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Abstract: This study presents a machine vision-based variable weeding system for plant- protection
unmanned ground vehicles (UGVs) to address the issues of pesticide waste and environmental
pollution that are readily caused by traditional spraying agricultural machinery. The system utilizes
fuzzy rules to achieve adaptive modification of the Kp, Ki, and Kd adjustment parameters of the
PID control algorithm and combines them with an interleaved period PWM controller to reduce the
impact of nonlinear variations in water pressure on the performance of the system, and to improve
the stability and control accuracy of the system. After testing various image threshold segmentation
and image graying algorithms, the normalized super green algorithm (2G-R-B) and the fast iterative
threshold segmentation method were adopted as the best combination. This combination effectively
distinguished between the vegetation and the background, and thus improved the accuracy of
the pixel extraction algorithm for vegetation distribution. The results of orthogonal testing by
selected four representative spraying duty cycles—25%, 50%, 75%, and 100%—showed that the
pressure variation was less than 0.05 MPa, the average spraying error was less than 2%, and the
highest error was less than 5% throughout the test. Finally, the performance of the system was
comprehensively evaluated through field trials. The evaluation showed that the system was able
to adjust the corresponding spraying volume in real time according to the vegetation distribution
under the decision-making based on machine vision algorithms, which proved the low cost and
effectiveness of the designed variable weed control system.

Keywords: UGV; machine vision; variable spray; fuzzy rules; PID control; PWM control

1. Introduction

To ensure consistent and high crop yields in current agricultural production, the
application of pesticides is essential for the prevention and treatment of crop pests, diseases,
and weeds [1]. However, it is well known that the large-scale use of pesticides and overuse
of pesticides have had a gravely negative impact on human health [2,3] and the ecological
environment [4,5], making the problem of pesticide residues in agricultural products [6,7]
and soil pesticide residues prominent [8,9]. With the continuous development of agriculture,
the environmental pollution caused by pesticides can never be ignored [10,11]. Many
countries around the world are becoming increasingly concerned about the safety of
pesticide use [12], and there is an urgent need for sustainable, low-cost solutions [13,14].
As such, a variety of programs dedicated to reducing pesticide contamination have been
proposed [15].

In the process of modernizing agricultural production, due to the equal spraying
method employed by the conventional weed spraying equipment, they were unable to make
corresponding spraying according to the distribution of vegetation in each plot of the field,
thus making it difficult to realize the effective use of pesticides [16]. Therefore, pesticide
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variable spraying technology is one of the important means to reduce pesticide pollution.
The research and promotion of variable spraying technology is of great significance, and its
application can reduce the use of conventional pesticide spraying methods in the spraying
process caused by a large number of pesticide waste and increase the effective use of
pesticides [17].

Future agricultural production will considerably benefit from variable spraying tech-
nology since they may significantly reduce the consumption of pesticides used [18,19]
and lower the cost of agricultural production processes, as well as effectively control the
pesticide residues of farm products exceeding the standard, and improve the quality and
safety of agricultural products [20]. At the same time, they will improve agricultural pro-
duction, increase the income of farmers, and most importantly, reduce pesticide pollution
of the agricultural ecological environment, promote green sustainable development, and
lead to potential advancements in precision. Additionally, the importance of agriculture is
fostering for food safety [21]. To further improve the spraying accuracy based on variable
spraying technology, many studies have proposed combining variable spraying technology
with other technologies to achieve more accurate on-demand spraying [22].

For example, Sheng et al. designed a variable spraying system for plant-protection
UAVs based on neural network decision making by combining the current research on
variable spraying technology with artificial neural network technology as a basis. Utilizing
existing variables, including the environment’s temperature, humidity, wind speed, flight
speed, and altitude, a neural network model was developed. Outdoor tests showed
that the experimental error was less than 20%, achieving variable spraying in different
environments [23]. Nan et al. proposed a contour tracking control method and a variable
spraying technique based on CMAC-PID, mainly to control pesticide drift by tracking
the contour of the canopy and calculating the corresponding spray flow rate through
the volume of the outline and the density of the leaf area, which significantly improved
the algorithm’s dynamic tracking performance of the profiling control system, effectively
reducing the overall average tracking error and achieving a reduction in costs related
to pesticide use and environmental pollution [24]. Liu et al. used a single 3D detection
and ranging sensor to sense the fruit trees around the robot and determine the region of
interest. ROIs within the point cloud were performed through 2D processing to obtain
the center of mass coordinates of the fruit trees and determine the vertical distance of
the robot from the rows of fruit trees based on both sides of the FTR using a random
sample consensus algorithm. Based on the multi-sensor fusion of the current spray state
and the predicted deposition distribution characteristics, the UAV offset and nozzle flow
rate of the variable spray system can be obtained. Farm trials showed that the deposition
volume error between prediction and trial was within 30%, proving the effectiveness of
the system [25]. Liu et al. developed a variable rate spraying system using a deep learning
approach to develop new weed classification models and accurately spray on desired weed
targets. Three classification CNN (convolutional neural network) models were used, and
laboratory and field experiments were conducted to evaluate the spraying performance
for weed classification and the accurate spraying of targeted weeds. The results showed
that the system reduced pesticide application, ground loss, and air drift, and effectively
controlled pesticide pollution of the environment [26]. Overall, although the above studies
used a variety of advanced techniques to achieve precision spraying, these techniques may
have certain shortcomings in terms of processing speed, which may lead to limitations in
practical agricultural applications.

The purpose of this study is to develop and test a machine vision-based variable
weeding system for a plant-protection UGV, to adjust the corresponding spraying amount
in real time according to the distribution of vegetation under decision making based on
machine vision algorithms, and complete real-time on-demand spraying. Combining
the variable weeding system with the autonomous path planning function of a UGV
and planning the intervals of the UGV’s driving path according to the system’s spraying
coverage not only successfully realizes the unmanned variable weeding operation and
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avoids the problems of leakage and re-spraying that may easily occur in the process of
manual spraying, but also provides effective technical support for the realization of the
full-area accurate and automatic variable weeding in farmlands.

