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Abstract: Volatile organic compounds (VOCs) in exhaled human breath serve as pivotal biomarkers
for disease identification and medical diagnostics. In the context of diabetes mellitus, the noninvasive
detection of acetone, a primary biomarker using electronic noses (e-noses), has gained significant
attention. However, employing e-noses requires pre-trained algorithms for precise diabetes detection,
often requiring a computer with a programming environment to classify newly acquired data. This
study focuses on the development of an embedded system integrating Tiny Machine Learning
(TinyML) and an e-nose equipped with Metal Oxide Semiconductor (MOS) sensors for real-time
diabetes detection. The study encompassed 44 individuals, comprising 22 healthy individuals and
22 diagnosed with various types of diabetes mellitus. Test results highlight the XGBoost Machine
Learning algorithm’s achievement of 95% detection accuracy. Additionally, the integration of deep
learning algorithms, particularly deep neural networks (DNNs) and one-dimensional convolutional
neural network (1D-CNN), yielded a detection efficacy of 94.44%. These outcomes underscore the
potency of combining e-noses with TinyML in embedded systems, offering a noninvasive approach
for diabetes mellitus detection.

Keywords: electronic nose; diabetes mellitus; TinyML; exhaled-breath analysis; VOCs; TensorFlowLite

1. Introduction

Diabetes mellitus represents a prevalent chronic disease demanding continuous moni-
toring and control due to its costly complications [1,2]. Neglecting proper care can diminish
life expectancy and lead to severe complications such as nervous system damage, strokes,
heart attacks, vision and kidney issues, and an increased risk of premature death [3–7].
This condition arises from either insufficient insulin production or the body’s ineffective
use of it. Globally, over 530 million people live with diabetes, with projections indicating
a staggering increase to 783 million by 2045. This surge is expected to drive healthcare
expenses from USD 966 billion in 2021 to an estimated USD 1.054 trillion by 2045 [8,9].

While type 2 diabetes (T2DM) constitutes 90% of cases and can be managed with
lifestyle changes like increased physical activity, reduced smoking, and timely diagno-
sis [10], type 1 diabetes (T1DM) lacks preventive measures and requires the continual
monitoring of blood glucose levels (BGLs) alongside proper insulin administration [11,12].
Early diagnosis remains pivotal in managing diabetes. However, traditional detection
methods, involving invasive blood extractions for BGL measurement, present drawbacks
such as pain, ongoing strip costs, and disease transmission risks like hepatitis and human
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immunodeficiency virus (HIV) [13–15]. Consequently, the exploration of noninvasive tech-
niques for diabetes detection, such as tear, saliva, urine, and breath analysis, has gained
attention, although with limitations like inaccuracies in measuring minimal BGL, high
sensitivity, and low detection limits [16–20].

Exhaled human breath analysis emerges as a promising noninvasive method with po-
tential for medical diagnostics. Human breath contains VOCs, serving as biomarkers for var-
ious diseases and enabling monitoring, prediction, prognosis, and risk assessment [21–24].
Some breath components indicating diseases are depicted in Figure 1. Identifying these
biomarkers involves analyzing VOCs’ composition in healthy and diseased individuals.
Notably, pulmonary biomarkers aid in understanding respiratory system-related processes
and changes [25]. Clinical research on breath biomarkers has predominantly focused on
diseases like lung cancers and asthma [26,27], cystic fibrosis [28], tuberculosis diagnosis [29],
myocardial infarction [30], colorectal cancer [31], head and neck cancer [32], analysis in
respiratory failure patients [33], gastric cancer detection [34], and importantly, metabolic
disorders like diabetes [16,35–38].
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Acetone, identified as a biomarker for diabetes in exhaled breath, presents lower
concentrations in healthy individuals than in those with diabetes, supporting the esti-
mation of BGL by correlating this biomarker with BGL ranges linked to elevated blood
ketone [35,36,38–40]. Variability among patients is significant, as pathological changes
alter breath composition, rendering human breath unique to everyone, akin to a finger-
print [27,35]. Additionally, the relative humidity (RH) and temperature of exhaled breath
vary between 41.9% and 97% and between 31.4 ◦C and 34.8 ◦C, respectively [35].

Implementing advanced systems for breath analysis and diabetes, such as GC/MS
(gas chromatography–mass spectrometry) [41], SIFT-MS (selected ion flow tube mass
spectrometry) [42], and PTR-MS (proton transfer reaction–mass spectrometry) for detecting
VOCs [43], proves expensive and demands specialized analysis [16,35].

Conversely, portable e-noses garner interest due to their noninvasive nature and swift
response time in medical diagnosis; these devices can analyze breath components [16,23,24,35,37].
The use of integrated gas sensors, particularly those in the MQ series, has been widely
reported in the literature, demonstrating reliability in detecting diabetes mellitus through
exhaled human breath analysis [23,35,44–46]. Previous clinical studies in diabetes mellitus
employed algorithms based on VOC features selection and extraction using Principal
Component Analysis (PCA) [38,44–48]. Regression models in breath analysis provide
quantitative BGL results with 90.4% accuracy [49].

Furthermore, qualitative prediction of diabetes has been validated using classical
algorithms like Support Vector Machines (SVMs), K-nearest neighbors (KNN), and artificial
neural networks [16,44,50]. Advanced machine learning and deep learning algorithms
reveal superior accuracy in classifying healthy and diabetic patients, as well as among
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healthy, T1DM, and T2DM patients [16,35,38]. One-dimensional CNNs combined with SVM
for feature extraction achieve 98% accuracy [51,52], while DNNs reach 96.29% accuracy
in multilevel diabetes classification [44]. Decision tree-based algorithms like Random
Forest [48] and XGBoost demonstrate 99% accuracy in artificial breath analysis, effectively
avoiding overfitting issues [50].

