section, we reviewed the filtering technologies employed in conven-
tional video coding standards and the recently emerged neural network-based filtering
methods. While the future outlook for neural network-based filtering technologies appears
promising, it is acknowledged that they still present challenges in terms of complexity.
Given this context, one might argue that a post-filter, capable of adaptively enhancing
image quality as needed, is more practical than an in-loop filter, which must be consistently
applied to sensor nodes requiring fast processing with low complexity. Therefore, this
paper proposes a CNN-based post-filter for EVC, aiming to enhance the image quality and
compression rates while maintaining the constraints of low power and low complexity.

3.1. Analysis of Coding Artifacts

The EVC Baseline profile employs a quadtree-based coding structure, allowing the
utilization of blocks up to 64 × 64, as illustrated in Figure 1. This method involves
determining the optimal block size through processing from 64 × 64 to 4 × 4 in the encoder
and transmitting this information to the decoder based on the quadtree. For example,
during the decoding process, if the split flag is 0, the coding block for the process is 64 × 64.
If the split flag is 1, four additional split flags are transmitted, indicating whether the
coding block should be divided into units of 32 × 32. This process continues until the
information is transmitted down to 4 × 4, a leaf node. The size of the coding block is
determined according to the characteristics of the content, and specifically, the coding block
is determined as a large block in homogeneous areas and a small block in delicate areas.
Nevertheless, while the EVC block decision process ensures optimal rate–distortion (RD)
performance, the absence of high-performance in-loop filtering in the EVC Baseline profile
leads to the generation of significant artifacts around the block.
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Figure 1. Quadtree-based coding structure in EVC Baseline profile.

Errors in the video coding process include ringing artifacts, blocking artifacts, and
bending artifacts. Among these, the most noticeable artifact for video consumers is the
blocking artifact, primarily occurring at the block boundaries in block-based video coding.
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Specifically, in the EVC Baseline profile, the discontinuity at the block boundary is pro-
nounced, leading to a significant degradation in the image quality of the decoded image.
Figure 2 shows an example of the result of encoding by the EVC Baseline profile on QP = 37
to the RaceHorses sequence, clearly showing the prominent presence of blocking artifacts at
the block boundary. The problem is that the Baseline profile contains an excessive number
of such blocking artifacts. To address this concern, our research aims to improve the visual
quality of the decoded images produced by the EVC Baseline profile. This improvement is
accomplished by employing a block partitioning strategy within the context of CNN-based
post-filtering.
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EVC Baseline profile at the RaceHorses sequence with QP = 37.

3.2. Architecture and Network

Figure 3 depicts the overall pipeline for applying the proposed filtering in this paper.
As depicted in the figure, in the case of this proposed post-filter, a filtering process is
performed in the out-loop with the decoded image of the EVC Baseline profile. The CNN-
based post-filter takes the decoded image and the block partitioning information extracted
during the decoding process as the input and then improves the image quality by passing
it through the trained CNN model.
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The architecture in our proposed method is an extension of [32]. In the previous work,
we utilized QP map information in the context of CNN-based post-filtering targeting the
VVC/H.266 standard. In this paper, we extended this concept by integrating the block
partitioning information into CNN-based post-filtering, specifically targeted for the EVC
Baseline profile, which is suitable for video data transmission in sensor nodes. Figure 4
outlines the comprehensive network design employed in our proposed method.
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In the initial processing block, the decoded image from the EVC Baseline profile is
combined with a block partitioning map and framed. Both the decoded image from the
EVC Baseline profile and the block partitioning map operate based on YUV channels. After
concatenation, the number of input channels doubled. This package uses the decoded image
from the EVC Baseline profile as the target for improvement, and the block partitioning
map guides the areas with artifacts in the target decoded image.

The packaged video is then fed into the head block, comprising a 1 × 1 convolution
filter with 128 output channels and a Parametric Rectified Linear Unit (PReLU). The
primary function of the head block is to decrease the input dimensions for the subsequent
backbone blocks. In this head block, we configured 128 channels to generate multiple
feature representations, and the resulting 128 channels undergo the activation function (i.e.,
PReLU) to apply non-linearity to the output of the head block.