2. Materials and Methods
2.1. Design of Variable Weeding System

Currently, in the field of agricultural plant protection variable spray technology, the
mainstream variable spray technology mainly includes pressure regulation, concentration
regulation, and PWM regulation. In contrast, the pressure control type has a small flow
adjustment range, easy distortion of spray characteristics, and the response speed of
the concentration control type system is slow, which cannot meet the needs of real-time
precision spraying, while the PWM control type system adjusts the spray flow of the nozzle
by changing the operating frequency and duty cycle of the solenoid valve. It has the
advantages of good dynamic characteristics, high control accuracy, fast system response,
and a large flow adjustment range [27]. Therefore, this study decided to adopt PWM-
regulated variable spray technology. The variable weeding control system designed in
this study is composed of three subsystems, namely, the imaging subsystem, remote host
computer, and variable spraying control subsystem. The specific structure of the system is
shown in Figure 1.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 23 
 

 

not only successfully realizes the unmanned variable weeding operation and avoids the 
problems of leakage and re-spraying that may easily occur in the process of manual spray-
ing, but also provides effective technical support for the realization of the full-area accu-
rate and automatic variable weeding in farmlands. 

2. Materials and Methods 
2.1. Design of Variable Weeding System 

Currently, in the field of agricultural plant protection variable spray technology, the 
mainstream variable spray technology mainly includes pressure regulation, concentration 
regulation, and PWM regulation. In contrast, the pressure control type has a small flow 
adjustment range, easy distortion of spray characteristics, and the response speed of the 
concentration control type system is slow, which cannot meet the needs of real-time pre-
cision spraying, while the PWM control type system adjusts the spray flow of the nozzle 
by changing the operating frequency and duty cycle of the solenoid valve. It has the ad-
vantages of good dynamic characteristics, high control accuracy, fast system response, 
and a large flow adjustment range [27]. Therefore, this study decided to adopt PWM-reg-
ulated variable spray technology. The variable weeding control system designed in this 
study is composed of three subsystems, namely, the imaging subsystem, remote host com-
puter, and variable spraying control subsystem. The specific structure of the system is 
shown in Figure 1. 

 
Figure 1. The variable weeding system. 

The variable spray control subsystem is powered by a lithium battery (24 V–13 Ah, 
VOA, Huizhou, China). The system uses a DC 24 V vacuum diaphragm pump (A42-24, 
AUSEANA, Ningde, China) to meet the system’s need for a compact, lightweight design. 
To ensure proper operation of the system, the diaphragm pump is fitted with a filter on 

Figure 1. The variable weeding system.

The variable spray control subsystem is powered by a lithium battery (24 V–13 Ah,
VOA, Huizhou, China). The system uses a DC 24 V vacuum diaphragm pump (A42-24,
AUSEANA, Ningde, China) to meet the system’s need for a compact, lightweight design.
To ensure proper operation of the system, the diaphragm pump is fitted with a filter on the
water inlet to filter out large impurities from the liquid. The filter inlet is closely connected
to the pesticide tank through a water pipe. On top of the pesticide tank, an ultrasonic level
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sensor (MTK-ZPM, MEACON, Hangzhou, China) is installed to monitor the remaining
liquid level of the pesticide tank in real time.

The outlet of the diaphragm pump is connected to two sub-pipes; one is the output
pipe for spraying vegetation, and the other is the return pipe for controlling the water
pressure. During system operation, the controller reads the pipe pressure value in real time
from a pressure sensor (CKHTP-01, CHEKON, Shanghai, China) installed in the output
pipe. Subsequently, the controller will calculate the corresponding output according to the
algorithm of the system controller, and then control the opening and closing degrees of
the proportional control valve (FRSQT11F-16P, FREESUN, Suzhou, China). Simply put,
controlling the degree of opening and closing is controlling the amount of water returning
to the return line, thus ensuring that the pressure in the output line remains constant.

In addition, a flow sensor (LWGY, WEIERTAI, Shanghai, China) was installed in the
middle of the output pipe of the system. The controller detects the real-time flow rate of
the system by capturing the number of signal pulses from the flow sensor. For spraying
control, the system uses a combination of hollow cone nozzles (KZ80-16, LICHENG, China)
and high-velocity solenoid valves (6013, Burkert, Baden-Wurttemberg, Germany). The
controller uses pulse signals to control the opening and closing of the solenoid valves,
thus accomplishing precise control of the spraying volume. This design makes the whole
spraying process both efficient and accurate.