Hence, utilizing e-noses for exhaled human breath analysis and integrating machine
learning for diabetes detection present certain limitations [35]. Integrating new breath
samples into a trained algorithm requires a computer, analyzing differences between
samples from sick and healthy individuals [44,51,52]. However, there is a solution to this
limitation using TinyML, offering edge artificial intelligence (AI) capable of processing data
locally, without the need for data transfer, preserving information, reducing latency, energy
consumption, and enhancing data privacy/security [53–56].

This approach meets all the requirements of cutting-edge AI computing and enables
the efficient processing and classification of data quality [57,58], independent of resource-
consuming cloud services or a computer for classifying new VOC-collected data [59]. In
human breath analysis, the integration of TinyML and sensors as a noninvasive technique
has been effective in predicting respiratory diseases such as chronic obstructive pulmonary
disease (COPD) [60]. Moreover, it has shown success in the prediction of the BGLs of
patients with T1DM with a CGM sensor and a recurrent neural network that builds on
long-short term memory (LSTM) [61]. This tool has proven effectiveness in the broader
health domain [62], facilitating predictions of vital metrics such as blood pressure, cough
detection, the pre-screening of oral tongue lesions, and employing a head imaging system
for brain stroke detection [63–66].

This research offers an application opportunity in medical diagnosis, explores a nonin-
vasive approach, and offers a rapid, secure, and painless diagnostic alternative. It proposes
integrating TinyML and Edge AI into an embedded system with an e-nose, combining
advanced machine learning algorithms with deep neural networks for real-time detection
and classification between healthy patients and patients with diabetes mellitus through
exhaled human breath. The study aims to develop and implement an easily accessible
device based on breath analysis, secure, and offering real-time early diagnosis. These
contributions offer real-time classification using TinyML, resulting in low energy consump-
tion and enabling machine learning applications through an e-nose for medical diagnosis
without the need for a computer to process and classify new VOCs data from tests in
healthy and sick patients. This can be implemented with any microcontroller compatible
with TensorFlow Lite technology, validated through tests with healthy patients, patients
with T1DM, and patients with T2DM.

2. Materials and Methods

The proposed e-nose system was developed for the analysis of breath samples ob-
tained from two distinct groups: healthy individuals (HIs) and individuals diagnosed
with diabetes mellitus (DMI) with T1DM or T2DM. To ensure the reliability of our mea-
surements, the measurement system employed various preprocessing and normalization
techniques aimed at mitigating atypical sensor noise. This section outlines the essential
components of the e-nose, encompassing the selected gas sensors, the microcontroller, and a
comprehensive overview of the system’s functionality. Furthermore, it provides an in-depth
description of the calibration process specifically conducted for the MOS sensors, explains
the breath sample collection procedure, and furnishes pertinent physical information about
the study participants. The techniques utilized for preprocessing measurements and feature
selection are also meticulously detailed.

2.1. E-Nose and Gas Sensors

The e-nose utilized in this study is depicted in Figure 2, featuring an array of 6 sen-
sors housed within an acrylic sample chamber measuring 15 cm × 15 cm × 14 cm or
15 × 15 × 14 cm3 with a capacity of 3.5 L. Exhaled-breath samples from the participants
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were collected using Tedlar sample bags, each with a volume of 1 L. This widely acknowl-
edged method of sample collection is commonly employed in breath sample analysis
studies [35,45–48].
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Figure 2. E-nose, dehumidifier, and Tedlar bag for breath samples.

Given the primary focus of this study on identifying acetones as a marker for detecting
DMI, the e-nose integrated catalytic gas sensors or MOS sensors from the MQ series
(Waveshare, Shenzhen, China). These sensors are capable of detecting compounds such
as carbon monoxide, alcohol, ketones, VOCs, temperature, and RH. The selection criteria
for the implemented sensors are based on similar research for the detection of diabetes
mellitus from exhaled breath [16,35,44–46]. Table 1 presents the sensors incorporated into
the proposed system along with their respective gas detection ranges.

Table 1. Sensors used in proposed e-nose system.

Sensor Target Gases Detection Range of
Target Gas

Sensor
Materials

Environment Condition
Working

MQ–2 H2, LPG, CH4, CO,
alcohol, propane, air 200–10,000 ppm CO

Gas-sensing layer: SnO2
Electrode: Au

Electrode line: Pt
Heater coil: Ni-Cr alloy
Tubular ceramic: Al2O3
Anti-explosion network:

stainless steel gauze (SUS316
100-mesh)

Clamp ring: copper-plated Ni
Resin base: Bakelite

Tuber pin: copper-plated Ni

Temperature: −10–50 ◦C
RH: less than 95%

Standard detecting
condition:

20 ◦C ± 2 ◦C
temperature,

65% ± 5% humidity

MQ–3
Alcohol, benzine,

CH4, hexane, LGP,
CO, air

0.1–10 mg/L
alcohol

MQ–7 H2, CO, LPG, CH4,
alcohol, air 50–4000 ppm CO

MQ–135
CO2, alcohol, air,

NH4, toluene,
acetone, CO

0–200 ppm acetone

MQ–138
Benzene, CO, CH4,
n-hexane, alcohol,

propane, air

200–10,000 ppm
benzene



Sensors 2024, 24, 1294 5 of 24

Table 1. Cont.

Sensor Target Gases Detection Range of
Target Gas

Sensor
Materials

Environment Condition
Working

DHT–22 Temperature,
relative humidity

−40 ◦C–80 ◦C
temperature,

0–100% relative
humidity

Humidity-sensitive capacitive
element: polymer material with high

dielectric constant
Thermistor: ceramic

semiconductor material
Housing: durable plastic or resin
Electrical connectors: copper or

gold-plated metals

Temperature: 0–50 ◦C
RH: 0–100%

MICS–5524 CO, VOCs, C2H6OH,
H2, NH3, CH4

1–1000 ppm VOCs

Catalytic detection electrode: Pt
Counter electrode: Pt
Ceramic components:

fabrication of the sensor
substrate

Metallic components: steel wires or
other metallic materials used in the

construction of the sensor
encapsulation

Temperature:
23 ◦C ± 5 ◦C

RH: less than 95%

To monitor humidity levels within the sample chamber, a DHT-22 sensor was included
due to the MOS sensor’s sensitivity to high RH present in exhaled-breath samples, which
could potentially impact measurement outcomes. The high RH of exhaled air affects the
results of the measurements, especially those performed with the use of MOS sensors [16,35].
To address this concern, a portable source 24V DC, 25-watt dehumidifier was integrated
into the system. This dehumidifier effectively reduced RH levels within the e-nose sample
chamber before and after each measurement session, ensuring a stable environment for
accurate sensor readings throughout a 3-min duration.