The features extracted from the head block are then directed to the backbone blocks,
which encompass multiple blocks focused on extracting features. In the fundamental
feature extraction block, a 3 × 3 convolution filter with 128 output channels and a PReLU
is employed. The 3 × 3 convolution filter plays a crucial role in extracting features from the
input and generating essential features for the subsequent layers. The 128 output channels
from the 3 × 3 convolution filter undergo the PReLU activation function, and this process
is repeated through the layers up to the final feature extraction block to ensure convergence
in the deeper layers of the network.

In the proposed method described in this paper, we utilized 16 feature blocks based
on empirical studies, but this number can be adjusted depending on the characteristics of
the input decoded image. To maintain network simplicity, we designed the backbone block
with a shape similar to the head block. While the head block primarily reduces the input
dimensions, the backbone block focuses on capturing residual features for training.

The tail block, responsible for processing the output channels from the backbone
blocks, integrates a 1 × 1 convolution filter with three output channels and employs the
Tanh activation function, replacing the PReLU. To achieve precise quality improvement, we
chose to update the residuals of the decoded image. As a result, the input decoded image
from the head block is connected to the output of the tail block through a skip connection.
The residual updates ensure that the primary values of the decoded image remain unaltered,
while enabling adjustments to the corrupted areas introduced during the encoding and
decoding processes, which represent the core objective of the proposed method.

3.3. Training

To create the training dataset, we utilized the BVI-DVC [33] dataset, comprised of
800 videos of varying resolutions ranging from 270 p to 2160 p, providing a diverse set of
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training data. Given that the BVI-DVC dataset is based on mp4 files, we converted these
files to the YUV420 format with 10-bit files for the training dataset using FFmpeg [34].
To streamline the dataset creation, we extracted 10 frames from each video, resulting in
a training dataset of 8000 frames. Ensuring uniform sizes for each Y, U, and V channel,
we upsampled the U and V channels to match the size of the Y channel. Following
the conversion, the original YUV format videos were processed through XEVE [35] and
XEVD [36] to produce decoded images in the YUV format. Subsequently, instead of utilizing
the entire image size for the training dataset, we cropped each image from the original
and decoded YUV images to a size of 256 × 256. We then randomly selected the cropped
images produced through horizontal and vertical flipping processes.

For the models in the proposed method, we generated five models corresponding
to the QP values. Standard groups, such as the MPEG and JVET, use a common test
condition (CTC) for experiments to evaluate suggested contributions, usually utilizing
four or five QP values. A QP value in a codec plays an important role in this process. An
increase in the QP results in higher distortion due to a coarser quantization step applied to
transform coefficients with a larger QP. This leads to the loss of high-frequency information
and a broader distribution range for the compensation value between the reconstructed
and original pixels. Conversely, a low QP value yields better visual quality but requires a
relatively high bitrate. Therefore, the QP number serves as a fundamental control parameter
determining the visual quality and bitrate of the video.

In the proposed method, the utilization of models dependent on the QP is a critical
aspect contributing to the generation of high-quality outputs. During the training process, we
generated five bitstreams and reconstructed YUV files, depending on the QP value, in accor-
dance with the experiments carried out by the JVET CTC [31]. Subsequently, the proposed
model was trained using these five bitstreams and reconstructed YUV files independently.
Additionally, we generated models based on different configurations as well. Acknowledging
that error characteristics vary with the QP and configuration, we developed a strategy to
customize each model to specific error characteristics. The separate models for each scenario
in the proposed approach are to ensure that the model is tailored to the specific requirements
of each scenario. For instance, the AI model is trained for image-centric applications, while
the LD model is designed for real-time broadcasting and streaming purposes. More detailed
information on the training process is available in Table 1.

Table 1. Details of the training environment.