2.2. Design of Spraying Controller

The variable spraying controller is designed based on a microcontroller (STM32F103RCT6,
ST Microelectronics, Geneva, Switzerland) and the electronic hardware design scheme of
the controller is shown in Figure 2. The output signal of the pressure sensor is a 4~20 ma
current signal, which is converted into a 0~3.3 V voltage signal using an I/V converter
circuit, and the microcontroller then reads the water pressure signal through an ADC con-
verter. The microcontroller reads the pulse through the input capture function to achieve
real-time detection of the spraying flow rate. The flow sensor output signal is a 24 V square
wave pulse signal, and the accumulated 8500 pulses are equal to the flow rate of 1 L using
the resistance divider circuit to convert the 24 V pulse signal to a 3.3 V pulse signal. The
level sensor based on ultrasonic technology adopts the RS485 communication method, and
the communication protocol is based on the Modbus protocol. The microcontroller reads
the level information of the tank through TTL to the RS485 module (MAX3487, Analog
Devices, Norwood, MA, USA). The microcontroller calculates the real-time traveling speed
of the UGV by capturing the pulse output from the Hall sensor (JK8002D, JCXD, Nan-
jing, China) and adding them up, and the response frequency of this sensor is 100 KHZ.
The microcomputer collects the real-time distribution of vegetation with the use of the
camera and then relies on the algorithm to analyze the data in-depth and generate the
corresponding intelligent decision making, and finally sends the decision-making data to
the microcomputer through the USB to the TTL converter module. Finally, the decision
data are sent to the controller through the USB to the TTL conversion module to achieve
automated management. The RF-based wireless transceiver module (A7139, AMICCOM,
Taiwan, China) is used for remote communication between the host computer and the
controller, and sends the flow, pressure, liquid level, and operation status collected by
the microcontroller to the host computer. A7139 is a wireless transceiver chip in the ISM
band, with a maximum output power of up to 20 dBm, a maximum transmission rate
of 250 Kbps, and a communication distance of up to more than 1 km in the open field.
The communication distance in open space is up to more than 1 km, and there will be
no network delay similar to that of a 4 G module, which is very suitable for the field of
intelligent agriculture. The solenoid valve control circuit is a drive circuit using dual MOS
tubes (AOD4180, AOS, San Francisco, CA, USA) in parallel. The advantages of MOS tubes
include fast switching speed, lower power consumption, and strong anti-interference, and
the dual MOS tube drive scheme can pass a larger current, which can improve the stability
of the relay control circuit. The controller amplifies the 0~3.3 V signal output from the mi-
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crocontroller DAC into 0~10 V signal through the voltage amplification module. Then, after
being connected by the RVVP shielded cable, it is finally used to control the opening and
closing degree of the proportional valve. The diaphragm pump starts and stops instantly
and generates a large current, so it adopts a high-power relay module, and the principle
is that the microcontroller achieves the control of the diaphragm pump by controlling the
relay. The OLED screen (Blue-1.3 Inch, RISYM, Shenzhen, China) displays the system’s
current spraying-related information in real time, and the KEY module can control the
system’s starting and stopping, which both increases the convenience of debugging the
system in practical use. Both add to the ease of commissioning the system in practice.
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2.3. The Adaptive Fuzzy PID Control Algorithm

In the variable spraying system, the stability of the pipeline water pressure is a key
prerequisite for the realization of accurate variable spraying. PID is widely used in the
field of automatic control algorithms, consisting of the proportional unit (P), the integral
unit (I), and the differential unit (D), which can be based on the difference between the set
value and the actual value of the system through the proportional, integral, differential
adjustment of the three parameters, the three-parameter values often directly determine
the control effect [28]. Whether the values of these three parameters are reasonable or not
will often directly determine the control effect.

However, in the variable weeding process, the system needs to adjust the spraying
amount of each nozzle according to the distribution of the target vegetation, resulting in
nonlinear pressure changes in the pipeline, and the ideal control effect cannot be achieved
using the traditional PID. Therefore, the system needs to dynamically adjust the integrating
parameters of the PID control algorithm according to the pressure changes to ensure that
the pressure of the system remains stable. The fuzzy control algorithm is a control strategy
based on fuzzy logic, which realizes the control of a complex system by blurring the input
and output variables, establishing a fuzzy rule base and performing defuzzification and
other steps. In a fuzzy control system, the input and output variables do not only depend
on the system state itself, but are also affected by the external environment, measurement
errors, and other factors, so they have a certain degree of uncertainty and fuzziness. Fuzzy
control algorithms are designed to deal with this uncertainty and ambiguity, which can
handle various complex systems including uncertainty factors, and correct and optimize
the output values [28]. Ultimately, this study adopts the method of combining the fuzzy
control algorithm with the PID control algorithm.



Sensors 2024, 24, 1287 6 of 22

2.3.1. Design of the Controller Structure

The adaptive fuzzy PID algorithm is an advanced control algorithm, which is mainly
composed of a fuzzy controller and a PID controller. The structural design of the algorithm
is shown in Figure 3. The core concept of the algorithm is to make full use of the advantages
of the fuzzy controller and PID controller to realize the precise control of the water pressure
of the output pipe [29].
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During the operation of the algorithm, the algorithm reads the value of water pressure
in the output pipe through the pressure sensor, and then compares this value with the
preset value and calculates the error and the rate of change of the error. These calculated
values are then fed into the PID controller to determine the control values used to regulate
the state of the proportional valve and ultimately the output water pressure. The fuzzy
controller is also involved in this process. It takes the error and the rate of change of
the error as inputs and, using a set of predefined fuzzy rules, adaptively regulates the
three regulation parameters: Kp, Ki, and Kd. In this way, the system water pressure is
maintained in a more stable state, both dynamically and statically. Compared with the
traditional PID control algorithm, the adaptive fuzzy PID algorithm has greater flexibility
and stability [29]. When dealing with non-linear sudden changes in water pressure, its
advantages are particularly prominent. It can better adapt to a variety of complex situations
and achieve more accurate and stable water pressure control.

2.3.2. Quantification of Input Values

The quantization of the input values is the projection of the input quantities e and ec
into a predefined corresponding domain using a quantization function, which is usually
defined here as {−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6} [30]. After taking readings of the
water pressure variations during system operation, algorithms label the maximum pressure
value read as Vmax and the minimum pressure value as Vmin, so that Vmax–Vmin is the
range of the deviation e, while the range of the deviation increment ec is two times the
range of the deviation e. The quantization function in this study has been adopted linearly.
As such, its functional relationship is defined by Equation (1).

f (e) = 6 × e
Vmax − Vmin

f (ec) =
6 × ec

2(Vmax − Vmin)

(1)

2.3.3. Trigonometric Membership Function

Firstly, the algorithm has to determine the fuzzy subsets of e and ec. In PID controllers,
only seven linguistic variables, i.e., the negative big [NB], negative medium [NM], negative
small [NS], zero [ZO], positive small [PS], positive medium [PM], and positive big [PB],
are needed to be able to express their fuzzy subsets with sufficient accuracy. Therefore, the
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algorithm defines the fuzzy subsets of both e and ec as {NB, NM, NS. ZO, PS, PM, PB} [30].
The degree of membership, which is a number between 0 and 1 that describes the degree
to which the relevant input belongs to a fuzzy set, is then calculated by first determining
the set to which e and ec belong [30]. The triangular membership function is employed in
this study to compute the membership of the input values, and Figure 4 illustrates how
it works.
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2.3.4. Fuzzy Rules