The e-nose system utilized in our experiment incorporates the Arduino Nano 33 BLE
Sense due to its compatibility with integrating deep learning models using TensorFlow
Lite and TinyML. Its standout features include a 12-bit ADC resolution and a 32-bit ARM
Cortex-M4 processor. The implementation of TinyML allows for the direct execution of
machine learning models on the device [53], thereby optimizing performance and efficiency
in diabetes mellitus detection through the e-nose, as illustrated in Figure 3. Additionally, an
LCD screen was included via the I2C communication bus for displaying temperature, RH,
and relevant gas detection in parts per million (ppm). Before integrating the TensorFlow
model into the microcontroller, the process involves breath sample collection through a
serial communication protocol using Python version 3.11. The collected measurements
from each patient’s tests were stored in an Excel (.csv) file. The calibration of the gas sensors
is detailed in Section 2.3 before preprocessing and feature selection are discussed.
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2.2. Gas-Sensing Mechanism

The gas-sensing mechanism of each sensor utilized in this study is described below:

• Gas sensors of the MQ series: The sensing mechanism is based on the principle of
detecting changes in the electrical conductivity of a semiconductor material when
exposed to specific gases. These sensors consist of a thin layer of metal oxide deposited
on a ceramic or glass substrate. Upon interaction with gases, chemical reactions occur
on the surface of the semiconductor material, initiating with the adsorption of gas
molecules. This process alters the electronic structure of the metal oxide layer, resulting
in a change in its electrical conductivity. The magnitude of this conductivity change
is directly proportional to the concentration of the target gas in the environment,
facilitating the determination of gas presence and concentration [16,24,35,37].

• MICS-5524 sensor: The gas-sensing mechanism relies on an electrochemical detection
principle to measure the concentration of specific gases in the environment. This
sensor is constructed with a catalytic detection electrode sensitive to the target gas
and a counter electrode. Upon coming into contact with the target gas, a chemical
reaction occurs at the detection electrode, generating an electric current proportional
to the gas concentration. This electric current is then amplified and converted into an
output signal that can be measured and quantified to determine the concentration of
the target gas. This process enables the precise and sensitive detection of gases across
a wide range of applications [16,23,24].

• DHT-22 sensor: The sensor operates based on capacitive humidity sensing coupled
with a thermistor for temperature measurement. This sensor comprises a humidity-
sensitive capacitive element and a thermistor enclosed within its housing. The ca-
pacitive element detects changes in electrical capacitance caused by variations in the
surrounding air’s moisture content, facilitating precise humidity measurements. Si-
multaneously, the thermistor measures temperature variations by detecting changes
in its electrical resistance. Both humidity and temperature data are then processed and
outputted by the sensor, providing accurate and reliable environmental measurements.
This combination of capacitive humidity sensing and thermistor-based temperature
measurement ensures the effectiveness of the DHT-22 sensor in various applications
requiring precise monitoring of humidity and temperature levels [67,68].

2.3. Sensor Calibration and Patient Breath Sample Collection

Due to the sensitivity of the MQ gas sensors, calibration was conducted under vary-
ing RH conditions and clean air ranges to obtain the characteristic gas detection curve,
excluding the DHT-22 and MICS-5524 sensors, as their curves are provided in their respec-
tive datasheets. Notably, MQ sensors require a maximum preheating time of 48 h using a
switched voltage source before initial use. The calibration procedure was executed at MetAs
S.A. de C.V. laboratories in Ciudad Guzmán, Jalisco, Mexico. The essential instruments
employed for calibration included a precision 4.5-digit Agilent U1233A digital multimeter
and an Extech Sd700 Datalogger for temperature and RH measurement, as depicted in
Figure 4.

The environmental conditions were maintained at 55–65% RH and in a temperature
range of 20–22 ◦C, crucial for establishing the sensitivity characteristic relationship between
sensor resistance, Ro, and measured resistance, Rs, as shown in Equation (1) below.

Rs
Rl

=
V − Vs

Vs
(1)

Here, V represents the supplied voltage to the sensor, and Vs is the current sensor
reading in volts, while Rl corresponds to the fixed load resistance. Equation (2) signifies
the Ro value when the sensor operates in clean-air conditions:

Ro =
Rs

Clean Ratio
(2)
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Using a programmed routine involving regression and extraction of target gas curve
points for each sensor, the respective potential equation is derived. After sensor calibration,
breath samples were collected and measured from a total of 44 participants. Among them,
22 were HI, 8 were individuals with T1DM (T1DMI), and 14 were individuals with T2DM
(T2DMI). All participants provided their consent to participate in the experimental study
by signing a consent form. The e-nose system was initialized five minutes in advance to
preheat the internal sensor resistances and stabilize temperature and RH values within the
sample chamber.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 26 
 

 

instruments employed for calibration included a precision 4.5-digit Agilent U1233A digi-
tal multimeter and an Extech Sd700 Datalogger for temperature and RH measurement, as 
depicted in Figure 4. 

 
Figure 4. Calibration procedure for MQ gas sensors in a space with optimal RH conditions. 

The environmental conditions were maintained at 55–65% RH and in a temperature 
range of 20–22 °C, crucial for establishing the sensitivity characteristic relationship be-
tween sensor resistance, Ro, and measured resistance, Rs, as shown in Equation (1) below. 

