
Citation: Wang, X.; He, X.; Zhu, X.;

Zheng, F.; Zhang, J. Lightweight and

Real-Time Infrared Image Processor

Based on FPGA. Sensors 2024, 24, 1333.

https://doi.org/10.3390/s24041333

Academic Editors: Baptiste Magnier,

Khizar Hayat, Stefano Berretti and

Jean-Baptiste Thomas

Received: 22 January 2024

Revised: 10 February 2024

Accepted: 14 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Lightweight and Real-Time Infrared Image Processor Based
on FPGA
Xiaoqing Wang 1,2 , Xiang He 3, Xiangyu Zhu 3, Fu Zheng 2 and Jingqi Zhang 3,*

1 Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology,
Beijing 100081, China

2 Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center,
Chinese Academy of Sciences, Beijing 100090, China

3 School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: zhangjq@bit.edu.cn

Abstract: This paper presents an FPGA-based lightweight and real-time infrared image processor
based on a series of hardware-oriented lightweight algorithms. The two-point correction algorithm
based on blackbody radiation is introduced to calibrate the non-uniformity of the sensor. With pre-
computed gain and offset matrices, the design can achieve real-time non-uniformity correction with a
resolution of 640 × 480. The blind pixel detection algorithm employs the first-level approximation
to simplify multiple iterative computations. The blind pixel compensation algorithm in our design
is constructed on the side-window-filtering method. The results of eight convolution kernels for
side windows are computed simultaneously to improve the processing speed. Due to the proposed
side-window-filtering-based blind pixel compensation algorithm, blind pixels can be effectively
compensated while details in the image are preserved. Before image output, we also incorporated
lightweight histogram equalization to make the processed image more easily observable to the human
eyes. The proposed lightweight infrared image processor is implemented on Xilinx XC7A100T-2. Our
proposed lightweight infrared image processor costs 10,894 LUTs, 9367 FFs, 4 BRAMs, and 5 DSP48.
Under a 50 MHz clock, the processor achieves a speed of 30 frames per second at the cost of 1800 mW.
The maximum operating frequency of our proposed processor can reach 186 MHz. Compared with
existing similar works, our proposed infrared image processor incurs minimal resource overhead
and has lower power consumption.

Keywords: infrared image processing; field programmable gate array; non-uniformity correction;
edge-preserving filtering

1. Introduction
1.1. Background

Infrared (IR) imaging technology has emerged as a cornerstone in various fields, in-
cluding but not limited to surveillance, medical diagnostics, environmental monitoring,
military and industrial applications [1–4]. Infrared sensors can absorb the incident IR
radiant flux and convert it to electrical signals [5]. The ability of infrared imaging to capture
thermal radiation invisible to the human eye has rendered it indispensable in scenarios
requiring temperature measurements, object detection in low-light conditions, and anomaly
detection [6,7]. However, the computational demands imposed by infrared image process-
ing algorithms are rather large, presenting a significant bottleneck in achieving real-time
performance, energy efficiency, and portability [8,9].

Currently, due to limitations in the resolution, signal-to-noise ratio, and other per-
formance factors of infrared detectors caused by both physical and technical constraints,
infrared images typically exhibit characteristics such as high noise, low contrast, signifi-
cant non-uniformity, and loss of detail [10]. Moreover, infrared imaging systems require

Sensors 2024, 24, 1333. https://doi.org/10.3390/s24041333 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0005-0873-0432
https://orcid.org/0000-0003-4140-7029
https://doi.org/10.3390/s24041333
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041333?type=check_update&version=1

Sensors 2024, 24, 1333 2 of 26

real-time processing and feedback, especially in practical applications like infrared target
tracking [11]. Conventional computing platforms face challenges when processing infrared
image data due to the intricacies of the algorithms involved, resulting in limitations regard-
ing computational complexity, power consumption, and portability [12]. To address these
challenges, there has been a growing trend to deploy infrared image processing algorithms
on the field-programmable gate arrays (FPGAs) platforms to enhance the imaging quality
of infrared systems [13,14].

FPGA is a reconfigurable hardware platform that enables parallel computation, flexible
configuration and optimization, and reduction of memory access latency and transfer
overhead for infrared image processing. This improves the speed, efficiency, accuracy,
stability, and real-time performance of infrared image processing [15].

1.2. Related Works

Inostroza [16] presented an embedded real-time system architecture on FPGA that
implements multimodal registration to enable dual-camera spatiotemporal feature extrac-
tion in a skin cancer screening application. The design runs at 540 frames per second
(FPS) with a 135 MHz clock and consumes 1.8 W. Rong [17] proposed an improved neural-
network-based non-uniformity correction (NUC) algorithm by the guided image filter
and the projection-based motion detection algorithm. An FPGA-based hardware design
was also introduced to realize the proposed NUC algorithm at the cost of 19,596 combina-
tional adaptive look-up tables (ALUTs) and 20,118 dedicated logic registers. The proposed
design can achieve a frame rate of more than 180 FPS. Redlich [18] presented a digital
fixed-point FPGA architecture that performs real-time non-uniformity correction using
the constant range algorithm. The architecture was implemented on XC6SLX45T with a
resolution of 640 × 480 14-bit pixels at up to 238 FPS with low resource utilization and
adds only 13 mW to the FPGA power. Njuguna [19] proposed an FPGA architecture for
two-point non-uniformity correction and bad pixel replacement. The design realizes a
maximum operating frequency of 300 MHz and consumes 4293 look-up tables (LUTs),
4261 flip-flops, 11 digital signal-processing blocks, and five block random access mem-
ories. Lielāmurs [20] proposed an approach, namely blackbody calibration, to perform
non-uniformity correction using a two-point method with a resolution of 320 × 240 at
the cost of 2159 slices on XC5VLX110. Sosnowski [21] presented an image processing
and analysis system to perform non-uniformity correction and bad pixel mapping. The
design was implemented on EP2C35F672, consuming 33,216 logic elements, 483,840 bits
of memory, and 35 embedded hardware multipliers. Bieszczad [22] presented a digital
processing system design with state-of-the-art SoC-FPGA using a Cortex-A9 processor
embedded in Altera FPGA 5CSEMA5F31C6N. The system comprises two detector arrays
integrated with continuously rotating polarizers, achieving frame rates that span from 12 to
46 frames per second. Tasu [23] proposed a high-performance compensation algorithm with
a redesigned linear conversion architecture to enhance image details through a segmented
method and improve compensation. The architecture was implemented on Kintex-7 at the
cost of 458 LUTs.

1.3. Motivation

In a significant portion of existing research, infrared image processing only serves
merely as a step within the broader system without the absolute focus placed on refining
the intricacies of infrared image processing. In these studies, the methods employed for
infrared image processing typically encompass only the NUC function. However, even
after undergoing NUC, the resulting infrared images remain less conducive to direct human
observation. Furthermore, another subset of existing research tends to emphasize achieving
the highest frame rates in infrared image processing. This is often achieved by simplifying
the algorithms, disregarding the fact that the majority of infrared sensors cannot support
such elevated output frame rates. Consequently, a significant amount of performance
is wasted in practical application scenarios. Additionally, there is a lack of algorithmic

Sensors 2024, 24, 1333 3 of 26

designs specifically tailored for human eye observation. Furthermore, many existing studies
implement non-edge-preserving (NEP) filtering algorithms, leading to a substantial loss of
image details in the processed infrared images. Designs with edge-preserving capabilities
are often constrained by complex edge-preserving (EP) filtering algorithms, contributing to
a reduction in the overall speed of infrared image processing.

In light of the aforementioned challenges, this paper aims to propose a lightweight
infrared image processor tailored for applications where direct human observation is
essential. This processor can find widespread application in scenarios such as handheld
infrared devices and small unmanned aerial vehicles equipped with infrared observation
systems. A departure from the excessive pursuit of the highest processing frame rates
for infrared images, the primary focus is on ensuring that the processed infrared images
are suitable for direct human observation. Simultaneously, there is an optimization of
algorithms and circuit designs to enhance the highest processing frame rates of infrared
images, aligning with the maximum output frame rates supported by the majority of
infrared sensors. This paper achieves high-definition infrared image processing by adding
edge-preserving filtering algorithms to enhance image quality while compromising on
the output frame rate and clock frequency of the image to pursue a balanced processing
approach. This holistic approach seeks to balance human interpretability with processing
efficiency, addressing the limitations and shortcomings prevalent in current infrared image
processing research.

1.4. Contribution and Paper Structure

By leveraging a lightweight FPGA platform, this research aims to bridge the gap
between real-time processing constraints and the preservation of crucial details in infrared
imagery. The envisioned infrared image processor seeks to strike a balance between com-
putational efficiency and retaining pertinent image information, catering to the exigencies
of real-time processing while enhancing the interpretability of processed infrared images
for human observers.

The main contributions in this paper are as follows:

1. We proposed a series of lightweight infrared image processing algorithms for hard-
ware implementation, including the two-point correction algorithm, the approximate
blind pixel detection algorithm, the side-window-filtering-based blind pixel compen-
sation algorithm, and a lightweight histogram equalization algorithm.