Training dataset BVI-DVC

Videos 800 videos with 10 frames

Framework Pytorch 1.13.0

Epoch 50

Optimizer Adam optimizer with a learning rate of 10−4

Models Five models at QP22, 27, 32, 37, and 42 for AI
Five models at QP22, 27, 32, 37, and 42 for LD

Anchor encoder XEVE with Baseline profile setting

Anchor decoder XEVD with Baseline profile setting

Hardware AMD EPYC 7513 32-Core CPUs, 384 GB RAM (AMD, Santa Clara, CA,
USA), and an NVIDIA A6000 GPU (NVIDIA, Santa Clara, CA, USA).

4. Experimental Results and Discussion

To evaluate the effectiveness of the proposed method, the JVET CTC [37] sequences
were chosen for evaluation but were not included in the training dataset. These 19 sequences
were classified into classes A1, A2, B, C, and D based on their resolution with characteristics.
The test QP values for all configurations were 22, 27, 32, 37, and 42, corresponding to the
JVET CTC. Given the potential applications for the EVC Baseline profile with CNN-based
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post-filtering, which could be used for a low-complexity, low-power sense node for video
data transmission, we evaluated the proposed method using AI and LD configurations.
Table 2 contains detailed test sequences and conditions.

Table 2. Details of the testing environment.

Test dataset

Class A1(4K): Tango2, FoodMarket4, Campfire
Class A2(4K): CatRobot, DaylightRoad2, ParkRunning3
Class B(2K): MarketPlace, RitualDance, Cactus, BasketballDrive, BQTerrace
Class C(WVGA): BasketballDrill, BQMall, PartyScene, RaceHorses
Class D(WQVGA): BasketballPass, BQSquare, BlowingBubbles,
RaceHorses

Frames Full frames

Framework Pytorch

Models Five models at QP22, 27, 32, 37, and 42 for AI
Five models at QP22, 27, 32, 37, and 42 for LD

Anchor encoder XEVE with Baseline profile setting

Anchor decoder XEVD with Baseline profile setting

Hardware AMD EPYC 7513 32-Core CPUs, 384 GB RAM, and an NVIDIA
A6000 GPU.

4.1. Objective Testing Result

For the objective evaluation, the increase in the PSNR was measured at the same
bitrate of each sequence over all the QP values (i.e., BD-PSNR) [37], and the BD-BR was also
measured to check on the bitrate reduction at the same visual quality that is usually used
in standard experiments. Tables 3 and 4 present the experimental results of the proposed
method for the AI and LD configurations, comparing the decoded image of the EVC
Baseline profile to the enhanced image filtered by the CNN-based post-filter. The numbers
in the table represent the average bitrate and PSNR of the five QPs of each sequence in the
reference and proposed method.

Those metrics, the BD-PSNR and BD-BR, compare the improvement in the PSNR
and coding efficiency of different video codecs or encoding settings while taking into
consideration both the bitrate and video quality. The fundamental concept involved fitting
a cubic polynomial curve through five data points and subsequently deriving an expression
for the integral of the curve. The BD-PSNR allows for an objective assessment of PSNR
improvement by calculating the difference in the PSNR to achieve a comparable bitrate
between two codecs. In the BD-PSNR, a higher number indicates an improvement in the
PSNR over the anchor. Similarly, by measuring the difference in the bitrate needed to
attain an equivalent quality level between two distinct codecs, the BD-BR metric facilitates
an objective assessment of the compression efficiency. The lower BD-BR value signifies a
higher coding efficiency than the anchor at the same visual quality.

Table 3 shows the results of the proposed method compared to the reference in the
AI configuration. As shown in Table 3, the proposed method increases the PSNR at the
same bitrate by approximately 0.57 dB, 0.75 dB, and 0.95 dB for the Luma and Chroma
components in the AI configuration when compared to the post-filter pre-processed video.
The increased PSNR results in overall BD-BR reductions of 11.62%, 24.5%, and 28.79% for
the Luma and Chroma components, respectively, in the AI.

Table 4 shows the results of the proposed method compared to the reference in the
LD configuration. Similar results can be observed in the LD configuration. As shown in
the table, the proposed method increases the PSNR at the same bitrate by approximately
0.37 dB, 0.82 dB, and 0.95 dB for the Luma and Chroma components in the LD configuration
when compared to the post-filter pre-process video. The improved PSNR results in overall
BD-BR reductions of 10.91%, 31.22%, and 32.30% for the Luma and Chroma components,
respectively, in the LD.
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Table 3. Objective testing result of AI configuration.