Rs
Rl  = V − Vs

Vs  (1)

Here, V represents the supplied voltage to the sensor, and Vs is the current sensor 
reading in volts, while Rl corresponds to the fixed load resistance. Equation (2) signifies 
the Ro value when the sensor operates in clean-air conditions: 

Ro = Rs
Clean Ratio (2)

Using a programmed routine involving regression and extraction of target gas curve 
points for each sensor, the respective potential equation is derived. After sensor calibra-
tion, breath samples were collected and measured from a total of 44 participants. Among 
them, 22 were HI, 8 were individuals with T1DM (T1DMI), and 14 were individuals with 
T2DM (T2DMI). All participants provided their consent to participate in the experimental 
study by signing a consent form. The e-nose system was initialized five minutes in ad-
vance to preheat the internal sensor resistances and stabilize temperature and RH values 
within the sample chamber. 

The dataset includes sensor measurements for the respective target gases in ppm and 
Rs/Ro values, along with temperature and RH measurements. Participants were in-
structed to inhale to their maximum lung capacity and exhale completely through a res-
piratory mouthpiece connected to Tedlar bags, filling them to 90–100% capacity, as de-
picted in Figure 5. Additionally, their BGL was measured using a glucometer to confirm 
their status as either HI or DMI. 

Figure 4. Calibration procedure for MQ gas sensors in a space with optimal RH conditions.

The dataset includes sensor measurements for the respective target gases in ppm and
Rs/Ro values, along with temperature and RH measurements. Participants were instructed
to inhale to their maximum lung capacity and exhale completely through a respiratory
mouthpiece connected to Tedlar bags, filling them to 90–100% capacity, as depicted in
Figure 5. Additionally, their BGL was measured using a glucometer to confirm their status
as either HI or DMI.
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After breath collection, a waiting period of 5–10 min was observed before transferring
the breath sample to the e-nose. This ensured a temperature reduction within the Tedlar bag.
On average, across all participants, there was an average RH of 69.745% and a temperature
of 32.905 ◦C. Measurements were taken for 90 s during the transfer of the breath sample
from the Tedlar bag to the sample chamber. Using Python encoding and serial connection,
10,000 measurement values were acquired per patient per test.

Physical information about the recruited participants, including age, gender, Body
Mass Index (BMI), among other parameters, is presented in Table 2.

Table 2. Physical information of 44 participants.

Parameter Healthy Patients Diabetes Mellitus Patients

Age (yr.) 23.64 ± 2.19 29.95 ± 4.24
Height (cm) 1.72 ± 0.12 1.69 ± 0.12
Weight (kg) 72.16 ± 10.38 76.80 ± 11.42

BMI (kg/m2) 24.47 ± 4.02 27.33 ± 6.20
Gender (M/F) 13 M/9 F 10 M/12 F

Number of participants by healthy individuals (HI)
or type of diabetes mellitus (T1DMI/T2DMI) 22 HI 8 T1DMI/14 T2DMI

Minimum and maximum BGL (mg/dL) 80.59/94.63 139.28/303.10

2.4. Data Preprocessing and Feature Selection

After collecting the dataset for each patient, preprocessing was crucial to mitigate
signal noise caused by the inherent variability in RH, breath temperature, and voltage
fluctuations from the power source [35]. The Discrete Wavelet Transform (DWT) was
applied in Python to achieve this goal. DWT decomposes the signal into components of
different scales and frequencies, enabling the identification and elimination of noise [44].
Equation (3) illustrates the governing equation for DWT:

DWT(f, a, b) =
1√
a

∫ ∞

∞
f(t)ψ

(
t − b

a

)
dt (3)

where f is the original signal, ψ represents the mother wavelet function, and a and b are
scale and translation parameters, respectively. In the context of data processing, signal
filtering was performed using DWT to remove noise. The “VisuShrink” thresholding
method was employed to reduce wavelet transform coefficients. This involved visually
inspecting coefficients and deciding which to retain or discard. Equation (4) illustrates the
key thresholding criterion:

ShrinkageVisu(x, λ) = sign(x)(|x| − λ)+ (4)

where x represents wavelet coefficients, λ is the threshold, sign(·) is the sign function, |x| is
the magnitude of coefficients, and (|x| − λ)+ is the soft threshold, setting values below λ to
zero. The “soft” thresholding mode was chosen to achieve a smooth thresholding effect.
Equation (5) demonstrates this method by eliminating coefficients below the threshold and
proportionally reducing others:

ShrinkageSoft(x, λ) = sign(x)·max(|x| − λ, 0) (5)

The decomposition level was determined based on Equation (6), which equaled 1, a
significant value balancing signal integrity and noise sensitivity. The “db6” Daubechies 6
wavelet was chosen for its signal compression and noise elimination nature.

Fq

2L+1 ≤ Fchar ≤
Fq

2L (6)
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where Fq represents the sampling frequency, Fchar denotes the dominant frequency, and
L signifies the decomposition level. Subsequently, feature scaling was conducted using
Z-score normalization for CO, alcohol, acetone, ketones, humidity, and temperature sensor
readings; this process ensured all signals were standardized onto a similar scale, exhibiting
properties akin to a normal distribution, thereby facilitating comparison and analysis
within the study. Equation (7) demonstrates Z-score normalization, also known as standard
normalization [35,44,49].

Z =
X − µ
σ

(7)

where X represents the original sample value, µ is the sample mean, and σ is the sample
standard deviation. After noise removal and the normalization of the signal, the average
value of each sensor in the individual participant’s test was obtained.

Figure 6 displays the Rs/Ro signals acquired from the MQ-135 and MQ-2 MOS sensors,
illustrating the variability in sensor sensitivity concerning BGL for HI (92.5 mg/dL), T1DMI
(139.28 mg/dL), and T2DMI (180.10 mg/dL). The amplitude is higher for HI due to the
resistance relationship and lower ketone presence, aligning with the characteristic curve
provided in the datasheet. As the ppm concentration increases, the Rs/Ro ratio decreases.
In the case of the MQ-2, similar behavior is observed between T1DMI and T2DMI regarding
Rs/Ro ratios, while HI patients exhibit minimal carbon monoxide concentration.
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carbon monoxide.