2. The approximate blind pixel detection algorithm employs the first-level approxima-
tion in the calculation process of average response rate and average noise voltage.
Therefore, iterative computations in the blind pixel detection are eliminated.

3. The side-window-filtering-based blind pixel compensation algorithm utilizes eight
side windows as convolution kernels. The results of all kernels are computed si-
multaneously. Experimental results demonstrate that our proposed SWF blind pixel
compensation algorithm not only effectively compensates for blind pixels but also
exhibits strong edge preservation capabilities.

4. The proposed lightweight infrared image processor is implemented on FPGA. Under
a 50 MHz clock, the processor achieves a speed of 30 frames per second (FPS) with
a resolution of 640 × 480. Meanwhile, compared with existing similar works, our
proposed infrared image processor incurs minimal resource overhead and has lower
power consumption.

The rest of this paper is organized as follows. Section 2 presents preliminary informa-
tion for the concept of non-uniformity and blind pixels. The proposed lightweight infrared
image processing algorithm is introduced in Section 3. Section 4 presents the architecture
of the proposed lightweight infrared image processor. The experiments and results are
shown in Section 5. Comparisons with existing designs are discussed in Section 6. Finally,
we conclude the paper in Section 7.

Sensors 2024, 24, 1333 4 of 26

2. Preliminary
2.1. Non-Uniformity of the Infrared Sensors

The non-uniformity (NU) of the infrared sensors has always been a significant factor
affecting the quality of the collected infrared images [24,25]. Ideally, when an infrared
sensor captures a scene with uniform thermal distribution, the grayscale values of all pixels
in the collected infrared image should remain consistent because each pixel in the infrared
focal plane array has an identical response curve [26]. However, in reality, it is challenging
to achieve perfect consistency in the characteristic parameters of each pixel in the array,
and their response curves cannot be completely uniform. These inconsistencies result in
different response values when the pixel array receives uniform infrared radiation, thereby
affecting the quality of the collected infrared image. This phenomenon is referred to as the
NU of the response in the infrared focal plane array. The factors contributing to NU include
the following aspects.

1. The NU of infrared images is primarily caused by inherent variations in the infrared
sensor [27]. Factors contributing to NU include manufacturing-related issues such as
uneven doping, surface state density variations, and gate oxide layer thickness differ-
ences. Pixel size variations due to lithography and etching processes also contribute.
Material NUs and differences in device transfer efficiency lead to changes in pixel
response, creating NUs in the collected infrared images. Controlling these factors is
essential for maintaining image quality.

2. The performance of infrared thermal imaging systems is affected by the NUs intro-
duced by the operational state of the infrared focal plane array devices. Key factors
include the ambient and operating temperatures of the FPA as well as the drive signals
for the infrared detector and readout circuit [28]. Temperature variations in the FPA
device impact its radiometric response, affecting the overall uniformity of the focal
plane array. Additionally, changes in drive signals contribute to NUs. This variability
is determined by the FPA device’s operational state, exhibiting different characteristics
in various imaging systems and environments. During device operation, the flow of
charge within the semiconductor introduces 1/ f noise, which is believed to be caused
by surface currents and affecting the NU of the detection device.

3. In infrared imaging systems, external factors such as changes in the infrared radiation
intensity of targets and backgrounds, as well as variations in the background radiation
of the optical system, impact the NU of focal plane devices [28]. These NUs are closely
linked to the actual external conditions, making prediction and testing challenging
during the development of focal plane devices and the design of infrared thermal
imaging systems.

2.2. Blind Pixels of the Infrared Sensors

The infrared sensors are affected by various factors, including the materials used
in manufacturing, the production process, readout circuit noise, and environmental tem-
perature [29,30]. The impact of these factors results in certain pixels exhibiting abnormal
responses under different lighting conditions, leading to the presence of bright and dark
noise points in the captured infrared images. These pixels with abnormal responses are
referred to as “blind pixels”. Blind pixels are further categorized into two types: “dead
pixels” and “overheated pixels” [31–33].

1. Dead Pixels: These are pixels in the infrared focal plane array that have a response
rate lower than the average response rate under the same lighting conditions. In the
resulting infrared image, dead pixels appear as black noise points. Essentially, these
pixels do not adequately respond to the incoming infrared radiation.

2. Overheated Pixels: In contrast, overheated pixels have a response rate higher than
the average under the same lighting conditions. They manifest as white noise points
in the infrared image. Overheated pixels exhibit an unusually high sensitivity to
incoming infrared radiation.

Sensors 2024, 24, 1333 5 of 26

The presence of dead and overheated pixels introduces artifacts in the infrared images,
impacting the overall quality and reliability of the imaging system [34,35]. These issues
are significant challenges in the development and optimization of short-wave infrared
detectors for various applications.

3. Proposed Lightweight Infrared Image Processing Algorithm
3.1. Calibration Algorithm

Considering the computation complexity and latency of different radiometric calibra-
tion algorithms, this article adopts a two-point correction algorithm based on blackbody
radiation calibration [36–38]. The NU refers to the ratio of the response voltage of all
effective pixels of the sensor to the mean response rate when each pixel of the sensor is in
uniform infrared radiation with half saturation. The calculation for NU is shown in the
following equation. NU = 1

Vavg

√
1

M×N−(d+h) ∑M
i=1 ∑N

j=1(Vij − Vavg)2

Vavg = 1
M×N−(d+h) ∑M

i=1 ∑N
j=1 Vij

(1)

In this context, M and N represent the dimensions of the sensor, indicating its length
and width, respectively. Vij denotes the actual response value of the pixels located at the i-th
row and j-th column, while Vavg signifies the average response of the sensor. Additionally,
d and h indicate the quantities of dead and overheated pixels, respectively.

Although the response function of each pixel unit in the sensor is nonlinear, the
response function of the pixel can be approximated as linear within a small working range.
Therefore, it is assumed that in a uniform lighting environment, the response value of each
pixel in the sensor is linearly related to the radiation flux. So, the response curve of each
pixel will form a set of linear clusters with different gain coefficients (k) and offsets (b). As
shown in Figure 1, the vertical axis V represents the pixel response, and the horizontal
axis ϕ represents irradiation flux. Therefore, the relationship of pixel response Vij and
irradiation flux ϕ can be expressed as:

Vij = kij × ϕ + bij (2)

where kij is the gain coefficient corresponding to the i-th row and j-th column pixel, and bij
is the offset corresponding to the i-th row and j-th column pixel.

v

ΦΦHΦL

v

Φ

v

ΦΦHΦL ΦHΦL

(a) Before two-point correction (b) Gain correction complete (c) Offset correction complete

Figure 1. Process of two-point correction.

The two-point correction algorithm aligns the slope of different response functions by
rotation and then fits them into one straight line by translation, as illustrated in Figure 1.
This algorithm can improve the image quality by making these response functions coincide
with the standard response function. High-temperature images and low-temperature
images were collected under uniform radiation of high-temperature and low-temperature

Sensors 2024, 24, 1333 6 of 26

black bodies, respectively. Thus, the pixel response of the infrared sensor can be obtained
as follows: {

VLij = kij × ϕL + bij
VHij = kij × ϕH + bij

(3)

where VLij is the pixel response of the i-th row and j-th column pixel in the sensor at
low-temperature ϕL radiation flux, and VHij is the pixel response of the i-th row and j-th
column pixel in the sensor at high-temperature ϕH radiation flux. The average response
value of each pixel obtained under varying high and low-temperature conditions is used as
the standard response curve for calibrating the infrared sensor. The two-point correction
algorithm based on blackbody radiation calibration is shown as follows.

PLij = Gij × VLij + Oij (4)

PHij = Gij × VHij + Oij (5)

Gij =
(PHij − PLij)

(VH − VL)
(6)

Oij =
(PLij × VHij − PHij × VLij)

(VHij − VLij)
(7)

where PLij and PHij are the pixel response output values corrected at low and high temper-
atures, respectively. The corrected gain coefficient is Gij, and the corrected offset coefficient
is Oij.

By calculating the above formula, the corrected gain coefficient G and the corrected
offset coefficient O can be obtained. Based on these two sets of coefficient matrices (G and
O), the following collected raw data matrix V from the sensor can be corrected to Vnuc as
shown below.

Vnuc = G × V + O (8)

3.2. Blind Pixel Detection Algorithm

Considering limited hardware resources and computation latency, we propose a
lightweight blind pixel detection algorithm based on a fixed blind element judgment
standard. The calculation of blind pixel detection involves four parameters: the number
of dead pixels d, the number of overheated pixels h, the average response rate R, and the
average noise voltage VN . During the computation, a mutual correlation exists between the
first two parameters (d and h) and the latter two parameters (R and VN). In other words,
based on the first two parameters, we can derive the latter two parameters, and conversely,
we can also determine the first two parameters based on the latter two. Hence, obtaining
accurate values necessitates a substantial amount of iterative calculations until all four
parameters stabilize within a certain range. This iterative process is time consuming and
highly unsuitable for lightweight platforms.

Therefore, we adopted an approximate blind pixel detection algorithm. We first detect
blind pixels under the first-level approximation, as shown in the following equation. The
average response rate is calculated based on the response of all pixels in the sensor without
eliminating dead pixels and overheated pixels.