Class and Sequence Bitrate
(kpbs)

Reference (dB) Proposed Method (dB) BD-PSNR (∆dB) BD-BR (∆%)

Y-PSNR U-PSNR V-PSNR Y-PSNR U-PSNR V-PSNR ∆Y-PSNR ∆U-PSNR ∆V-PSNR ∆Y-BDBR ∆U-BDBR ∆U-BDBR

A1

Tango2 62,688 38.91 46.67 44.71 39.21 47.74 45.81 0.30 1.07 1.10 −11.42 −41.06 −38.15

FoodMarket4 121,128 39.01 43.32 44.52 39.53 44.18 45.60 0.52 0.86 1.08 −12.49 −24.31 −29.93

Campfire 76,616 37.58 39.26 40.26 37.83 40.51 41.07 0.25 1.25 0.81 −6.53 −33.13 −33.41

A2

CatRobot 122,884 37.73 40.35 40.85 38.27 41.08 41.89 0.53 0.73 1.04 −14.76 −36.53 −36.67

DaylightRoad2 145,191 36.37 43.31 41.39 36.71 44.06 41.74 0.34 0.75 0.35 −11.83 −40.85 −21.43

ParkRunning3 227,250 38.12 35.40 36.45 38.61 35.61 36.66 0.49 0.21 0.21 −8.34 −5.66 −7.67

B

MarketPlace 42,551 37.16 41.66 42.46 37.54 42.43 43.15 0.38 0.78 0.69 −9.35 −29.12 −28.89

RitualDance 28,415 39.31 43.95 44.30 40.10 45.05 45.76 0.79 1.10 1.46 −15.27 −33.28 −39.10

Cactus 47,502 35.36 38.73 40.63 35.84 39.11 41.41 0.48 0.38 0.78 −12.07 −17.94 −28.80

BasketballDrive 31,843 36.65 42.18 42.70 37.09 42.29 43.31 0.43 0.11 0.61 −11.05 −5.96 −22.38

BQTerrace 80,937 34.93 40.21 42.31 35.40 40.28 42.45 0.48 0.07 0.13 −7.96 −5.23 −9.76

C

BasketballDrill 11,741 35.27 39.88 39.93 36.25 40.69 41.63 0.98 0.81 1.70 −18.24 −25.33 −40.74

BQMall 12,610 35.60 40.53 41.45 36.38 41.36 42.60 0.78 0.83 1.15 −14.26 −26.02 −32.56

PartyScene 22,222 32.96 38.21 38.81 33.45 38.75 39.45 0.49 0.54 0.64 −8.19 −14.89 −16.41

RaceHorses 7724 35.33 38.58 39.98 35.90 39.61 41.30 0.57 1.03 1.32 −11.12 −27.99 −38.47

D

BasketballPass 2895 35.85 40.78 40.28 36.67 41.92 41.68 0.81 1.14 1.39 −13.41 −28.42 −31.52

BQSquare 7108 32.98 39.71 40.52 33.75 40.15 41.38 0.77 0.44 0.86 −10.45 −12.45 −23.37

BlowingBubbles 5886 32.85 37.96 38.37 33.40 38.53 39.16 0.55 0.57 0.79 −9.57 −16.97 −21.52

RaceHorses 2352 34.74 37.99 39.01 35.63 39.64 40.93 0.89 1.65 1.93 −14.38 −40.42 −46.22

Average 0.57 0.75 0.95 −11.62 −24.50 −28.79
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Table 4. Objective testing result of LD configuration.