Focusing on the Rs/Ro values from the MQ sensors was chosen due to noticeable
differences being observed among the measurements. Additionally, given the minimal
variations in ppm levels between participants within both the HI group and the DMI group,
emphasis was placed on the sensor voltage values from the MICS-5524 and the RH and
temperature data from the DHT-22 sensor.

A statistical method based on feature selection was applied to retain the most infor-
mative data, even though our e-nose sensor matrix comprises only seven characteristics
or measurement parameters [35]. This differs from other e-noses containing responses
from ten different gas sensors [48]. Nevertheless, reducing the number of characteristics
enhances the accuracy of machine learning and deep learning models. This optimiza-
tion also speeds up training and reduces computational complexity, helping to prevent
overfitting [35,36,47].

The univariate feature selection algorithm was implemented to refine the sensor fea-
tures, aiming to enhance model precision while mitigating the risk of overfitting. This
method evaluates the statistical relevance of each feature using a score function. The
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parameter “best features” was set to 4, indicating the desired number of features for se-
lection. Subsequently, by extracting the indices of the selected features, specific sensor
attributes that significantly contribute to the classification process were identified. Figure 7
illustrates the importance scores of the selected characteristics from each sensor. Notably,
the measurements of acetone by the MQ-135 sensor and carbon monoxide by the MQ-2
sensor exhibited significant contributions. Consequently, only the top 4 selected character-
istics from this process, including carbon monoxide, alcohol, acetone, and benzene, were
utilized in the machine learning and deep learning models before training [44,46]. This
feature selection process efficiently reduced the number of sensor attributes while retaining
the most informative ones [35], thereby enhancing the performance and computational
efficiency of our e-nose-based models post-training and conversion into TensorFlow Lite
for the embedded system [53,55].
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Figure 7. Importance scores of selected features from the breath sample dataset.

As part of the breath sample analysis, emphasis was placed on the acetone values in
the Rs/Ro relationship between the HI and DMI groups; In Figure 8, a density range of
30–32, with a confidence interval of 28–30, was notable for the HI group, corresponding to
BGL levels between 80.59 and 94.63 mg/dL. In contrast, for patients with T1DM or T2DM,
the range was between 22 and 24, corresponding to BGL levels of 139.28–303.10 mg/dL.
Based on measurements from the 44 participants, it was assumed that the exhaled-breath
concentrations for an HI individual are <0.8 ppm, while for a DMI individual, they are
≥1.2 ppm.
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Furthermore, in Figure 9, a similar pattern is observed for the values of carbon monox-
ide in the exhaled breath among participant groups. A significant density range between 33
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and 35 is noted for DMI, while a noticeable difference is observed for the HI group within
the range of 44–47.
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Before integrating the data into training the machine learning and deep learning
models, PCA was utilized as an unsupervised learning technique solely for visualizing
the optimal separability or classification of breath samples from each patient (this process
does not form part of the TinyML integration) [16,35,46]. PCA ensures that the princi-
pal components remain uncorrelated. This algorithm identifies the axis that retains the
highest variance within the training dataset, producing a set of mutually orthogonal axes
equal to the dimension of the features [45,47,48]. Equation (8) mathematically represents
this process:

Xd = X · Wd (8)

where Xd represents the outcome of the dimensionality reduction, and d signifies the
desired number of dimensions. X denotes the matrix of the original dataset, and Wd
represents a matrix comprising the first principal component values derived from the
singular value decomposition (SVD) method.

Figure 10 illustrates the clustering of breath samples from each patient, demonstrating
the separability of the data based on the variance in BGL between HI and those diagnosed
with T1DM or T2DM. In this case, the percentage of variance explained by PC1 corresponds
to 55%, while PC2 accounts for 34%, and PC3 for 6%. Patients with diabetes exhibited higher
BGL compared to the healthy group. This figure effectively demonstrates the distinction
between these normal and high BGL groups and their direct correlation with the collected
breath samples. Such a metric possesses the capability to differentiate between HI and DMI,
emphasizing its pivotal role in developing machine learning and deep learning models that
avoid overfitting for the classification of new data.
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3. Results

This section focuses on the training and classification of models compatible with
TinyML, as employed in this study. The models include an Extreme Gradient Boosting
(XGBoost) machine learning model, a fully connected deep neural network (Dense NN), and
1D-CNN. Comparative results are presented across various classic machine learning models,
with a focus on scoring metrics, particularly recall, F1-score (or specificity), and the Area
Under the Receiver Operating Characteristics (ROC) curve (AUC-ROC). This integration
serves as a prerequisite for implementation into an integrated system using TinyML,
facilitating qualitative classification between HI and DMI groups [45,50]. Additionally, we
conducted a comparison of classification times for newly exhaled-breath samples using the
trained algorithms. Furthermore, the byte size of the models, converted into TensorFlow
Lite and C++ language for the Arduino microcontroller [53], is detailed to achieve an
embedded system.

3.1. Classification with XGBoost

The XGBoost algorithm has demonstrated remarkable effectiveness in analyzing hu-
man breath to identify acetone biomarkers, showcasing its viability due to its high efficiency
in handling missing data [48,50]. Its performance benefits further from parallelization and
hardware optimization, setting it apart from other machine learning algorithms by being
less impacted by feature scale differences [35]. Given the limited number of participants in
the dataset, a 55% split for training and a 45% split for testing were employed. Using the
selected number of features, a binary logistic classification model was trained. Hyperpa-
rameter tuning was carried out through grid search and a 5-fold cross-validation method,
consistently demonstrating performance in line with similar studies. The best model
achieved an accuracy of 95%. Table 3 provides details on the optimal hyperparameters
obtained after training the data.

Table 3. Optimal hyperparameters for XGBoost using grid search and cross-validation.