R =
1

M × N − d − h

M

∑
i=1

N

∑
j=1

r(i,j) ≈
1

M × N

M

∑
i=1

N

∑
j=1

r(i,j) (9)

Among them, M × N is the total number of pixels in the image captured by the sensor,
and r(i,j) is the response value of the pixel in the i-th row and j-th column. We set a fixed

Sensors 2024, 24, 1333 7 of 26

criterion at the half of R. Then, we mark the pixels that meet the following equation as
dead pixels.

r(i,j) −
1
2

R < 0 (10)

After subtracting the dead image number d from the total number of sensor image
elements M × N, we calculate the average noise voltage of the remaining pixels. Let
vN(i,j) denote the pixel noise voltage in the i-th row and j-th column of the sensor. The
approximation of average noise voltage is calculated by

VN =
1

M × N − d − h

M

∑
i=1

N

∑
j=1

vN(i,j) ≈
1

M × N − d

M

∑
i=1

N

∑
j=1

vN(i,j) (11)

Note that we only eliminate dead pixels from all pixels in this approximate calculation.
And we also set a fixed criterion for overheated pixels at the twice of VN . Then, we can
mark the pixels that meet the following equation as overheated pixels.

vN(i,j) − 2VN > 0 (12)

3.3. Blind Pixel Compensation Algorithm Based on Side Window Filtering

In response to the problem of edge contour blurring in traditional sliding window
filtering algorithms, there exist several EP filtering techniques, such as bilateral filtering
and guided filtering. However, existing EP filtering algorithms often introduce heightened
computational complexity, making them less suitable for real-time hardware processing.

Therefore, this paper proposes an improved side window filtering (SWF) algorithm
tailored for real-time hardware implementation. In the SWF algorithm, the pixel to be
filtered is placed at the edge rather than the center of the filtering window. Multiple side
windows are established to accommodate various filtering scenarios, and the most suitable
windows are selected to filter the pixel to be processed. As shown in Figure 2, we define a
side window. θ represents the angle between the side window and the horizontal line. 2r
denotes the length of the side window, and ρ ∈ {0, r} is another parameter controlling the
size of the side window. (x, y) denotes the location of the side window. By varying θ while
keeping (x, y) constant, we can change the orientation of the window, aligning its side with
pixel i.

θ (x,y)

ρ

2r

Figure 2. Definition of a side window.

From this, it can be observed that for any pixel i, the number of its side windows
is infinite and depends on the parameter settings. However, in most cases, the chosen
parameter settings (e.g., θ is not being multiples of 90◦) are not conducive to efficient
computation. To simplify computations for discrete pixel points in this design, our objective
is only to ensure that the selected side window includes situations where the pixel to be
filtered is positioned at the side of the window as well as situations where the pixel is placed
at the corner of the window. Therefore, we define eight side windows as shown in Figure 3,

Sensors 2024, 24, 1333 8 of 26

which are denoted as Left (L), Right (R), Up (U), Down (D), Southwest (SW), Southeast
(SE), Northeast (NE), and Northwest (NW). These side windows adequately simulate all
scenarios of pixel positions along the edges, where (x, y) represents the coordinates of the
pixel to be filtered.

L RL R U

D

U

D

NENW

SESW

NENW

SESW

(x,y)

(x,y) (x,y)

Figure 3. The proposed eight side window types.

After designing the eight side windows, it is necessary to employ an algorithm to
compare and evaluate the filtering effects of all windows to determine the most suitable
side window type for the current target pixel. The proposed SWF algorithm utilizes a
computational approach depicted in Algorithm 1 to compare and select results from various
side windows. The core idea of this algorithm is to utilize the L2 norm to find the filtering
result among the eight side windows that are closest to the original pixel value of the
target pixel. This approach maximizes the preservation of the original image information
in the filtering result. The choice of the filtering kernel function F depends on the selected
filtering kernel with common options including mean filtering, Gaussian filtering, and
median filtering. Given that the algorithm is designed for blind compensation in infrared
images, and the characteristics of blind elements are similar to salt-and-pepper noise, both
manifesting as alternating bright and dark point noise in the image, the algorithm opts
for the use of median filtering as the filtering kernel. This choice is due to its effective
handling of salt-and-pepper noise without introducing image blurring issues compared to
algorithms such as mean filtering.

Algorithm 1 Calculate the SWF of each pixel

Require: j denotes the target pixel for filtering, i denotes the neighboring pixel of the target
pixel, and ωij denotes the filtering weight associated with the SWF kernel function F,
S = {L, R, U, D, NW, NE, SW, SE} denotes the set of side window indices.

1: Compute the result of the target pixel after weighted filtering with different side
windows n, where Nn is the sum of weights of the side window n.

2: In = 1
Nn

∑
j∈ωn

n

ωijqj

3: Nn = ∑
j∈ωn

n

ωij, n ∈ S

4: Determine the optimal side window index based on the Euclidean norm between the
filtered pixel values and the target pixel values computed by each side window.

5: Im = argminn∈S∥qi − In∥2
2

Ensure: d = Im

To boost the processing speed of the algorithm above, we employ eight parallel convo-
lution kernels for filtering windows. During the process of traversing the entire image, the
results of all eight convolution kernels are computed simultaneously. Meanwhile, the re-
sults of the eight convolution kernels are no longer stored to save storage resources. Instead,
a hardware-based comparator is utilized to receive the results from eight kernels directly.
The comparator will figure out the real-time median filtering result for the target pixel.

Sensors 2024, 24, 1333 9 of 26

3.4. Image Enhancement Algorithm

The real-time performance of the hardware implementation of the infrared image
processing algorithm is one of the core objectives of this paper. Compared with other image
enhancement algorithms, the gray-level statistics and gray-level mapping steps, which
have the largest computational complexity of the histogram equalization algorithm, can
be performed in parallel based on continuous multi-frame image data, which makes it
easier to design the software in parallel and pipeline for the real-time performance of the
hardware implementation. Therefore, this paper adopts the image enhancement technique
based on histogram equalization to achieve the system function of real-time processing of
infrared image enhancement. The specific steps of histogram equalization are as follows:

1. Determine the gray level L of the target image. Usually, the gray level value is between
0 and 255.

2. Calculate the proportion Pi of the number of pixels ni of each gray level ri in the
current image to the total number of pixels N;

3. Calculate the cumulative proportion value Si of each gray level from the lowest gray
level r0 to the current gray level ri in the target image, as shown in Equation (13),
where the probability of gray level L is 1;

Si =
i

∑
j=0

P(rj) =
i

∑
j=0

ni
N

i = 0, 1, 2, . . . , L − 1 (13)

4. According to Equation (14), find the pixel mapping relationship, where ri_new is
the new gray level after the current gray level ri is mapped, pix(max) is the preset
maximum gray level of the image after equalization, pix(min) is the preset minimum
gray level of the image after equalization, and the meaning of the whole formula is
to subtract the maximum gray level from the minimum gray level of the image after
equalization, multiply by the cumulative probability, add 0.5 and round to an integer;

ri_new = int((pix(max)− pix(min))× Si + 0.5) (14)

5. Grayscale mapping, according to the mapping relationship table obtained by the
formula, looks up the table to map the pixels in the original grayscale image to the
pixels after histogram equalization.

4. Proposed Lightweight Infrared Image Processor Architecture
4.1. Overall Architecture

The proposed lightweight infrared image processor consists of an infrared image
interface module, a two-point correction module, a blind pixel detection module, a blind
pixel compensation module, and an image enhancement module. Figure 4 shows the overall
hardware architecture of the infrared image processing algorithm unit. To ensure real-time
image processing and output, the data throughput of the processor is a crucial performance
factor in this design. Therefore, in the processor’s design process, we extensively employed
pipeline techniques to enhance throughput and balanced critical path timing to improve
the processor’s operating frequency.

The finite state machine (FSM) of the proposed lightweight infrared image processor
is illustrated in Figure 5. This design primarily operates in two modes: the pre-processing
mode and the normal infrared image processing mode. In the pre-processing mode,
which includes four finite state machine states, the control processor acquires raw infrared
images at high and low temperatures, calculates two correction matrices, and determines
the positions of blind pixels. After completing the pre-processing mode, the processor
automatically transitions to the normal infrared image processing mode. Based on the
previously calculated correction matrices and blind pixel positions, real-time processing
of the infrared image occurs. After blind pixel compensation, the processor performs
histogram equalization to enhance the contrast of the infrared image. After processing each

Sensors 2024, 24, 1333 10 of 26

frame of the image, the processor needs to determine whether recalibration is necessary.
The default logic here is no recalibration is needed, meaning it proceeds to process the
next frame of the infrared image immediately. When the recalibration signal is valid, the
processor, after completing the current frame processing, re-enters the pre-processing mode.

Infrared Image

Interface

Module

Blind Pixel

Detection

Module

Two-Point

Correction

Module

SWF Blind

Pixel

Compensation

Module

Histogram

Equalization

Module

Proposed Infrared Image

Processor
High/Low-Temp.

Image Data

Raw Data

from ADC

Processed Infrared

Image Data

8

8

14

11432

32 32 32

Figure 4. Overall architecture of the proposed lightweight infrared image processor.