Class and Sequence Bitrate
(kpbs)

Reference (dB) Proposed Method (dB) BD-PSNR (∆dB) BD-BR (∆%)

Y-PSNR U-PSNR V-PSNR Y-PSNR U-PSNR V-PSNR ∆Y-PSNR ∆U-PSNR ∆V-PSNR ∆Y-BDBR ∆U-BDBR ∆U-BDBR

A1

Tango2 36.94 45.84 43.38 37.17 46.69 44.26 0.23 0.23 0.85 0.88 −8.57 −59.49 −49.19

FoodMarket4 35.95 41.03 41.92 36.19 42.28 43.40 0.25 0.25 1.26 1.48 −7.01 −63.93 −68.60

Campfire 35.49 37.26 39.01 35.74 38.11 39.68 0.25 0.25 0.85 0.67 −7.28 −27.81 −34.49

A2

CatRobot 35.28 39.50 39.56 35.61 40.18 40.48 0.33 0.33 0.69 0.93 −10.55 −56.66 −49.27

DaylightRoad2 33.97 41.81 39.97 34.16 42.75 40.67 0.19 0.19 0.94 0.70 −8.88 −71.13 −58.59

ParkRunning3 34.05 33.09 34.51 34.30 33.33 34.82 0.26 0.26 0.24 0.31 −5.86 −12.42 −17.60

B

MarketPlace 33.98 40.00 40.89 34.18 40.91 41.63 0.20 0.20 0.91 0.74 −6.59 −63.16 −56.89

RitualDance 35.71 42.31 42.43 36.14 43.36 43.72 0.43 0.43 1.05 1.29 −9.36 −51.85 −54.47

Cactus 32.71 37.87 39.64 33.05 38.38 40.37 0.34 0.34 0.50 0.73 −11.87 −48.07 −44.86

BasketballDrive 33.77 40.74 40.77 34.13 41.39 41.79 0.36 0.36 0.65 1.02 −11.47 −45.44 −48.28

BQTerrace 31.19 37.83 39.75 31.52 38.72 40.86 0.32 0.32 0.89 1.11 −13.79 −65.73 −70.76

C

BasketballDrill 31.83 37.89 37.72 32.43 39.11 39.20 0.60 0.60 1.22 1.48 −14.77 −48.76 −49.42

BQMall 31.73 38.74 39.58 32.23 39.87 40.91 0.50 0.50 1.13 1.32 −12.67 −57.01 −58.53

PartyScene 28.39 36.39 37.13 28.74 36.97 37.67 0.35 0.35 0.58 0.55 −10.83 −29.20 −26.30

RaceHorses 31.52 36.94 38.55 31.91 37.66 39.53 0.39 0.39 0.72 0.98 −10.72 −41.02 −54.39

D

BasketballPass 31.88 39.26 38.18 32.44 39.91 39.10 0.57 0.57 0.65 0.92 −12.35 −27.59 −32.37

BQSquare 27.79 38.10 38.60 28.37 38.94 39.74 0.58 0.58 0.84 1.14 −18.51 −60.08 −68.07

BlowingBubbles 28.37 35.93 36.49 28.68 36.54 37.01 0.31 0.31 0.60 0.52 −9.49 −31.72 −26.01

RaceHorses 30.77 36.34 37.35 31.31 37.36 38.65 0.54 0.54 1.03 1.30 −12.68 −44.79 −52.78

Average 0.37 0.82 0.95 −10.70 −47.68 −48.47
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The objective test results show that the proposed method significantly improved the
visual quality of the decoded images of the EVC Baseline profile, regardless of the QP or
configuration. Notably, the proposed method outperforms the AI configuration in terms of
a low resolution and high QP values. The main reason for the significant improvements
can be attributed to areas where blocking artifacts noticeably appear. Blocks in the AI
configuration typically determine the number of coding blocks with a small coding block
size; increasing the number of coding blocks results in more blocking artifacts in the block
boundary area. This phenomenon can also be applied to the output of low-resolution
sequences. Because of the high amount of quantized values for en/decoding, the artifact
can be widely visible in coding blocks regardless of the coding block size or number. As a
result, the improvements at high QP sequences would be due to an improvement in visual
quality across the entire decoded image.