The fuzzy rule base is the core of the fuzzy controller, which is established based on
the fuzzification of the control quantities and relies heavily on the empirical knowledge of
engineering experts to accomplish it. Kp, Ki, and Kd parameters are modified using the
fuzzy rule basis, so it is necessary to establish the fuzzy rule base of these three parameters.
According to the PID tuning experience, when the value of |e| is large, a larger value of
Kp and a smaller value of Kd should be selected, which can improve the response speed
of the system. When the value of |e| is medium, the value of Kp should be reduced, to
reduce the overshoot of the system; the value of Ki should be selected as a moderate value.
When the value of |e| is small, a larger value of Kp and Ki should be selected to avoid the
system oscillating around the set value. When the value of |ec| is large, a smaller value
of Kd should be selected. When the value of |ec| is large, a larger value of Kd should be
selected [30]. Based on the above analysis, the fuzzy rules of Kp, Ki, and Kd are formulated
in Tables 1–3.

Table 1. Fuzzy control rules of ∆Kp.

∆Kp
ec

NB NM NS ZO PS PM PB

e

NB PB PB PM PM PS ZO ZO
NM PB PB PM PS PS ZO NS
NS PM PM PM PS ZO NS NS
ZO PM PM PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM PS ZO NS NM NM NM NB
PB ZO ZO NM NM NM NB NB



Sensors 2024, 24, 1287 8 of 22

Table 2. Fuzzy control rules of ∆Ki.

∆Ki

ec

NB NM NS ZO PS PM PB

e

NB NB NB NM NM NS ZO ZO
NM NB NB NM NS NS ZO ZO
NS NB NM NS NS ZO PS PS
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PM PM PB
PM ZO ZO PS PS PM PB PB
PB ZO ZO PS PM PM PB PB

Table 3. Fuzzy control rules of ∆Kd.

∆Kd

ec

NB NM NS ZO PS PM PB

e

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS ZO
NS ZO NS NM NM NS NS ZO
ZO ZO NS NS NS NS NS ZO
PS ZO ZO ZO ZO ZO ZO ZO
PM PB NS PS PS PS PS PB
PB PB PM PM PM PS PS PB

2.3.5. Decision Making Methods

The algorithm must go through defuzzification to achieve the intended result and get
the right precise values. The final desired values in the adaptive fuzzy PID control are Kp,
Ki, and Kd, so the algorithm must also obtain the final desired values of Kp, Ki, and Kd
based on the outcomes of the fuzzy reasoning. The inputs and outputs belong to the same
affiliation at the same time because the inputs and outputs use the same thesis domain.
After all, the algorithm employed the triangular affiliation function in the previous stage.
This algorithm uses the center of gravity method to calculate the quantized values of the
three output quantities by using Equation (2).

∆Ko =

n
∑

i=0
uc(zi)·zi

n
∑

i=0
uc(zi)

(2)

∆Ko—the final output value of the fuzzy controller;
zi—the value in the fuzzy control volume domain;
uc(zi)—the degree of affiliation of zi.

After calculating the output of the fuzzy controller, the algorithm also introduces
correction coefficients Cp, Ci, and Cd for adjusting the weights of the fuzzy controller
outputs ∆Kp, ∆Ki, and ∆Kd, respectively. Finally, after summing the fuzzy controller
outputs with the K′

p, K′
i, and K′

d set after debugging for the original PID controller,
respectively, the final three adjusted parameters of PID after adaptive fuzzy, Kp, Ki, and Kd,
are obtained. The specific functional relationship is defined by Equation (3).

Kp = K′
p + ∆Kp ∗ Cp

Ki = K′
i + ∆Ki ∗ Ci

Kd = K′
d + ∆Kd ∗ Cd

(3)
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2.4. Imaging Subsystem

Currently, for detecting the distribution of weeds, in addition to traditional methods
of counting by hand or using local estimation techniques based on visual inspection
by the human eye, modern technology offers many new options. Some of the more
common methods are LiDAR, multispectral camera, and near-infrared camera. However,
these sensors are invariably expensive, and their use and maintenance are more complex,
requiring a certain level of professional knowledge and skills [31]. The principle and
structure of visible light cameras are relatively simple, making them easy to use even for
inexperienced users. Moreover, due to their relatively low manufacturing cost, they are
easier to popularize and maintain. Therefore, for the industrialized application of this
system in the future, this study adopts the approach of using visible light cameras to collect
vegetation images.

The visible light camera is a 5-megapixel color drive-free industrial camera (CGU2-
500C-UVC, CGimagetech, Hangzhou, China) with a USB 2.0 interface. In the experiment,
the CMOS camera’s resolution was set to 1280 × 800 pixels. Since the degree of imaging
distortion of the vegetation will directly affect the inspection results, an aberration-free lens
was chosen. This type of lens typically adopts high-quality lenses and advanced optical
technology, which can effectively inhibit the appearance of undesirable phenomena such as
aberration and chromatic aberration, improve the clarity and fineness of the picture, and
reduce the distortion and distortion of the edges of the picture. Therefore, when using
this lens, there is no need for additional picture correction, which can greatly reduce the
difficulty of post-processing and improve the accuracy of image algorithms. The focal
length of the lens is 12 mm. The aperture range is F1.6-C and is manually adjustable, and
the field of view (FOV) is 32◦. The nozzles were mounted on the spray bar at the rear of the
UGV (BullDog, YIKUN, Shanghai, China) as shown in Figure 5. Table 4 lists the detailed
configurations of this UGV. In particular, the coverage of the spray application is related to
the angle of the nozzle outlet, the mounting height, and the distance between the nozzles.
To achieve the ideal coverage effect when other hardware devices are already installed,
the spacing of each nozzle is reasonably adjusted in this paper, which effectively avoids
overlapping or gaps in the spray coverage between nozzles. The camera was mounted
above the front of the UGV, as shown in Figure 5, allowing for multiple rows of vegetation
images to be captured simultaneously. The nozzle is mounted on the rear of the UGV, so
there is a time delay between image acquisition and variable spraying, and the response
time of the system needs to be controlled within this time delay. The vegetation images
were transmitted by the camera to a microcomputer (S-1032, MECHREVO, Beijing, China)
through a USB bus for processing, extracting tracts of information about weed character-
istics, and calculating weed distribution. The nozzle is mounted on the rear of the UGV,
resulting in a time delay between image acquisition and variable spraying. Controlling the
response time of the system within this time delay is necessary. For this purpose, the camera
transmits the vegetation images via a USB bus to a microcomputer, which processes the
images, extracts information about weed characteristics, and calculates weed distribution.
PyCharm Community Edition 2023 software was used as the development environment,
with a series of customized algorithms developed using Python. The microcomputer is
based on Intel’s I7-12650H processor, which has ten cores and 16 threads, with six perfor-
mance cores and four energy-efficient cores. It has a maximum RWI of 4.7 GHz, a cache
of 24 MB, and a TDP of 45 W. This processor offers excellent performance, low power
consumption, and high maintainability, reducing repair and replacement costs. Finally, the
microcomputer transmits the control information via a USB bus to the spray controller,
which in turn controls the solenoid valve accordingly.
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Table 4. UGV details.