IDLE

Receive H/L

Data

Blind Pixel

Detection

Two-Point

Correction

Receive Image

Data

Blind Pixel

Compensation

Two-Point

Coefficients

Calculation

Histogram

Equalization

Pre-Processing Processing

Recalibration
Yes

No

Figure 5. The finite state machine of the proposed lightweight infrared image processor.

4.2. Infrared Image Interface Module

The infrared image interface module is responsible for reading image data from the
sensor. During the procedure of two-point correction, the infrared image interface module
reads high- and low-temperature image data, completes data concatenation, and calculates
the average response data for each pixel. Under normal working mode, the infrared image
interface module solely performs data concatenating and forwards the stitched data to
subsequent modules. The architecture of the infrared image interface module is illustrated
in Figure 6. The external input of the raw infrared image data is collected by a 14-bit
analog–digital converter (ADC). The actual data for each pixel are formed by concatenating
two consecutive bytes. During the two-point correction, the infrared image interface
module buffers the concatenated data into DDR3 RAM for use in the calculation process.

In the infrared image interface module, it is essential to define the data format for
the processor. As previously mentioned, multiple divisions occur during the process of
infrared image processing, involving decimal calculations throughout the entire process.
In software-based infrared image processing, the double-precision floating-point format
is commonly used for data storage. Although the double-precision floating-point format
offers a broad representation range and minimal quantization errors, the computational

Sensors 2024, 24, 1333 11 of 26

overhead of double-precision floating-point numbers is substantial, hindering implemen-
tation on lightweight hardware platforms. Furthermore, it can reduce data processing
speeds, compromising the real-time capability of infrared image processing. To address
this, our processor utilizes a custom 32-bit fixed-point number format comprising a 1-bit
sign, a 15-bit integer, and a 16-bit fraction. Employing this custom fixed-point number
format ensures that the processing speed meets real-time requirements while preserving
the precision of processing results as much as possible, thereby achieving better processing
effectiveness compared to hardware and software processing results.

Raw Data

from ADC

Infrared Image Interface Module

Registers

Data stitching

Average

Response

Calculation

Registers

DDR3

Controller

High/Low-Temp.

Avg. Response

Infrared

Image Data

Figure 6. Architecture of infrared image interface module.

4.3. Lightweight Two-Point Correction Module

The architecture of the lightweight two-point correction module is shown in Figure 7.
The input data of the two-point correction module are sourced from both the infrared
image interface module and the blind pixel detection module. The infrared image interface
module provides high and low-temperature data cached in DDR3 and calculated the
average response data for each pixel, and the blind pixel detection module provides position
data for blind pixels. Once the infrared image interface module and blind pixel detection
module are prepared, the two-point correction module sends data retrieval requests to
these modules. Simultaneously, it retrieves position data for blind pixels and high/low-
temperature data. Based on the position data for blind pixels, the corresponding data in
the high/low-temperature dataset are eliminated. The remaining high/low-temperature
data undergo separate accumulations. These accumulations are divided by the count of
effective pixels to obtain the overall average response for both high and low temperatures
across the entire image.

Once the calculation of the overall average response for high and low temperatures
concludes, the two-point correction module continues to send data retrieval requests to
the infrared image interface module. Then, it receives the calculated average response
data for each pixel concerning high and low temperatures. The two-point correction
module computes the difference between the overall average response for high and low
temperatures. It also computes the difference between the average response for high and
low temperatures for each pixel. These two differences are divided to obtain the corrected
gain coefficient matrix.

After the computation of the corrected gain coefficient matrix, the two-point correction
module proceeds to calculate the product of the gain coefficient and the average response
for high temperatures for each pixel. It then subtracts this product from the overall average
response for high temperatures, resulting in the corrected offset coefficient matrix.

Due to division operations involved in the two-point correction module and consid-
ering the limited hardware resources on lightweight hardware platforms along with the
real-time processing speed requirements, we employed a trial division-based approach to
implement lightweight divisions.

Upon input of a dividend and divisor, with the divisor’s bit width m as a reference,
the comparison is made between the higher m bits of the dividend and divisor. If the

Sensors 2024, 24, 1333 12 of 26

higher m bits of the dividend are greater, the quotient for the corresponding bit is set
as one, and the subtraction of the two yields the remainder for this step. Otherwise, if
the higher m bits of the dividend are not larger, the quotient for the corresponding bit is
set as zero, and the higher m bits of the dividend directly become the remainder. This
process continues, segmenting the dividend until the final division result is obtained. Two
shift registers are utilized throughout this procedure: one shift register performs shifting
and accumulation for the quotient’s result, while the other handles accumulation and
concatenation for the remainder.

Matrix O

Calculation

High-Temp

Overall Average

Response

Low-Temp

Overall Average

Response

Matrix G

Calculation

Two-

Point

NUC

High-Temp.

Image Data

Blind Pixel

Diagram

Two-Point Correction Module

Low-Temp.

Image Data

Infrared

Image Data

High-Temp.

Avg. Response

Low-Temp.

Avg. Response

Infrared

Image Data

with NUC

Figure 7. Architecture of lightweight two-point correction module.

4.4. Lightweight Blind Pixel Detection Module

The architecture of the proposed lightweight blind pixel detection module is illustrated
in Figure 8. Utilizing the threshold calibration for dead pixels and overheated pixels
outlined in Section 3.2, it identifies the positions of dead pixels and overheated pixels across
the entire sensor frame. Align the infrared image sensor with a uniform radiating blackbody,
record the response data of each pixel in K frames of images at high temperature and low
temperature, generate the high and low-temperature pixel response matrices imgh and
imgl , then calculate the high and low-temperature averages f avgh and f avgl . Utilize the
high and low-temperature averages f avgh, f avgl , and the known detector gain coefficient
KGain to calculate the response voltage Vs(I,j) of the i-th row and j-th column pixel in the
infrared focal plane array. Calculate the pixel voltage response rate r(i,j) of the i-th row and
j-th column pixel using the difference in pixel response voltage and known pixel irradiance
power factor. Utilize the low-temperature average f avgl and the low-temperature pixel
response matrix imgl to calculate the noise voltage Vn(i, j) of the i-th row and j-th column
pixel. Approximate the average voltage response rate R and average noise voltage VN
obtained from the pixel voltage response rate r(i,j) and pixel noise voltage Vn(i, j) as initial
values for iteration. We progressively compute Equations (9) and (11) for each pixel in a
pipelined manner.

The identified positions of dead and overheated pixels across the entire sensor frame
are fed into the two-point correction module. This information is utilized to exclude the
data corresponding to blind pixels during the statistical process in the two-point correction
module. Considering that the quantity of blind pixels across the entire image is significantly
lower than that of normal pixels, in our blind pixel calibration process, we assign a value

Sensors 2024, 24, 1333 13 of 26

of 1 to denote the blind pixel positions and a value of 0 to denote the positions of normal
pixels. This approach aims to reduce the number of logical inversions, thereby lowering
the power consumption during processor operation.

Vs(i,j)

Calc.

r(i,j)

Calc.

R

Calc.

Dead Pixel

Judgement

vn(i,j)

Calc.

VN

Calc.

Overheated

Pixel

Judgement

Blind Pixel Detection Module

High-Temp.

Avg. Response

Low-Temp.

Avg. Response

Low-Temp.

Image Data

Blind Pixel

Diagram

Figure 8. Architecture of lightweight blind pixel detection module.

The computation process within the blind pixel detection module involves square root
operations. Typically, such an operation is implemented by invoking IP cores within FPGA
development tools. However, due to the limited hardware resources of this design and
the real-time processing speed requirements for infrared imaging, we devised a sequential
approximation-based square root calculation structure, as shown in Figure 9. This design
concept shares similarities with the previously mentioned trial division approach. Upon
inputting the data for square rooting, we initially initialize an interim result.

Input Data

Register

Comparison

Logic

Interim Value

Register

Determined

Value

Register

Radicand

Data Valid

Square Root

Data Valid

Figure 9. Architecture of proposed square root calculation structure.

The incremental approximation algorithm is illustrated in Figure 10. First, the data
input is denoted as data[n : 0]. Then, experimental values Dz[n/2 : 0] and determined
values Dq[n/2 : 0] are set. Subsequently, in descending order, each bit is successively set
to 1 (e.g., setting Dz[n/2] to 1). The square of the experimental value is then compared
with the input data. If the square of the experimental value is greater than the input value
(D2

z > data), the bit is set to 0 (e.g., Dq[3] is set to 0); otherwise (D2
z data), the bit is set to 1

(e.g., Dq[3] is set to 1). This iteration is repeated for n/2 times until all levels are compared.
After completing all comparisons, the determined value of the last level is output as the
square root, and the remainder is obtained as the difference between the input number and
the square of the determined value of the last level. Simultaneously, the data valid signal is
output, completing the square root operation.

Sensors 2024, 24, 1333 14 of 26

Input Data Set Interim Value
Interim Value

Square

Ouput Data Comparision
Set Determined

Value

Figure 10. Step of proposed square root calculation structure.

4.5. Lightweight SWF Blind Pixel Compensation Module

The input for the SWF blind pixel compensation module is the infrared image pro-
cessed by the two-point correction module. Although the resulting infrared image is visible
to the human eye, its quality is diminished due to the presence of blind pixels. The SWF
blind pixel compensation module aims to compensate for these blind pixels in the infrared
image while retaining its details.