Parameter Value

Learning rate 0.05
Max depth 3

N estimators 100
Regularizes (alpha and lambda) 1, 0.1

Following hyperparameter tuning, a learning curve was generated, as depicted in
Figure 11, derived from the mean and standard deviation of model accuracy scores across
each training and cross-validation fold. The classification report in Table 4 underscores the
importance of recall values, particularly in the classification of HI patients. It highlights the
model’s ability to correctly identify individuals with diabetes, minimizing false negatives,
a crucial aspect for an early and precise detection approach, enabling timely medical
interventions [16,35,36,50].

In terms of precision, the algorithm proves effective in detecting DMI with accuracy
in most cases, demonstrating an important recall of 90%. However, precision alone does
not account for false negatives, indicating individuals with diabetes that the model fails
to identify. Thus, while high precision ensures correct positive predictions, it may not be
sufficient if the model has a high rate of false negatives, potentially leading to the omission
of people with diabetes mellitus [44–49].

Figure 12 visually illustrates instances where the model incorrectly predicts an indi-
vidual as healthy (negative class) when they have diabetes (positive class), representing a
type II error. Out of a total of 20 instances, the model correctly predicted 10 cases of HI and
9 cases of DMI.
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3.2. Classification with Deep Neural Networks

The DNN model is structured on a sequential architecture, allowing for adaptability
during conversion to a TensorFlow Lite file for subsequent deployment on the microcon-
troller. The dataset is divided, allocating 60% for training and 40% for testing. Furthermore,
the training dataset is subdivided, with 60% representing the original data for training and
an additional 25% for validation.

The model parameters include a fully connected layer architecture within a sequential
model. The input layer comprises 20 neurons with the “ReLu” activation function, followed
by a hidden layer with 1200 neurons using the same activation function. The output layer
consists of one neuron for binary classification, employing the sigmoid activation function.
A dropout value of 0.1 was applied between the layers to enhance model robustness. The
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compilation involves the “adam” optimizer, which has exhibited superior effectiveness in
classification, as demonstrated in similar studies [44], and binary crossentropy loss. The
model underwent training over 500 epochs to achieve optimal classification. Figure 13
displays the loss and accuracy metrics throughout the training process, showing balanced
behavior between validation and training data after 200 epochs to prevent overfitting. An
impressive accuracy of 94.44% was achieved with only four selected features from the
sensors, demonstrating acceptable performance.
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Figure 13. Performance of the DNN model during training: (a) model loss of DNN; (b) model
accuracy of DNN.

The 1D-CNN model involves a split of the data, allocating 60% for training and the
remainder for the test set. Data were reshaped for use by a one-dimensional convolu-
tional layer, assuming the presence of four selected features. In this configuration, each
instance comprises multiple features, and the one-dimensional convolutional layer takes
one-dimensional windows of these features to extract relevant characteristics for classi-
fication [16,51,52]. The algorithm is based on a sequential model similar to DNN, with
the convolutional layer set at 128 filters and a kernel of 3, utilizing the “ReLu” activation
function. MaxPooling1D reduces the output dimensionality of the convolutional layer,
converting the output into a one-dimensional vector. Two fully connected layers are in-
cluded, one with 10 neurons and an output neuron with a sigmoid activation function.
The compilation uses the same optimization parameters and loss function as the DNN
model over 500 epochs. Consequently, the model learned to predict the binary variable
HI or DMI using one-dimensional convolutions on the selected features. The results for
both the DNN and 1D-CNN models are similar in scoring metrics, as presented in Table 5.
Unlike the XGBoost model, the precision in HI patients was lower, while the recall in DMI
patients was 89%. However, Figure 14 demonstrates improved performance with loss met-
rics consistently below 0.2 and non-overfitting accuracy after 200 epochs during training,
compared to the DNN model. In comparison to the DNN model, the one-dimensional
convolutional model has shown superior performance in similar studies on multiclass DMI
groups classification [51,52]. The confusion matrix for both models is similar, as depicted
in Figure 15, along with XGBoost, indicating the presence of a false negative for a patient
classified as HI but is DMI. The model accurately identified 94.4% (9 out of 18) cases for HI
and 8 for DMI in the test set.
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Table 5. DNN and 1D-CNN algorithm classification report.

Detection Precision Recall F1-Score Support

HI 0.90 1.0 0.95 9
DMI 1.00 0.89 0.94 9
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3.3. Comparison with Classic Machine Learning Algorithms and Deep Neural Networks

The application of TensorFlow Lite or TinyML is not available for some machine
learning models due to limitations in model conversion [52–54]. However, the performance
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of algorithms for detecting HI or DMI patients through new exhaled-breath tests was
evaluated. Superior performance was observed in algorithms based on decision trees, such
as XGBoost and DecisionTree [48,50]. Additionally, the implementation of Support Vector
Machines (SVMs) with hyperparameter tuning, using grid search and cross-validation,
including an RBF kernel and a gamma value of 0.1, showed metrics similar to XGBoost
with 95% accuracy, 100% precision, and 90% recall. The F1-score was 95% for XGBoost and
94% for SVM.

Comparison with other algorithms is presented in Figure 16, where classical machine
learning and deep learning algorithms achieved a precision of 100%. Notably, XGBoost had
the highest precision, followed by SVM, Random Forest, DNN, and 1D-CNN. Emphasizing
recall, the worst performance was observed in KNN, while DNN and 1D-CNN had a
recall of 88% [35]. XGBoost, SVM, and Random Forest demonstrated greater robustness
in detecting HI and DMI patients. It is worth noting that the new tests were effective in
detecting patients with T2DM who had higher BGL.
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In Figure 17, the understanding of ROC curves clearly demonstrates the superiority of
XGBoost, SVM, and Random Forest with a value of 95%, followed by deep learning-based
models. For the dataset used, the inferiority of KNN and Random Forest in detecting DMI
is noticeable, with values of 85% and 90%, approaching false positives. Detecting as many
true positives as possible while reducing the number of false positives is crucial [16,35,36],
as well as understanding the approach of this research in implementing TinyML with
TensorFlow Lite on a microcontroller for qualitatively predicting the health status of patients
with diabetes mellitus based on ketones related to their BGL, without the need for pre-
processing data or the use of the Internet of Things or cloud services [53–56]. The most
accurate algorithm is XGBoost due to its superior conversion features to a TensorFlow
Lite model, detailed in Section 3.4. Although SVM and Random Forest are robust, they
are not yet adapted to TinyML. On the other hand, DNN and 1D-CNN models, with
100% conversion features associated with TensorFlow, are viable for implementation in the
embedded system as they rely on Keras and TensorFlow Lite libraries, presenting better
conversion and acceptable performance [53].
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3.4. Integration of TinyML into Arduino Nano 33 BLE Sense