4.2. Subjective Testing Result

To assess the improvement in visual quality achieved by our proposed method, indi-
vidual visual quality evaluations were conducted. Figures 5 and 6 present a comparative
analysis of the visual quality for the AI and LD configurations between the decoded image
of the EVC Baseline profile and the proposed results. The visual quality assessment was
performed at a middle QP value as QP = 32. Figure 5 illustrates the comparison results for
PartyScene with the AI configuration. The filtered image by post-filtering reveals a supe-
rior visual quality compared to the video before post-filtering, aligning with the 0.49 dB
improvement observed in the objective evaluation. Notably, the figure of the proposed
method in Figure 5 shows a further reduction in artifacts, especially in the face of the
child and around the area of the boxes. Similar results are evident in the LD configuration.
Figure 6 shows the comparison results for BQTerrace with the LD configuration. In this
figure, the filtered image by the proposed method reveals more textural detail than the
reference, especially notable in the parasol, where texture lines are clearly observed in the
proposed filtered image.
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4.3. Discussion

The experimental results of the proposed method showed both objective and subjec-
tive improvements in performance. In the objective results, the PSNR showed a significant
enhancement in both the AI and LD configurations. This PSNR improvement corresponds
to a reduced bitrate at the same image quality. Considering the historical fact of video
coding standards improving performance by about 50% every decade, achieving a 10%
enhancement with just one tool is quite impressive objectively. The subjective experimental
results also reveal a remarkable improvement in image quality. The proposed method
effectively addresses blocking artifacts, a specific target of enhancement, noticeably elimi-
nating them. Another noteworthy aspect in the subjective experiments is the preservation
of details in the original video that typically disappear due to coding artifacts. The pro-
posed method successfully restores these lost details, bringing the visual quality closer
to the original video. The significant improvement in visual quality is attributed to the
CNN-based post-filter guided by the partitioning map, which identifies areas affected
by blocking artifacts and guides the CNN model to enhance these areas in line with the
original video.

Nevertheless, it should be noted that implementing the proposed CNN-based method
involves considerable complexity, particularly when applied directly to devices within the
IoT. The decision to employ a post-filter for enhancing image quality, accounting for diverse
computing performances, aligns with the practical challenge of deploying CNN-based
filters across the spectrum of IoT devices. In this context, it is believed to be more pragmatic
to adaptively apply these filters as add-ons using post-filtering instead of in-loop filtering
when external resources are available, as illustrated in the proposed configuration.

4.4. Future Work

This paper introduced a CNN-based post-filtering method designed for the EVC
Baseline profile to address the requirements of IoT devices. While the proposed method is
specifically applied to the EVC Baseline profile, its foundational architecture, shared with
other video coding standards, suggests its potential applicability in the EVC Main profile
or diverse video codecs. The exploration of extending the method outlined in this paper to
other video codecs is considered an interesting topic for future research.

Additionally, it is noted that CNN remains an important role in enhancing the coding
performance in this paper. With NNVC in the JVET successfully employing CNN-based
deep-learning technology, a similar investigation into CNN-based filtering technology for
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the EVC Baseline profile has been conducted in the proposed method. Given the novelty of
the MPEG-5 EVC Baseline profile and the limited research on leveraging CNN as a post-
filter for this codec, exploring this aspect in conjunction with the latest machine-learning
techniques is also considered an interesting topic for future research.

5. Conclusions

In this paper, a post-filter utilizing a CNN with block partition information for the
EVC Baseline profile was proposed. As the demand for efficient video coding technology
intensifies, driven by the surge in video data from IoT devices, the EVC Baseline can
be considered as a promising solution designed to address the specific requirements of
processing IoT video data with low complexity. Nevertheless, enhancements are required
to address coding artifacts within the EVC Baseline profile. To tackle this issue, a post-
filter utilizing a CNN based on block partition information was introduced in this paper.
Through experimental results, both objective and subjective assessments showed significant
improvements in both the AI and LD configurations when compared to the pre-post-filter
video. The advancements achieved by the proposed method notably enhanced the visual
quality, especially in blocking artifacts at the boundaries. Thus, this proposed method is
expected to benefit networks of high-performance, low-complexity sensor nodes in IoT
ecosystems using the EVC Baseline profile.
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