The architecture of the proposed SWF blind pixel compensation module is shown in
Figure 11. Firstly, we determine the side window length for the SWF blind pixel compen-
sation module as 2s + 1. Considering the compensation effect for blind pixels, hardware
resource consumption, and computational speed, we adopt s = 1, thereby setting the
side window size to 3 × 3. Following the output from the two-point correction module
into the SWF blind pixel compensation module, we utilize on-chip Block RAMs (BRAMs)
to construct a dual-port RAM for data buffering. Given the 3 × 3 side window size, the
space allocated for data buffering includes two complete rows of image pixel data and an
additional three pixels. Within the 3 × 3 buffer space, we construct eight parallel median
filtering convolution kernels, as described in Figure 12. In a 3x3 window, we take four 2 × 2
convolution kernels, two 2 × 3 convolution kernels, and two 3 × 2 convolution kernels,
each placed at the four corners, midpoints of the top and bottom edges, and midpoints of
the left and right edges. All pink-colored blocks in the figure represent the centers of 3 × 3
windows. Each kernel calculates its convolution result, the median value, while simulta-
neously computing the distance between each median value and the actual value of the
target pixel. Subsequently, we compare the distances from the eight calculations, selecting
the kernel with the smallest distance as the output kernel and providing its convolution
result as the output. We employ an edge extension method to fill in the outermost circle of
pixels. This ensures that pixels located at the boundaries are also processed by the SWF
blind pixel compensation module.

滤波核卷积滤波核卷积滤波核卷积滤波核卷积滤波核卷积滤波核卷积3×3 Window

RAM

SWF Blind Pixel Compensation Module

滤波核卷积SWF Kernel

Convolution

Distance

ComparisonInfrared

Image Data

with NUC

Infrared Image Data

with NUC and blind

pixel compensation

Output

Image Data Input

Figure 11. Architecture of proposed SWF blind pixel compensation module.

Sensors 2024, 24, 1333 15 of 26

Kernels 2×2

Kernels 3×2

Kernels 2×3

Figure 12. Architecture of proposed SWF kernels.

4.6. Histogram Equalization Module

The image enhancement module is the histogram equalization module. This module
receives the blind pixel compensated infrared image, counts the gray levels of the image,
and then expands and merges the pixels of different gray levels to increase the image
contrast and achieve the effect of image enhancement. The histogram equalization module
is designed as shown in Figure 13 and the steps of the proposed histogram equalization
module is illustrated in Figure 14.

Gray Level

statistics

Histogram

Equalization

AccumulateRAM

Histogram Equalization Module

Infrared Image Data

with NUC and blind

pixel compensation

Processed Infrared

Image Data

Figure 13. Architecture of proposed histogram equalization module.

M

N

...

.

.

.

Frame₁

...

.

.

.
Frame₂

Mapping

Table

...

.

.

.
New Frame₂

P₁:n₁

P₂ :n₁+n₂

P₃:n₁+n₂+n₃

Pₙ :n₁+n₂+...nₙ

Pₙ /(M×N)

S₁

S₂

S₃

Sₙ

Sₙ ×Pmax

.

.

.

.

.

.

Figure 14. Step of proposed histogram equalization module.

The hardware design of the histogram equalization algorithm adopts a pseudo-
equalization design idea. That is, the image of the previous frame is used for statistics, the
frame gap is accumulated and normalized, and the current frame is used for normalized
mapping output to achieve the purpose of real-time processing. The histogram equalization

Sensors 2024, 24, 1333 16 of 26

module includes two parts: a gray-level statistical circuit and a histogram equalization
circuit. The histogram equalization module receives the results from the SWF blind pixel
compensation module. The results first enter the gray-level statistical circuit. In this pro-
cedure, we employ on-chip resources (including BRAMs) to construct dual-port RAM
for buffering.

The process of the gray-level statistical circuit is as follows:

1. By traversing the M × N infrared image, we obtain the number of pixels ni corre-
sponding to each gray level and the maximum grayscale value Pmax;

2. Accumulate the number of pixels corresponding to all grayscale values less than this
grayscale value, and store the result in RAM.

After the gray level accumulation and statistics of the previous frame image are
completed, the image data after blind element compensation of the current frame then
enters the histogram equalization circuit. The specific process of hardware implementation
of the histogram equalization circuit is as follows:

1. The histogram equalization circuit traverses all pixels in the current frame image in
row-first-column order. Each time a pixel is traversed, Pn of the current pixel is read
out from RAM;

2. Use the built-in divider to divide the readout cumulative sum by the total number
of pixels M × N and then multiply it by Pmax of the current image to complete the
normalization operation;

3. Use the normalized calculated gray value to replace the original pixel gray value to
complete gray mapping. Until the entire image is replaced, the histogram equalized
image is output.

5. Experiments and Results

This design includes multiple infrared image processing modules. Therefore, we first
simulate each hardware module to ensure its correct function and remarkable effect. Then,
we integrate the entire system and test it on the actual FPGA platform.

5.1. Algorithm Simulation on FPGA

Considering the lightweight design goal, we selected the ULIS 640 uncooled infrared
detector chip as the infrared sensor with a frame resolution of 640 × 480. At the same time,
we use infrared blackbody light sources to provide uniform and stable light sources at
high and low temperatures. Under high-temperature and low-temperature conditions, we
collected 100 frames of images for correction, respectively.

The original infrared images from the infrared image interface module are shown in
Figure 15a. The original image has problems such as blind pixels, noise, horizontal and
vertical stripes, etc., that affect the quality of the infrared image. Due to the low image
quality of the original infrared image, even if a target appears in the picture at this time, it is
very difficult for the human eye to observe. After the processing of the two-point correction
module, it can be seen that the quality of the processed image is significantly improved,
and the horizontal and vertical stripes are almost invisible to the human eye, as shown in
Figure 15b. However, since blind pixel compensation has not yet been performed, there are
still bright and dark noises in the image, which are dead pixels.

Subsequently, we input the two-point corrected image into the blind element com-
pensation module. We have marked some obvious blind elements in the images with red
circles as illustrated in Figure 16. After being processed by the blind element compensation
module, the light and dark noise in the image disappears.

The following images, seen in Figure 17, show a comparison before and after the
Histogram Equalization Module. Before histogram processing, although there are targets
in the infrared image, the contrast is very low, making it difficult for the naked eye to
observe directly. After processing with the Histogram Equalization Module, not only is the
boundary of the flame visible, but other targets with lower temperatures also become clear
and distinguishable.

Sensors 2024, 24, 1333 17 of 26

(a) (b)

Figure 15. (a) The original infrared image; (b) the processed image from the two-point correction module.

(a) (b)

Figure 16. (a) The infrared image before blind pixel compensation processing; (b) the processed
image from the blind element compensation module.

(a) (b)

Figure 17. (a) The infrared image before histogram equalization processing; (b) the processed image
from the histogram equalization module.

Since the responses of all pixels after two-point correction tend to be consistent and
there is no target in the picture, the blind pixel compensation module’s ability to suppress
blind pixels and preserve boundaries cannot be well demonstrated. Therefore, we replaced
a 256× 256 resolution grayscale image with a prominent target and more boundary informa-
tion to perform an additional simulation on the blind element compensation module. Here,
we assess the performance of the blind pixel compensation module using two evaluation
metrics: peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).

Sensors 2024, 24, 1333 18 of 26

1. PSNR is a metric commonly used to measure the quality of a reconstructed or com-
pressed signal compared to the original signal. It is often employed in image and
video processing to quantify how much the quality of the reconstructed or compressed
version deviates from the original, considering both signal fidelity and the presence
of noise.

2. SSIM is a metric used to measure the similarity between two images. It is designed
to capture perceived changes in structural information, luminance, and contrast that
humans often notice.

The comparison results of the processing effects on grayscale images with artificially
added salt-and-pepper noise using traditional median filtering and the improved SWF
median filtering algorithm with several times of iteration (ITR) are shown in Figure 18.
Figure 19 illustrates the comparison of the processing effects on facial details. Based on
PSNR, SSIM, and visual observation, it can be seen that under the same window size and
iteration times, the improved SWF median filtering has a significant effect on filtering target
edges (such as clothing and hair edges), image boundaries, and the preservation of target
details (such as facial information). It also exhibits good filtering performance for dispersed
point-like salt-and-pepper noise.

Therefore, although the denoising effect of the improved SWF median filtering is
slightly inferior to traditional median filtering, it retains a large amount of image details.
Compared to the complete loss of image details caused by retaining a small amount of
noise points, this is an unacceptable result in infrared image processing. Hence, we chose
improved SWF median filtering over traditional median filtering. Additionally, it can
be observed from the figures that a higher number of iterations leads to better image
processing results with the improved SWF median filtering algorithm. However, this
also increases the hardware resources required, making real-time implementation more
challenging. The improvement in image quality after filtering is limited, and a window size
of 3 × 3 is the most commonly used size, striking a balance between resource consumption
and filtering effectiveness. Therefore, we choose an iteration time of one and a window
size of 3 × 3 for the improved SWF median filtering.