Specification

Model BullDog

Manufacturer Shanghai Yikun Electrical Engineering Co., Ltd,
Shanghai, China.

Weight 100 kg
Size 914 × 708 × 440 mm

Maximum load 100 kg
Maximum speed 2.0 m/s

API ROS/Python/C++
Working hours 3 h typ/8 h max

Power 2 × 1000 W Peak
Encoder 2000 Wire/turn

Control mode Current, Speed, Wheel speed
Communication USB/Ethernet

Battery type 48 V 20 Ah lithium battery
Level of protection IP66

Maximum climbing angle 40◦

2.4.1. Graying of Images

A color image recorded by a visible light camera has a vast quantity of information
because each pixel is composed of a mix of red, green, and blue ratios and can include up to
16 million different sorts of information. When processing color photos directly, a significant
amount of calculation is needed, which might have a negative impact on operation speed.
When performing image recognition, it is often enough to use only the information in
the grayscale image, so this study chose to convert the three-channel color image into a
single-channel grayscale map, which is more convenient for the algorithms to process it
based on reducing the size of the image. The goal of image grayscaling is to speed up
computation because grayscale images contain less information. Furthermore, compared
to color photographs, grayscale images are simpler to process and feature-extract [31]. A
commonly used grayscale processing method is the maximum value method.

2.4.2. Segmentation of Images

In the fields of image processing and computer vision, image thresholding is a com-
monly used segmentation approach. Its primary purpose is to split an image into two
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or more sections based on the pixel values, which typically correspond to the target and
background to be retrieved. When the background or the object has a single grayscale and
the target and background have notable differences in grayscale characteristics, this seg-
mentation method works especially well. The image is divided into target and background
regions by selecting the appropriate threshold value. The primary benefits of threshold
segmentation are its efficiency and simplicity [32]. Since it relies on the pixel value of a
one-dimensional decision, it requires very little computation and can handle large amounts
of image data quickly. This makes it ideal for variable weeding systems that need fast
reaction times.

Every algorithm has a unique set of uses and restrictions, with the demands upon it
varying depending on the application scenario, some require high computational efficiency,
while others call for high precision. The histogram bimodal thresholding technique (HBT),
fast iterative thresholding algorithm (FIT), thresholding algorithm based on K-means clus-
tering, and OTSU thresholding algorithm are some of the most popular image thresholding
algorithms. The segmentation threshold is determined by the histogram bimodal threshold-
ing algorithm, which utilizes the bimodal features of the image grayscale histogram. While
the calculation is straightforward and does not involve a laborious iteration or optimization
process, the technique might not be suitable for certain complex images. A fast iterative
threshold segmentation algorithm is a method that finds the optimal threshold iteratively;
its basic idea is to start from an initial threshold, undergo continuous iterative computation,
gradually approach the optimal threshold, and realize the segmentation of the image. The
threshold segmentation algorithm based on K-means clustering can adaptively determine
the segmentation threshold, which is suitable for image segmentation tasks with complex
backgrounds and noise. However, the processing speed of this method may be slow due
to the high computational complexity of the clustering algorithm. The OTSU threshold
segmentation algorithm is a method that automatically determines the optimal threshold
value by selecting it to maximize the interclass variance between the pixels of the two
classes. This is suitable for situations where the difference between the target and back-
ground in the image is not obvious and it is necessary to determine the optimal threshold
value computationally, but the amount of computation is large.

2.4.3. Assessment of the Distribution of Vegetation

After the above steps, the imaging subsystem has successfully segmented the image
into two regions, the target, and the background, and the final processing of the image
using the vegetation distribution evaluation algorithm is still required. Firstly, the image
segmentation algorithm will divide the vegetation image uniformly into four small farm
images, each of which corresponds to a specific nozzle operation plot in the field, as shown
in Figure 6.

The imaging sub-system then extracts white pixels representing vegetation features
from each plot and calculates the percentage of white pixels in each plot in the field
using Equation (4), and these data allow for an accurate assessment of the distribution of
vegetation in the field.

P =
sum(White pixel)

Total pixel
× 100% (4)

Finally, the system calculates a scientific reference amount of herbicide based on the
percentage of vegetation distribution and then uses a PWM control method to accurately
regulate the amount of herbicide sprayed from each nozzle to ensure optimal weed control.
Figure 6 shows the distribution percentages of vegetation in each plot, which are 28.79%,
45.68%, 63.52%, and 52.12%, respectively.
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3. Results

In the following experiments, after testing the performance of this vacuum diaphragm
pump in this study, the operating water pressure of the variable mowing system was set to
0.2 MPA.