While the XGBoost model has proven to be the most suitable algorithm for the qual-
itative detection of low BGL for HI or high levels for DMI, its ability to convert models
from different libraries or algorithms to TensorFlow-compatible, and then to TensorFlow
Lite models, depends on conversion compatibility [55]. This poses challenges for algo-
rithms like SVM, KNN, Random Forest, and Decision Tree. However, XGBoost has specific
functions and tools for exporting models, making it more compatible with conversion to
TensorFlow and TensorFlow Lite. The process involves directly exporting the XGBoost
model to TensorFlow, retraining the model with the Adam optimizer and binary cross-
entropy loss, and finally converting it to a TensorFlow file, which is then saved and loaded
onto an Arduino. However, a disadvantage of this approach is that implementations used
by XGBoost and TensorFlow may differ slightly, leading to variations in predictions and
consequently affecting performance metrics [56].

The accuracy decreased from 95% to 91.3%, while precision remained the same, recall
changed from 90% to 80%, and the F1-score changed from 95% to 88.88%. Differences in
metrics between the original and TensorFlow-converted models can be attributed to numer-
ical precision variations between the two libraries, which might affect predictions. Such
variations are common when converting models between different libraries or frameworks.
Although acceptable if not significant, it is crucial to note that recall, an important metric for
diabetes diagnosis and a supporting tool for medical doctors using the e-nose, can impact
result credibility with false positives [16,35].

For DNN and 1D-CNN models, conversion to TensorFlow Lite and loading onto
the microcontroller occurred without issues, maintaining performance metrics for binary
prediction between HI and DMI groups. Therefore, a performance metric comparison
was conducted for classification time on new samples, predicting HI or DMI cases. Lower
classification times are better for the microcontroller, considering available RAM for new
data measurement, preprocessing, and classification. Figure 18 illustrates that the DNN
model takes 0.09 s for new measurements, the 1D-CNN takes 0.01718 s, and notably,
XGBoost demonstrates better performance in predicting new instances in 0.0049 s. However,
the performance of this model is not the best among the three algorithms implemented for
detecting diabetes mellitus.
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Regarding the importance of model size for integration into a microcontroller, it is
undoubtedly crucial. The size of the resulting file, especially when converting it to a format
like .h for the Arduino Nano 33 BLE Sense, is significant, given the storage and processing
limitations of these devices [53,56]. Figure 19 illustrates the relationship between the size
of the TF file and its conversion to the .h format before embedding it in the microcontroller.
Once again, the XGBoost model demonstrates a smaller size compared to models based on
deep learning. It is noteworthy that the e-nose application shows improved performance
with the 1D-CNN model without significantly affecting the memory occupancy of the
microcontroller when making new predictions for DMI or HI patients.
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Figure 19. Sizes in bytes of the models in TensorFlow Lite and their conversion to .h files.

In the application of breath analysis in the embedded system of the e-nose, a significant
outcome was obtained for distinguishing between patients with HI and DMI. Assuming
four characteristics selected from MQ-2, MQ-3, MQ-135, and MQ-138 sensors, the DHT-22
was used solely to monitor the %RH of exhaled breath in the e-nose sample chamber. It
is important to emphasize the importance of selecting these MQ gas sensors and their
effectiveness in relation to diabetes mellitus detection, especially for carbon monoxide and
acetone biomarkers in exhaled breath, as previously demonstrated [16,35,44–46].
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In Figure 20, the confusion matrix for the XGBoost algorithm illustrates its ability to
correctly identify 13 healthy patients and 8 patients with diabetes mellitus, with two false
negatives. On the other hand, the DNN model correctly detected 12 cases of HI and 10
of DMI, yielding a false positive, which is particularly relevant in medical applications.
This scenario could potentially lead to individuals with T1DM or T2DM conditions and
elevated BGL not being accurately identified. Only the XGBoost and DNN models were
implemented, omitting the Conv1D-based 1D-CNN model due to the complexities asso-
ciated with adapting the measurements for compatibility with Conv1D. It is noteworthy
that the DNN model exhibited a false positive, underscoring the importance of carefully
considering false positives in medical applications [16,35,36,45], where the consequences of
misclassification can be significant. The decision to exclude the 1D-CNN model was made
due to the challenges associated with reshaping measurements to fit the Conv1D model,
highlighting a potential area for future research or optimization.
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4. Discussion

The integration of e-nose technology with TinyML for detecting diabetes mellitus
through exhaled human breath has yielded promising results for an embedded system
incorporating MOS sensors, aligning with prevailing research on diabetes mellitus detection
and diagnosis via breath analysis [35,36,39,40]. However, the study faces several notable
limitations and challenges.

Firstly, the sensitivity of the implemented MQ gas sensor series to high RH levels poses
a significant challenge, necessitating continuous validation and calibration of the medical
devices to detect errors in the system’s operation promptly. This is crucial, especially consid-
ering the limited lifespan and susceptibility of MOS sensors to %RH [16,24,35,45,46,48,49].
Additionally, the need for a dehumidifier to clean the e-nose sample chamber adds complex-
ity to sensor maintenance and operational logistics. Moreover, the lack of a standardized
protocol for employing Tedlar bags in exhaled-breath collection limits generalizability
across studies focusing on detecting biomarkers of other diseases. Furthermore, issues
such as sensor sensitivity, drift, and inaccuracies in breath sampling compound the study’s
limitations. These challenges can introduce variability and inaccuracies in the data col-
lected, potentially affecting the performance and reliability of the developed models. The
selection of sensors depends on their implementation in the algorithm and the intricacy of
feature extraction and selection using computational techniques like PCA and SVD [35,40].
However, these techniques may introduce complexity to the classification routine, impact-
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ing microcontroller speed and processing capabilities, particularly with arrays exceeding
10 gas sensors in the e-nose [48].