Noise addedOriginal Image

Traditional Method
ITR:1
PSNR=26.8231
SSIM=0.8644

Traditional Method
ITR:3
PSNR=26.6362
SSIM=0.8342

Traditional Method
ITR:5
PSNR=25.2303
SSIM=0.8184

Our Method
ITR:1
PSNR=28.4024
SSIM=0.8824

Our Method
ITR:3
PSNR=28.7222
SSIM=0.9314

Our Method
ITR:5
PSNR=28.7801
SSIM=0.9330

Figure 18. Results after processing with the traditional method and the proposed blind pixel compen-
sation module.

Sensors 2024, 24, 1333 19 of 26

Traditional Method
ITR:1
PSNR=26.8231
SSIM=0.8644

Traditional Method
ITR:3
PSNR=26.6362
SSIM=0.8342

Traditional Method
ITR:5
PSNR=25.2303
SSIM=0.8184

Our Method
ITR:1
PSNR=28.4024
SSIM=0.8824

Our Method
ITR:3
PSNR=28.7222
SSIM=0.9314

Our Method
ITR:5
PSNR=28.7801
SSIM=0.9330

Figure 19. Preservation of image details in the image with the traditional method and the proposed
blind pixel compensation module.

5.2. FPGA Implementation Results

After the system is powered on, it first reads the high and low-temperature data
and performs subsequent calculations, preparing for the formal image processing. The
waveform of the infrared image processor is shown in Figure 20 with a constant frequency
of 50 MHz. It can be observed that after the power-on reset, it sequentially completes the
reading of high and low-temperature data (img_vsh_rdy, img_vsl_rdy), calculates the mean
values of high and low-temperature pixels (fvsh_avg_rdy, fvsl_avg_rdy), and generates the
blind pixel diagram (nep_map_rdy). The total time consumed is approximately 340 ms.
After this, the processor calculates the corrected gain coefficient matrix and the corrected
offset coefficient matrix according to the proposed workflow of the infrared image processor.
It can be observed that the total time before the infrared image processor starts processing
real-time infrared image data is 419 ms. Afterward, the infrared image processor enters
real-time processing mode.

The real-time processing section of the infrared image is used to perform non-uniform
correction, blind pixel compensation, and image enhancement on the raw infrared image
data collected by the infrared detector after the preprocessing part. The amount of data to
be processed is significantly reduced compared to the preprocessing part, meeting real-time
requirements. The simulated waveform graph is shown in Figure 21. From the graph, it can
be observed that under a 50 MHz clock, the entire process, from non-uniform correction
and blind pixel compensation to histogram equalization, takes about 20 ms. The target
image reading takes approximately 13 ms. Therefore, the real-time processing section of
the infrared image processes one frame in about 33 ms, which is equivalent to 30 FPS.

5.3. Practical Experiment

Based on the lightweight infrared image processor proposed in this paper, we con-
structed a lightweight system-on-chip (SoC) which is shown in Figure 22. The processor in
the SoC is based on ARM Cortex-M0 low-power processor, and the bus architecture follows
ARM advanced microcontroller bus architecture (AMBA). The architecture of the on-chip
system is illustrated in the following diagram.

Sensors 2024, 24, 1333 20 of 26

Figure 20. The waveforms correspond to the reading of high and low-temperature data and the
precomputation.

Figure 21. The waveforms correspond to the the real-time processing of infrared images.

After system-level integration, the disassembled structure and assembled device of our
handheld infrared observation equipment are shown in Figure 23. The digital processing
board carries an FPGA and DDR for building the lightweight infrared image processor
proposed in this paper. Our practical experiments are conducted based on this handheld in-
frared observation device. The dimensions of the device are 67.4 mm × 39.0 mm × 39.0 mm,
and it weighs 120 g.

The actual experiment of the infrared observation device is shown in Figure 24.
Figure 24a shows the shooting of a human palm in an indoor environment. Due to the
higher temperature of the palm compared to the ambient temperature, the palm target is
very clear, and the boundary is also very sharp. Figure 24b–e compare the shooting condi-
tions of the infrared observation device with a visible light camera in nighttime situations.
The target (human) in each picture is labeled with a red box. The image from the visible
light camera is captured using an iPhone 13 Pro Max. In close-range situations, with the
target (human) approximately 10 m away from the device, the visible light camera can
still capture the general outline of the target (human) despite weak ambient light, as seen
in Figure 24b. The device, in this case, captures the target (human) clearly with a sharp

Sensors 2024, 24, 1333 21 of 26

boundary, as shown in Figure 24c. When the target (human) is about 20 m away from
the device, the visible light camera can no longer capture the target, as seen in Figure 24d.
However, the infrared observation device can still clearly distinguish the target (human) in
the environment, as shown in Figure 24e.

CPU

DDR3 Controller

AHB

TF Controller

DDR3

IR Sensor

TF Card

A
H

B

Proposed IR

Image

Processor

Upper Computer

IR Sensor

Configuration

PAL Encoder Video Output

Figure 22. The overall view of the SoC based on the proposed lightweight infrared image processor.

1 2 3 4 5 6

7

1 Infrared wavelength lens

2 Automatic transmission disc

3 Power supply board

4 Digital processing board

 (FPGA, DDR...)

5 Sensor board

 (ULIS 640P)

6 Analog processing board

 (DAC, ADC...)

7 Assembled device

Figure 23. Disassembled infrared observation device and assembled infrared observation device.

5.4. Implementation

This design utilizes the Xilinx Artix-7 low-power FPGA series to construct a lightweight
infrared image processor with the specific FPGA model being XC7A100T-2. This FPGA
supports DDR3 interface with a transfer speed of up to 1066 Mbps. The development
environment for the FPGA is chosen to be Vivado 2019.2. After the synthesis step and the
implementation step in Vivado, the implementation results of the overall device are shown
in Table 1. The breakdown results for key components and our proposed lightweight
infrared image processor are also listed in the table. BRAMs are only employed in the
lightweight SWF blind pixel compensation module and the histogram equalization module.
The other memories in our design are constructed by FFs.

The expenses of each resource are presented as a percentage of the total on-chip
resources in the last row of the table. The overall device consumes 25,515 LUTs, 22,393 FFs,

Sensors 2024, 24, 1333 22 of 26

and 8 DSP48. Due to the inclusion of peripherals such as a TF card, DDR3, etc., in this device,
the IO resources are utilized to a greater extent, exceeding 50% of the on-chip resources of
XC7A100T. Our proposed lightweight infrared image processor costs 10,894 LUTs, 9367 FFs,
4 BRAMs, and 5 DSP48, which are shown in bold.

(a)

(b) (c)

(d) (e)

Figure 24. Experiments with the infrared observation device at night. (a) The shooting of a human
palm in an indoor environment. (b) The target (approximately 10 m away) was shot by the visible
light camera. (c) The target (approximately 10 m away) was shot by the infrared observation device.
(d) The target (approximately 20 m away) was shot by the visible light camera. (e) The target
(approximately 20 m away) was shot by the infrared observation device.

As for function result, which is shown in Figure 24c,e, we can obtain the location of
person by the infrared sensor at night. The red boxes indicate the location of person in
Figure 24b,d. As we can see, our sensors can truly obtain the right result. As for timing
results, according to the timing report generated by Vivado, our proposed infrared image
processor can achieve a maximum operating frequency of 186 MHz. Therefore, it supports
a maximum output frame rate of up to 111 FPS. We employed the Xilinx Power Estimator to
estimate power consumption. The ambient temperature is set at 60 ◦C, and power supplies

Sensors 2024, 24, 1333 23 of 26

are set as default values. The estimated total on-chip power results of our proposed
architecture are 1.812 W@50 MHz and 6.974 W@186 MHz. In the practical experiment,
we employed Cortex-M0 to control the ENABLE signal for the proposed infrared image
processor, and we observed the actual power consumption difference using a stabilized
voltage supply. The actual power consumption difference is approximately 1.8 W, which
is consistent with the simulation results. However, the sensor in our equipment cannot
support an output rate of 111 FPS. Therefore, the power consumption of our device under
theoretical limits can only be simulated in Vivado.

Table 1. Hardware resource consumption on XC7A100T-2 in the practical experiment.

Module LUT FF BRAM DSP48 IO

Our design 10,894 9367 4 5 0

Cortex-M0 4316 4892 8 3 26

TF card controller 1120 1536 5 0 12

DDR3 controller 7221 5630 0 0 75

Others components 1964 968 3 0 43

Overall
25,515

(40.24%)
22,393

(17.66%)
20

(15.19%)
8

(3.33%)
156

(54.74%)

6. Comparison and Discussion

Our proposed lightweight infrared image processor and existing infrared image pro-
cessing solutions are summarized in Table 2. First, it should be noted that our infrared
image sensor operates at a resolution of 640 × 480. In the Artix-7 series FPGA, it consumes
a total of 10,894 LUTs and 9367 registers. The clock frequency of the image processing
module is synthesized to be 186 MHz, resulting in a frame rate of 111FPS. However, due
to limitations in the performance of the infrared image sensor, the actual clock frequency
is 50 MHz, resulting in an image processing frame rate of 30 FPS. Our work focuses on
the implementation of a high-definition infrared image sensor. It can be observed that
among all the works, our infrared image sensor has a resolution of 640 × 480, which is
considered high definition for infrared imaging. This also implies that the captured images
may contain more noise. This means that compared to small-pixel infrared sensors, we
need to consume more hardware resources to process the captured images.