3.1. Adaptive Fuzzy PID Control

In this experiment, to record the real-time water pressure changes of the system, a
set of test upper computer software (PyCharm Community Edition 2023.2) based on the
tkinter GUI library were developed. The software establishes a full-duplex communication
mode with the system via a USB cable to ensure real-time and efficient data transmission.
The upper computer can receive and display the water pressure data of the system in
real time, and can graphically display the real-time changes in water pressure, providing
researchers with an intuitive basis for data analysis. Before the start of the test, the tester
set the control water pressure of the variable spraying system to 0.2 MPA, and tested the
changes in the waveform of the start-up water pressure of the system under traditional
PID control and adaptive fuzzy PID control, respectively. The results are shown in the
accompanying Figure 7, which demonstrates the difference between the two. The test data
show that the adaptive fuzzy PID control algorithm regulates the water pressure faster and
the relative control accuracy is higher compared to the traditional PID control algorithm. In
variable spraying scenarios, the control system’s adjustment speed and control accuracy of
water pressure are crucial because the spraying amount needs to be adjusted frequently to
adapt to the distribution of different vegetation. The adaptive fuzzy PID control algorithm
is more suited for use in changeable spraying scenarios because it can better adjust to this
demand and allow the spraying system to run steadily under these conditions.
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3.2. Staggered-Period PWM

PWM (pulse width modulation) control technology is crucial for the automatic control
domain. The idea is to use digital methods to regulate analog circuits, which is a way of
digitally encoding analog signal levels and can dramatically lower system costs and power
usage. The solenoid valve closure and disconnection are controlled using PWM technology
in a variable spraying system, which allows the amount of spraying to be adjusted [33].
First, the control period is set to 3 HZ after consulting the solenoid valves’ minimum
switching times. But there is an issue when controlling the system’s solenoid valves, as
the water pressure in the pipeline will significantly fluctuate if all of the solenoid valves
in the system are opened or closed at the same time and for the same duration, which
will not only influence the precision of the spraying, but also has a significant pressure
impact on the sensors and solenoid valves. Therefore, to reduce the large fluctuations in
pipeline pressure caused by the overlap of the pulse period of the PWM control algorithm,
this study designs a staggered-period PWM control method, as shown in Figure 8 (T is the
control period and t is the on-time).

To effectively reduce the drastic fluctuation of pipeline pressure triggered by the
overlapping of pulse cycles in the PWM control algorithm, this study creates a staggered-
cycle PWM control strategy. As shown in Figure 8 (where T represents the control period
and t represents the conduction time), the core idea of this strategy is to stagger the control
periods of the four solenoid valves by a time interval of T/4 in sequence. Through this
careful timing arrangement, the four-solenoid valve opening and closing time can stagger
each other, thus significantly reducing the overlap of the solenoid valve action time in
the same control cycle. This design not only effectively suppresses large fluctuations in
water pressure inside the pipeline and provides reliable protection for each sensor, but also
further improves the accuracy and stability of variable spraying.
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3.3. Spray Volume and Duty Cycle

In this experiment, nozzles #2 to #4 were set to spray continuously at a 100% duty
cycle, and then the PWM (pulse width modulation) duty cycle of nozzle #1 was varied in
groups at 10% intervals for testing. In each group, nozzle #1 was used 10 times for 30 s and
a measuring cup was used to collect the fluid from nozzle #1. Finally, the tester weighed
the collected liquid on an electronic scale with an accuracy of 0.1 g and converted the unit
of measurement to liters (L). Figure 9a shows the test results. According to the test results,
the spray volume obtained shows a good linear relationship with the duty cycle of the
PWM control signal. The matched spray volume increases with the gradual increase in
the duty cycle of the PWM control signal. This finding provides the system with a direct
and effective method for adjusting the spray volume, i.e., precisely controlling the spray
volume of the nozzle by varying the duty cycle of the PWM signal. In a variable spray
system, this linear relationship ensures that the system obtains the desired spray volume,
thus achieving the goal of precise spraying.
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With the spraying data obtained from the above tests, this paper then investigates the
spraying stability of the variable spraying data. The results of the data analysis are shown
in Figure 9b. The test results show that under all possible PWM duty cycle controls, the
average error of variable spray for all nozzles is less than 0.5%, and the maximum error
of variable spray for all nozzles is less than 1%. The test proved that this variable spray
system has a very high accuracy when only a single nozzle is adjusted.

3.4. Orthogonal Tests of the System

In the actual spraying process, different spraying totals affect the accuracy of the spray.
When the total amount of spraying in the system decreases, the spraying accuracy tends to
decrease; conversely, when the total amount of spray in the system increases, the spraying
accuracy tends to increase. To investigate this issue in depth, an orthogonal test was
designed in this study to analyze the effect of different duty cycle combinations on spraying
accuracy. The orthogonal test is a commonly used experimental design method that can
effectively reduce the number of experiments while ensuring the accuracy and reliability of
the experiment. This method is based on the Galois theory, and some representative duty
cycle combinations are selected from the full-scale experiments. Given that the system’s
overall spraying amount cannot be less than 25% in this study, four typical spraying duty
cycles—25%, 50%, 75%, and 100%—were chosen to create an orthogonal Table 5. The
assessment of spraying accuracy in this trial continued in the same way as in the previous
trial.

Table 5. Table of orthogonal experimental designs.