Furthermore, the study’s reliance solely on deep learning models for embedded sys-
tem implementation presents a significant constraint. While deep learning algorithms show
promise, the absence of alternative machine learning libraries compatible with TinyML
integration restricts model diversity. The most suitable algorithms, DNN and 1D-CNN,
were determined based on scoring metrics and false-positive or -negative avoidance. These
algorithms have proven effective in diabetes mellitus detection, as corroborated in previ-
ous studies in cloud-based systems or processing results on a computer [44,51,52]. While
effective, limitations persist, notably with TinyML integration and the explainability of
certain algorithms, hindering diagnosis interpretation in case of misdiagnosis [53–56]. In
contrast, the XGBoost algorithm can be converted to these formats but with the disadvan-
tage of losses in precision and recall metrics, making the process more complicated. Not all
algorithms are explainable, making it practically impossible to discover the factors influ-
encing the model’s decision in case of a misdiagnosis [16,35]. Consequently, the potential
for obtaining quantitative BGL predictions is hindered, highlighting the need for further
development in this area [49].

Moreover, the reliance on a small sample size for breath tests limits the generalizability
and robustness of our findings. While distinct BGL patterns were discernible among
different patient groups within this dataset [44,46,49], expanding the participant pool to
encompass a broader spectrum of individuals with diverse medical histories, treatments,
and lifestyles is imperative [16,35,51,52]. Such an expansion would not only enhance system
generalization and performance but also render it a more precise and robust embedded
system for breath analysis, providing a valuable qualitative tool for medical practitioners.

Additionally, the accuracy assessment of our algorithm was confined to tests con-
ducted solely on the included participants. Thus, broadening the participant pool to
account for individual parameter variability becomes necessary to effectively train models.
This comprehensive approach would bolster generalization and performance, culminating
in a more precise and robust embedded system for breath analysis across diverse patient
cohorts. Ultimately, such advancements would provide invaluable support for medical
professionals in their diagnostic and monitoring endeavors [35,55,59].

The integration of TinyML into e-nose reliability remains uncertain, particularly in
healthcare contexts where patient well-being is paramount. Aging device components
can introduce variations in battery life, accuracy, and data collection by sensors, further
emphasizing the importance of preprocessing, sensor types, and their number in influencing
model accuracy and maximum memory.

While this study demonstrates promise in applying e-nose technology integrated
with TinyML for diabetes mellitus detection, it is crucial to address the aforementioned
limitations. Future research efforts should focus on overcoming these constraints to bolster
the reliability and applicability of embedded systems for noninvasive diabetes monitoring.

5. Conclusions

This study underscored the promising application of integrating an e-nose with
TinyML for noninvasive diabetes detection through human breath analysis. The im-
plementation of algorithms such as XGBoost, DNN, and 1D-CNN yielded significant
results, achieving accuracies of 91% and 94.4% in classification, respectively. These find-
ings highlight the feasibility of this technology for the qualitative classification of BGLs,
distinguishing between low BGLs for the HI group or high levels for the DMI group.

While XGBoost has emerged as the most suitable algorithm for this task [39,51,55],
challenges were encountered in its conversion and compatibility with TensorFlow Lite,
particularly when compared to other algorithms like SVM, KNN, and Random Forest.
Nonetheless, DNN and 1D-CNN have proven effective, demonstrating favorable metrics in
terms of precision and recall, showcasing their applicability in embedded systems [56–58].
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The discussion emphasizes the importance of expanding the dataset to include a more
diverse range of patients to enhance the system’s robustness. Additionally, addressing tech-
nical limitations, such as developing standardized protocols for breath sample collection
and optimizing the integration of TinyML with machine learning algorithms, is crucial to
improve accuracy and interpretability [16,39,60–62].

Furthermore, it is essential to recognize the potential clinical impact and practical
relevance of the study’s findings. The successful implementation of integrated systems
for diabetes mellitus detection could enhance early diagnosis, disease management, and
patient quality of life [4,8,16,23,24]. Emphasizing interdisciplinary collaboration among
data scientists, biomedical engineers, clinicians, and other healthcare professionals is
vital to advance the development and implementation of innovative technologies like the
combination of e-nose and TinyML in medicine [53,55]. Such collaboration fosters a holistic
approach to healthcare innovation, facilitating the translation of research findings into
practical solutions that benefit patients and healthcare providers alike.

Additionally, future research efforts should prioritize optimizing sensor selection,
improving algorithm interpretability, and validating system performance across a broader
range of populations and clinical conditions [8,9]. Addressing technical and methodological
limitations identified in this study will not only enhance the reliability and applicability of
the developed system but also contribute to advancing the field of noninvasive diabetes
monitoring and diagnosis [16,35–38].

Despite the challenges encountered, the integration of TinyML into Arduino Nano
33 BLE Sense represents a significant step toward the practical implementation of these
models in embedded devices. Continuous validation and calibration are necessary to ensure
precise system operation over time, particularly considering the limited lifespan of MOS
sensors [16,24,39]. This study provides valuable insights into the application of TinyML in
diabetes detection through human breath analysis. Although technical challenges persist,
the results support the feasibility of implementing embedded systems for efficient and
noninvasive monitoring of BGL, offering exciting opportunities for the future development
of innovative medical devices.

6. Patents

A Utility Model application has been submitted to the Mexican Institute of Industrial
Property (IMPI), which has successfully passed the formal examination by meeting the
requirements established by the Federal Law on Industrial Property and the Regulations
of the Industrial Property Law in Mexico. The Utility Model has been published in the
IMPI database called SIGA 2.0 since 15 February 2024, identified with application number
MX/u/2023/000465.
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