In fact, different FPGA manufacturing processes can lead to variations in performance
metrics such as operating frequency and power consumption. Additionally, the manu-
facturing process can impact the cost of the FPGA. Considering the diverse functional
requirements of each design, along with variations in FPGA manufacturing processes and
associated costs, providing an entirely fair comparison between these existing designs and
ours is challenging. Therefore, in Table 2, we showcase the characteristics and real working
performance metrics of each existing design. This information is intended to assist readers
in choosing different hardware design approaches, various infrared image processing
functionalities (TC: two-point correction, BC: blind pixel compensation, HE: histogram
equalization), and FPGAs with different manufacturing processes based on their specific
application scenarios.

The architecture, with 500 × 500 pixels in [16], is designed for multimodal image regis-
tration. Therefore, in this design, the requirements for infrared image processing capability
are comparatively lower than in our design. Due to the integration of a smaller number
of infrared image processing algorithms in [16], the resource overhead of its infrared pro-
cessing module is minimal, resulting in low power consumption and the ability to achieve
a higher frame rate output. However, the primary goal of our design is to focus on the
processing of infrared images to achieve higher image quality. Consequently, the integrated
infrared image processing algorithms in our design are more comprehensive, leading to
higher resource overhead and power consumption. The design in [17] is for the sensor with

Sensors 2024, 24, 1333 24 of 26

256 × 256 pixels. Therefore, although the design in [17] operates at a frequency similar to
that of our design, it supports a higher FPS. The low-power embedded architecture in [18]
is a specific design for NUC using the constant range algorithm. Therefore, the hardware
resource overhead and power consumption of this design are both at very low levels. Our
design, in comparison to [18], encompasses a greater range of functionalities for infrared
image processing. The designs [19,20] are similar to our design approach. The functions of
NUC and blind pixel compensation are integrated in [19]. For [20], several functions such
as geometric transformation, lens distortion correction, and image registration are included.
As our design marks the first application of SWF in the field of infrared image processing,
its edge-preserving effect allows our algorithm to retain edge information while handling
noise. Compared to [19,20], our approach not only eliminates noise but also preserves
image clarity to a greater extent. Additionally, in our design, histogram equalization is
applied before image output. As a result, our design is more conducive to the direct visual
observation of the processed infrared image results by the human eye.

Table 2. Implementation results and comparison with existing closely related designs.

Works Func. Frame Size Device Area Op. Freq.
(MHz)

Max.
FPS Power

[16]
TC!
BC%
HE%

500 × 500 AMD Zynq 7010
28 nm PL

3020 LUTs
4314 Registers

9.5 BRAM
43 DSPs

135 540 84 mW

[17]
TC!
BC!
HE%

256 × 256 Intel Stratix II
90 nm

19,596 ALUTs
20,118 Registers
225 KBytes RAM

148 9-bit DSPs

12.5 (Actual)
25 @12.5 MHz

180 @Max. — *

[18]
TC!
BC%
HE%

640 × 480 AMD Spartan-6
45 nm

503 LUTs
259 Registers

15 DSPs
100 238 13 mW

[19]
TC!
BC!
HE%

640 × 480 16 nm FPGA †

4293 LUTs
4261 Registers

5 BRAM
11 DSPs

300 — 2910 mW

[20]
TC!
BC!
HE%

320 × 240
AMD Zynq
Ultrascale+
14/16 nm

18,687 LUTs
32,007 Registers

26.5 BRAM
1 DSP

99 (Actual) 30 3710 mW

This
work

TC!
BC!
HE!

640 × 480 AMD Artix-7
28 nm

10,894 LUTs
9367 Registers

4 BRAM
5 DSPs

50 (Actual)
186 (Max.)

30 @50 MHz
111 @Max.

1800 mW @50 MHz
6.97 W @186 MHz

† No mention of the specific FPGA type. * Not mentioned. TC: two-point correction, BC: blind pixel compensation,
HE: histogram equalization.

7. Conclusions

In this article, we propose a lightweight real-time infrared image processor based on
FPGA. The processor utilizes the lightweight two-point correction algorithm introduced
in this paper to remove NUs in the original infrared images. An approximate blind
pixel detection algorithm is employed to calibrate blind pixels in the original infrared
images, eliminating the need for extensive iterative calculations. The processor adopts
a SWF blind pixel compensation algorithm based on SWF to handle blind pixels in the
infrared images while preserving a significant amount of details from the original image. A
lightweight histogram equalization algorithm is applied to enhance the processed infrared
images for better human observation. The processor is implemented on a lightweight
FPGA platform. At a working frequency of 50 MHz, the real-time processing speed of the
infrared images can reach 30 FPS, meeting the requirements for real-time infrared image

Sensors 2024, 24, 1333 25 of 26

processing. Vivado synthesis and implementation results indicate that the processor’s
maximum operating frequency can go up to 186 MHz. The simulation experiments and
practical tests on the FPGA demonstrate that the proposed infrared image processor exhibits
excellent processing results. It effectively eliminates NUs in infrared images, compensates
for blind pixels while retaining image details, and significantly enhances image contrast
through histogram equalization. Our final design exhibits considerable competitiveness
among similar products in the same category. Due to commercial confidentiality, we have
decided to release only a portion of the code for open-source purposes to assist colleagues
in replicating the experiments (https://github.com/FrankZhang1994/Lightweight-and-
Real-Time-Infrared-Image-Processor; accessed on 10 Februaru 2024). In the future, our
research plan involves leveraging the developed infrared image processor to explore the
recognition and calibration of various targets in processed infrared images.

Author Contributions: Conceptualization, X.W., X.H., X.Z., F.Z. and J.Z.; Methodology, X.W., X.H.,
X.Z., F.Z. and J.Z.; Software, X.H., X.Z. and F.Z.; Validation, X.W. and J.Z.; Formal analysis, X.W.;
Investigation, X.W., X.H., X.Z., F.Z. and J.Z.; Resources, J.Z.; Writing—original draft, X.W., X.H., X.Z.
and F.Z.; Writing—review and editing, X.W.; Supervision, F.Z. and J.Z.; Project administration, J.Z.;
Funding acquisition, F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China under Grant 2023YFF0719800.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data can be provided upon reasonable request to the correspond-
ing author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A

review. Appl. Energy 2014, 134, 531–549. [CrossRef]
2. Deng, Q.; Tian, W.; Huang, Y.; Xiong, L.; Bi, X. Pedestrian Detection by Fusion of RGB and Infrared Images in Low-Light

Environment. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), IEEE, Sun City,
South Africa, 1–4 November 2021; pp. 1–8.

3. Zafar, I.; Zakir, U.; Romanenko, I.; Jiang, R.M.; Edirisinghe, E. Human silhouette extraction on FPGAs for infrared night vision
military surveillance. In Proceedings of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System, IEEE,
Beijing, China, 1–2 August 2010; Volume 1, pp. 63–66.

4. Hurney, P.; Waldron, P.; Morgan, F.; Jones, E.; Glavin, M. Review of pedestrian detection techniques in automotive far-infrared
video. IET Intell. Transp. Syst. 2015, 9, 824–832. [CrossRef]

5. Budzier, H.; Gerlach, G. Thermal Infrared Sensors: Theory, Optimisation and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2011.
6. Jakonis, D.; Svensson, C.; Jansson, C. Readout architectures for uncooled IR detector arrays. Sens. Actuators A Phys. 2000,

84, 220–229. [CrossRef]
7. Ma, J.; Ma, Y.; Li, C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019, 45, 153–178.

[CrossRef]
8. Zhou, H.X.; Lai, R.; Liu, S.Q.; Wang, B.J.; Li, Q. A new real-time processing system for the IRFPA imaging signal based on

DSP&FPGA. Infrared Phys. Technol. 2005, 46, 277–281.
9. Roxhed, N.; Niklaus, F.; Fischer, A.C.; Forsberg, F.; Höglund, L.; Ericsson, P.; Samel, B.; Wissmar, S.; Elfving, A.; Simonsen, T.I.;

et al. Low-cost uncooled microbolometers for thermal imaging. In Proceedings of the Optical Sensing and Detection, SPIE,
Brussels, Belgium, 13 May 2010; Volume 7726, pp. 315–324.

10. Zhang, B.H.; Zhang, J.; Xu, H.; Miao, Z.; Liu, F. A Nonuniformity Correction Enhancement Method Based on Temporal Statistical
for Infrared System. In Proceedings of the 2012 Symposium on Photonics and Optoelectronics, IEEE, Shanghai, China, 21–23 May
2012; pp. 1–4.

11. Lianfa, B.; Xing, L.; Qian, C.; Baomin, Z. The hardware design of real-time infrared image enhancement system. In Proceedings
of the International Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; Volume 2,
pp. 1009–1012.