Test Number

Column Number

A B C D

Duty Cycle (%) Duty Cycle (%) Duty Cycle (%) Duty Cycle (%)

1 25 25 25 25
2 25 50 50 50
3 25 75 75 75
4 25 100 100 100
5 50 25 50 75
6 50 50 25 100
7 50 75 100 25
8 50 100 75 50
9 75 25 75 100
10 75 50 100 75
11 75 75 25 50
12 75 100 50 25
13 100 25 100 50
14 100 50 75 25
15 100 75 50 100
16 100 100 25 75

The orthogonal tests described above allow us to derive a more comprehensive and
representative picture of the spraying accuracy of each nozzle under different duty cycle
combinations. To further understand the characteristics of these data, an in-depth error
analysis was conducted for each set of data, with the main objective of ensuring the accuracy
and reliability of the variable weed control system by analyzing the spraying error rate.
The findings demonstrated that the duty cycle data at 50%, 75%, and 100% all partially
satisfied the system’s expectations. One set of data, the 25% duty cycle data, however, had
a significant mistake: the maximum error rate surpassed 12%, and the average error rate
over 5%, as shown in Figure 10. Consequently, to determine the cause of this inaccuracy, it
is critical to investigate and comprehend it in greater detail.
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After an in-depth study of the data with a duty cycle of 25%, this study finds that
the error rate increases linearly when the system is set to spray a total amount less than
or equal to 50% of the total amount of spray. In this case, the largest error is for the data
of test number 1 (25%, 25%, 25%, 25%), which obtains a spray volume 12% higher than
the expected spray volume. After several subsequent repetitions of the test, it was found
that when the total spray volume was fixed, the degree of variation in the error values
produced was minimal. This indicates that the error rate generated by the system is stable
when the total spraying volume is constant. After further observation and validation of the
orthogonal test data, this study also found that the spraying accuracy is also related to its
control sequence. In this system, if the inner nozzle is energized first, the accuracy of the
outer nozzle decreases; on the contrary, if the outer nozzle is energized first, the effect on
the inner nozzle is less.

Finally, based on the above experiments, this paper adjusted and optimized the
spraying control system strategy, which effectively reduces the impact of the control
sequence between the nozzles, and real-time monitoring of the spraying flow condition
through the algorithm to achieve automatic adjustment of the control signal. The results
show that the average error rate of the 25% duty cycle data after optimization is less than
2%, and the maximum error rate is less than 5%, as shown in Figure 10. This series of
improvement measures can ensure that all nozzles can be combined in a way that meets the
system performance requirements while minimizing errors, thus guaranteeing the stability
and accuracy of the system.

3.5. Experiments with Image Segmentation Algorithms

After comparing various image greyscaling algorithms, this study finds that the
weighted value method has significant advantages in processing green vegetation images.
It can well suppress unnecessary image details such as shadows, dead grass, and soil, thus
making the image features of vegetation more prominent. Based on this finding, this system
organically combines the normalized super green algorithm (2G-R-B) with the threshold
segmentation method, to effectively differentiate between the target and the background in
the image, and further improve the accuracy and effect of image processing, as shown in
Figure 11.
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Figure 11. The image after grayscale: (a) RGB original image; (b) gray image.

In this experiment, the tester carefully collected 40 representative vegetation images
from field experiments as the test samples. To explore and validate the most suitable
threshold segmentation algorithm, this paper applied the histogram bimodal threshold
segmentation algorithm (HBT), the fast iterative threshold segmentation algorithm (FIT),
the threshold segmentation algorithm based on K-means clustering, and the classical OTSU
threshold segmentation algorithm to process these images in a comprehensive and detailed
way. This process aims to reveal the advantages and limitations of various algorithms in
processing complex vegetation images through comparative analysis, to provide strong
algorithmic support and reference basis for our subsequent applied research. Figure 12
illustrates the segmentation results of two of the vegetation images and these results
clearly show the differences and characteristics of the different algorithms in processing
the vegetation images.
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(a4) FIT; (a5) HBT; (b1) gray image; (b2) OTSU; (b3) K-means; (b4) FIT; (b5) HBT.

To evaluate the performance of various threshold segmentation algorithms more
comprehensively, this paper uses the average threshold error Equation (5) and the pixel
extraction accuracy Equation (6) to calculate the computation time, average threshold error,
and average accuracy of each algorithm. The experimental results show that although
the HBT algorithm can obtain better segmentation results, it loses some of the detailed
information of the image and is therefore not ideal. In contrast, the FIT algorithm, the
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K-means algorithm, and the OTSU algorithm have almost the same better processing results
and can accurately realize the segmentation of the image.

ε =

N
∑
i
|(TOi − Ti)|

N
(5)

ρ =

N
∑
i
|(POi − Pi)|

N
× 100% (6)

where N is the total number of images (N = 40). Ti is the threshold for different algorithms
and TOi is the threshold for the OTSU method. Pi is the percentage distribution of vegeta-
tion for different algorithms calculated by Equation (6) above and POi is the percentage
distribution of vegetation for the OTSU method. Table 6 lists the performance of the four
segmentation algorithms, where the thresholds are averaged over 40 images.

Table 6. Evaluation of the performance of threshold segmentation algorithms.

Algorithm Image Size Running
Time (s)

Threshold
Value

Threshold
Error

Precision
Rate (%)

OTSU 1280 × 800 0.2511 62.75 0 100
K-means 1280 × 800 0.1770 62.92 0.3281 99.6068

FIT 1280 × 800 0.0252 63.65 0.9203 99.0143
HBT 1280 × 800 0.0116 81.00 18.3500 76.3109

The OTSU method can produce the best result, as Table 5 illustrates. However, to
determine the optimal threshold, the algorithm must traverse all possible thresholds in the
image and calculate the interclass variance between the pixels. As a result, real-time image
processing is difficult to achieve and the computation process is time-consuming. The
segmented image is not usable since it is unclear and lacks most of the detailed information,
even if the HBT algorithm operates at the highest speed. Even though the K-means
method’s operation time is much less than that of the OTSU algorithm, it still fails to meet
the system’s requirements even if its findings are the closest to the ideal answer. In contrast,
the FIT algorithm, although the final accuracy is 0.6% lower than the HBT algorithm, the
operation speed is seven times faster than the HBT algorithm, and the operation time is
very close to that of the HBT algorithm, but the accuracy of the segmentation results is
much higher than that of the HBT algorithm. Considering the factors of segmentation
accuracy and operation speed, this study finally chooses the FIT algorithm to segment
the image.