12. Cao, Y.; He, Z.; Yang, J.; Ye, X.; Cao, Y. A multi-scale non-uniformity correction method based on wavelet decomposition and
guided filtering for uncooled long wave infrared camera. Signal Process. Image Commun. 2018, 60, 13–21. [CrossRef]

https://github.com/FrankZhang1994/Lightweight-and-Real-Time-Infrared-Image-Processor
https://github.com/FrankZhang1994/Lightweight-and-Real-Time-Infrared-Image-Processor
http://doi.org/10.1016/j.apenergy.2014.08.005
http://dx.doi.org/10.1049/iet-its.2014.0236
http://dx.doi.org/10.1016/S0924-4247(00)00313-7
http://dx.doi.org/10.1016/j.inffus.2018.02.004
http://dx.doi.org/10.1016/j.image.2017.08.013

Sensors 2024, 24, 1333 26 of 26

13. Gao, M.; Li, S.; Zhu, L.; Bai, Y.; Wang, P.; Guan, N.; Wang, K.; Yin, H. An FPGA-based real-time infrared target detection system
with visual image positioning. In Proceedings of the AOPC 2022: Optical Sensing, Imaging, and Display Technology, SPIE,
Beijing, China, 23 January 2023; Volume 12557, pp. 284–289.

14. Leja, L.; Purlans, V.; Novickis, R.; Cvetkovs, A.; Ozols, K. Mathematical Model and Synthetic Data Generation for Infra-Red
Sensors. Sensors 2022, 22, 9458. [CrossRef] [PubMed]

15. Li, L.; Liu, W.; Lei, R.; Liu, L. Design and Implementation of Infrared Image Preprocessing System based on FPGA. In Proceedings
of the 2021 China Automation Congress (CAC), IEEE, Beijing, China, 22–24 October 2021; pp. 6220–6225.

16. Inostroza, F.; Díaz, S.; Cárdenas, J.; Godoy, S.E.; Figueroa, M. Embedded registration of visible and infrared images in real time
for noninvasive skin cancer screening. Microprocess. Microsyst. 2017, 55, 70–81. [CrossRef]

17. Rong, S.; Zhou, H.; Wen, Z.; Qin, H.; Qian, K.; Cheng, K. An improved non-uniformity correction algorithm and its hardware
implementation on FPGA. Infrared Phys. Technol. 2017, 85, 410–420. [CrossRef]

18. Redlich, R.; Figueroa, M.; Torres, S.N.; Pezoa, J.E. Embedded nonuniformity correction in infrared focal plane arrays using the
Constant Range algorithm. Infrared Phys. Technol. 2015, 69, 164–173. [CrossRef]

19. Njuguna, J.C.; Alabay, E.; Çelebi, A.; Çelebi, A.T.; Güllü, M.K. Field Programmable Gate Arrays Implementation of Two-Point
Non-Uniformity Correction and Bad Pixel Replacement Algorithms. In Proceedings of the 2021 International Conference on
INnovations in Intelligent SysTems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021; pp. 1–6. [CrossRef]

20. Lielāmurs, E.; Cvetkovs, A.; Novickis, R.; Ozols, K. Infrared Image Pre-Processing and IR/RGB Registration with FPGA
Implementation. Electronics 2023, 12, 882. [CrossRef]

21. Sosnowski, T.; Bieszczad, G.; Kastek, M.; Madura, H. Processing of the image from infrared focal plane array using FPGA-based
system. In Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems-MIXDES 2010,
IEEE, Wroclaw, Poland, 24–26 June 2010; pp. 581–586.

22. Bieszczad, G. SoC-FPGA embedded system for real-time thermal image processing. In Proceedings of the 2016 MIXDES-23rd
International Conference Mixed Design of Integrated Circuits and Systems, IEEE, Lodz, Poland, 23–25 June 2016; pp. 469–473.

23. Tasu, C.K.; Nguyen, D.H.; Choubey, B.; Chao, P.C.P. High-performance infrared image processing with gray-scale dynamic range
correction implemented by FPGA. Microsyst. Technol. 2022, 28, 2235–2248. [CrossRef]

24. Lloyd, J.M. Thermal Imaging Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
25. Kumar, A.; Sarkar, S.; Agarwal, R.P. A novel algorithm and FPGA based adaptable architecture for correcting sensor non-

uniformities in infrared system. Microprocess. Microsyst. 2007, 31, 402–407. [CrossRef]
26. Harris, J.G.; Chiang, Y.M. Nonuniformity correction of infrared image sequences using the constant-statistics constraint. IEEE

Trans. Image Process. 1999, 8, 1148–1151. [CrossRef] [PubMed]
27. Milton, A.; Barone, F.; Kruer, M. Influence of nonuniformity on infrared focal plane array performance. Opt. Eng. 1985, 24, 855–862.

[CrossRef]
28. Venkateswarlu, R.; Er, M.H.; Gan, Y.H.; Fong, Y.C. Nonuniformity compensation for IR focal plane array sensors. In Proceedings

of the Infrared Technology and Applications XXIII, SPIE, Orlando, FL, USA, 13 August 1997; Volume 3061, pp. 915–926.
29. Bernstein, R. Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Trans. Circuits Syst.

1987, 34, 1275–1291. [CrossRef]
30. Ibrahim, H.; Kong, N.S.P.; Ng, T.F. Simple adaptive median filter for the removal of impulse noise from highly corrupted images.

IEEE Trans. Consum. Electron. 2008, 54, 1920–1927. [CrossRef]
31. Tchendjou, G.T.; Simeu, E. Detection, location and concealment of defective pixels in image sensors. IEEE Trans. Emerg. Top.

Comput. 2020, 9, 664–679. [CrossRef]
32. Chan, C.H. Dead Pixel Real-Time Detection Method for Image. U.S. Patent 7,589,770, 15 September 2009.
33. Chen, C.W.; Cho, C.Y.; Sun, Y.F.; Chen, T.M.; Su, C.L. Low complexity photo sensor dead pixel detection algorithm. In Proceedings

of the 2012 IEEE Asia Pacific Conference on Circuits and Systems, IEEE, Kaohsiung, Taiwan, 2–5 December 2012; pp. 360–363.
34. Yongji, L.; Xiaojun, Y. A Design of Dynamic Defective Pixel Correction for Image Sensor. In Proceedings of the 2020 IEEE

International Conference on Artificial Intelligence and Information Systems (ICAIIS), IEEE, Dalian, China, 20–22 March 2020;
pp. 713–716.

35. Budzier, H.; Gerlach, G. 1.1-Calibration of Infrared Cameras with Microbolometers. In Proceedings of the IRS2 2015, Nürnberg,
Germany, 19–21 May 2015; pp. 889–894.

36. Zuo, C.; Chen, Q.; Gu, G.; Sui, X. Scene-based nonuniformity correction algorithm based on interframe registration. JOSA A 2011,
28, 1164–1176. [CrossRef]

37. Schulz, M.; Caldwell, L. Nonuniformity correction and correctability of infrared focal plane arrays. Infrared Phys. Technol. 1995,
36, 763–777. [CrossRef]

38. Isoz, W.; Svensson, T.; Renhorn, I. Nonuniformity correction of infrared focal plane arrays. In Proceedings of the Infrared
Technology and Applications XXXI, SPIE, Orlando, FL, USA, 28 March–1 April 2005; Volume 5783, pp. 949–960.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22239458
http://www.ncbi.nlm.nih.gov/pubmed/36502160
http://dx.doi.org/10.1016/j.micpro.2017.09.006
http://dx.doi.org/10.1016/j.infrared.2017.07.007
http://dx.doi.org/10.1016/j.infrared.2015.01.026
http://dx.doi.org/10.1109/INISTA52262.2021.9548499
http://dx.doi.org/10.3390/electronics12040882
http://dx.doi.org/10.1007/s00542-022-05286-9
http://dx.doi.org/10.1016/j.micpro.2006.10.003
http://dx.doi.org/10.1109/83.777098
http://www.ncbi.nlm.nih.gov/pubmed/18267532
http://dx.doi.org/10.1117/12.7973588
http://dx.doi.org/10.1109/TCS.1987.1086066
http://dx.doi.org/10.1109/TCE.2008.4711254
http://dx.doi.org/10.1109/TETC.2020.2976807
http://dx.doi.org/10.1364/JOSAA.28.001164
http://dx.doi.org/10.1016/1350-4495(94)00002-3

	Introduction
	Background
	Related Works
	Motivation
	Contribution and Paper Structure

	Preliminary
	Non-Uniformity of the Infrared Sensors
	Blind Pixels of the Infrared Sensors

	Proposed Lightweight Infrared Image Processing Algorithm
	Calibration Algorithm
	Blind Pixel Detection Algorithm
	Blind Pixel Compensation Algorithm Based on Side Window Filtering
	Image Enhancement Algorithm

	Proposed Lightweight Infrared Image Processor Architecture
	Overall Architecture
	Infrared Image Interface Module
	Lightweight Two-Point Correction Module
	Lightweight Blind Pixel Detection Module
	Lightweight SWF Blind Pixel Compensation Module
	Histogram Equalization Module

	Experiments and Results
	Algorithm Simulation on FPGA
	FPGA Implementation Results
	Practical Experiment
	Implementation

	Comparison and Discussion
	Conclusions
	References