3.6. Response Test of the System

In the field test, this study set the traveling speed of the UGV to 1 m/s. The distance
from the camera to the nozzle is 1.2 m, which means that the system needs to strictly
control the response time within 1.2 s from the beginning of image acquisition to the
completion of variable spraying. This response process consists of five steps: reading the
image, saving the image, processing the image, transmitting the data, and controlling the
spraying. The mapping length of the image in the field has a decisive influence on the
acquisition frequency of the system. To indirectly control the acquisition frequency of the
system, the camera is adjusted by changing the angle of the camera mounted in front of
the UGV. To minimize the proportional distortion of the images, the length of the acquired
images was set in this study to be the image at a distance of 1~3 m from the farmland in
front of the UGV, which resulted in an image acquisition interval of 2 s for the system. The
evaluation UGV is shown in Figure 13.
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This experiment was conducted with the help of several techniques and instruments
in order to accurately record the response time of the system. Firstly, this paper calculates
the time spent on each image processing by means of algorithmic de-recording timestamps,
which represent the algorithm’s performance metrics in terms of data processing. Then,
the time spent by the controller from accepting data via DMA (direct memory access) to
completing the PWM (pulse width modulation) control, which is the hardware runtime, is
recorded by using an oscilloscope to capture the pulses. Accurate measurements of these
two time periods provide a comprehensive understanding of the actual response time of
the system, thus providing an important reference for subsequent system optimization
and improvement.

This study had a total of thirty trials, and the average response time for the imaging
subsystem is 0.0345 s, as indicated in Table 7. The command period of the controller
(STM32F103RCT6) is about 0.0174 us, and the average response time of the spraying
controller from receiving the control command to issuing the PWM control signal is about
0.0137 s. The PWM signal is used to control the solenoid valve, which enables the function of
regulating the spraying amount. Therefore, the response time of the whole system is about
0.0482 s (0.0345 s + 0.0137 s), which can satisfy the requirement of real-time processing.

Table 7. Tests of system response time.

Test
Response Time (s)

Mean Response Time (s)
1 2 3 4 5

1 0.0410 0.0347 0.0411 0.0340 0.0351 0.0371
2 0.0388 0.0384 0.0351 0.0320 0.0356 0.0359
3 0.0295 0.0286 0.0294 0.0404 0.0310 0.0317
4 0.0300 0.0375 0.0419 0.0338 0.0447 0.0375
5 0.0286 0.4234 0.0412 0.0372 0.0248 0.0348
6 0.0307 0.0376 0.0349 0.0330 0.0314 0.0300
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Although the UGV can use its supporting WEB terminal to set the traveling speed, in
the actual operation, there are many unpredictable factors, such as slope, soil, vegetation,
and humidity, which may interfere with the traveling speed set by the UGV. Due to
the variation in the speed of the UGV, the images captured by the system may have
discontinuous problems, which can lead to the overlap or omission of the articulated part
between the front and back pictures. This situation will directly affect the precise spraying
effect on the whole area of the farmland.

To further ensure the stability of spraying, the system obtains the current driving
speed of the UGV through the Hall sensor. The Hall sensor is a dependable technique for
measuring speed since it can record the UGV’s speed in real-time and send the information
back to the control system. When there is a large deviation between the traveling speed
and the set speed, the system will adjust accordingly to the real-time traveling speed of the
UGV. This method not only ensures the continuity and stability of the spraying operation
but also realizes the application of the system on different types of carriers, thus providing
a more flexible and efficient solution for various agricultural scenarios.

4. Conclusions

The main conclusions of this study are as follows:

(1) A variable spraying and weeding system based on STM32 is developed. In this pa-
per, a low-cost and high-efficiency constant pressure control scheme is innovatively
proposed by utilizing the powerful processing capability and excellent real-time per-
formance of STM32. The core principle is to control the degree of opening and closing
of the high-speed proportional control valve through STM32 to realize the adjustment
of the flow rate of the return pipe, and then complete the stable pressure control of
the whole pipeline system. The program effectively overcomes the shortcomings
of the traditional controller, not only significantly improving the control accuracy,
but more importantly, greatly reducing the cost of the traditional constant pressure
control program.

(2) The system utilizes fuzzy rules to achieve adaptive modification of the Kp, Ki, and
Kd adjustment parameters of the PID control algorithm and combines them with an
interleaved period PWM controller to reduce the impact of nonlinear variations in
water pressure on the performance of the system, and to improve the stability and
control accuracy of the system. The test results show that during the test, the pressure
variation is less than ±0.05 MPa, the average error of spraying is less than 2%, and the
maximum error is less than 5%. The improvement of spraying accuracy and spraying
stability of the variable spraying system was accomplished. In conclusion, this study
verifies that the adaptive fuzzy PID algorithm has superior performance in variable
spraying systems by comparing the effects of traditional PID control and adaptive
fuzzy PID control in practical applications.

(3) In this study, after comparing and testing a variety of image graying algorithms
and image threshold segmentation algorithms, the combination of the normalized
super green algorithm (2G-R-B) and the FIT threshold segmentation method was
finally adopted, which efficiently and quickly distinguished between vegetation and
background. Finally, the performance of the system was comprehensively evaluated
through field trials. The evaluation showed that the system was able to adjust the
corresponding spraying volume in real-time according to the vegetation distribution
under the decision-making based on machine vision algorithms, which proved the
effectiveness of the designed variable weed control system. Compared with other
vegetation image detection techniques, it solves the problem that real-time on-demand
spraying is not possible due to the slow response time of detection.

(4) In this study, the variable weeding system is coupled with the autonomous path
planning function of a UGV to successfully realize unmanned variable weeding
operations, which enables the personnel concerned to be freed from the heavy weeding
work and greatly improves operational efficiency and safety. In addition, this system



Sensors 2024, 24, 1287 21 of 22

is not only extremely costly, but also highly adaptable, making it very suitable for use
with unmanned aircraft, and traditional agricultural equipment, and also can be used
with various types of vehicles. Its characteristics give the system great potential for
industrialization and create favorable conditions for the marketing of the variable
weeding system. Therefore, the variable weeding system developed in this study
has high application value and is of far-reaching significance in promoting the future
development of agriculture in the direction of intelligence, refinement, and efficiency.
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