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Abstract: Fifth Generation (5G) mobile networks introduce the concept of slicing to ensure isolation
among the various supported heterogeneous services. The User Equipment (UE) can be connected
to multiple slices simultaneously. Additionally, the notion of a Bandwidth Part (BWP) was also
instigated to reduce power consumption. A BWP is a small chunk of the bandwidth scanned by the
UE to retrieve its service data. Therefore, a UE connected to multiple services can be configured with
multiple BWPs each associated with a given service. Such UEs find themselves scanning multiple
BWPs, which can be time consuming and highly energy intensive. Hence, it is paramount to study
the appropriate choice of the BWP configuration from an energy-efficiency perspective for multi-slice
users depending on their battery level. In this paper, two energy-efficient BWP selection solutions are
proposed for users connected to multiple slices. The first solution is based on a centralized approach
where UEs are stirred optimally to the best BWP configuration, while the second solution relies on a
user-centric distributed approach using non-cooperative game theory. The proposed schemes take
into account the users’ battery level and their sojourn time in the network as well as the scanned
BWP size. Both solutions are compared with one another and against the legacy solution. Intensive
simulation results demonstrate the efficiency of our proposition in terms of users’ energy efficiency
and quality of service.

Keywords: 5G; energy efficiency; QoS; multi-slice connectivity; BWP

1. Introduction

Fifth Generation (5G) mobile networks support multiple heterogeneous services in-
cluding the enhanced Mobile Broadband (eMBB) service requiring high throughput de-
mand and the Ultra-Reliable Low-Latency Communications (URLLC) service requiring
low latency and high reliability [1]. Owing to the concept of slicing, the physical network
is partitioned into multiple logical networks (coined slices) where each slice is dedicated
to a service and has a dedicated number of radio resources. User Equipment (UE) can be
connected with up to 8 slices simultaneously [2].

Moreover, the concept of a Bandwidth Part (BWP) was introduced in 5G to reduce
UE power consumption where the UE can scan a limited part of the carrier band, termed
BWP, instead of scanning the whole band. Additionally, this concept also supports flexible
SubCarrier Spacing (SCS) designated by numerologies, where higher numerologies ensure
lower latency and can be dedicated to more delay stringent services [3]. As such, a BWP is
a set of contiguous Physical Resource Blocks (PRBs) linked to a specific numerology.

In this work, UEs connected to two slices (eMBB and URLLC) are considered where
each service requires a different numerology. Hence, for these users, two options are
envisaged. The first consists of attributing different BWPs with different numerologies for
each service (or slice) adequately. In such a case, BWP switching is required to retrieve the
service-related data of each BWP. Hence, although this option endows each service with the
most appropriate Quality of Service (QoS), it increases the UE power consumption due to
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scanning a wider bandwidth, and it inflicts an additional latency due to the BWP switching
delay and signaling messages exchanged to perform BWP switching [4,5]. The second
option is to use a single BWP for all slices. Such an option corresponds to the legacy
scheme and is applied currently in 5G networks. It has the merit to reduce complex
signaling messages, costly BWP scanning and UE energy consumption but at the cost
of reduced QoS. In fact, resorting to a single numerology (single BWP) fails to ensure
satisfactory QoS for demanding services. Furthermore, using a single BWP with a single
numerology may increase the UE’s sojourn time in the network, which in turn increases its
energy consumption. Hence, we devise a sagacious and flexible scheme that selects the
most appropriate BWP configuration for each UE among the two previously mentioned
solutions: either the multi-numerology BWPs per UE slice or a single-numerology BWP
for all the UE slices, depending on the UE battery level and QoS strictness. To reach that
aim, two approaches are adopted: a distributed approach using non-cooperative game
theory where every UE autonomously selects the BWP configuration (multi-numerology or
single numerology) that strikes a good balance between improving its QoS and reducing its
battery consumption and a centralized approach where UEs are assigned optimally to the
most adequate BWP configuration. In both approaches, a cost function is carefully defined
and takes into account the BWP size, the BWP level of congestion, the UE sojourn time in
the network and the UE battery level. The performances of both approaches are assessed
through extensive simulations where they are compared against each other and against the
legacy scheme which they largely surpassed. The rest of the paper is organized as follows.
Section 2 gives the state of the art. Section 3 discusses our system model. Sections 4 and 5
tackle the proposed distributed and centralized approaches. Section 6 provides simulation
results of the proposed solutions. Finally, Section 7 concludes the paper.

2. Related Works

In the state of the art (SOTA), most works focus on the dynamic allocation of the slice
radio resources for users connected to a single slice such as our previous work [6] and the
work in [7]. However, these works do not consider the full energy efficiency aspect nor
the users’ multi-user-slice connectivity, which is the case of our work. In fact, few works
such as the work in [8] consider users connected to multiple slices. In the latter, the authors
used Deep Reinforcement Learning (DRL) to attribute the radio resources for each service
to these users connected to multiple slices. Nevertheless, the radio resource allocation
problem is addressed from a PRB allocation perspective, and the energy efficiency aspect
is not taken into account. This is different from our work where the radio resources are
allocated based on an energy-efficient BWP configuration selection. Other works from
SOTA tackle the BWP subject by studying the BWP switching process such as the work
in [9], where the impact of BWP switching on the network’s performance is assessed.
Moreover, BWP switching related to the BWP inactivity timer is addressed in the work
in [10], where a new method is proposed to manage the BWP Inactivity Timer by reducing
latency and increasing throughput. Also, the authors in [11] propose an energy-efficient
joint mechanism that combines BWP and Discontinous Reception (DRX). However, our
work relies on a BWP configuration selection to reduce energy consumption instead of using
existing methods such as DRX and the BWP Inactivity Timer. In addition, the mentioned
works do not consider users connected to multiple slices.

For the energy-efficiency aspect, the work in [12] provides an overview of new features
in 5G which help reduce power consumption and increase energy efficiency. In addition,
some works propose energy-efficient virtual resource allocation methods using Deep
Reinforcement Learning such as the work in [13]. Other works propose an energy-efficient
routing protocol in 5G such as the work in [14], whereas the authors in [15] introduce an
energy-efficient scheme by solving an optimization problem that aims to reduce power
consumption. Nevertheless, these works do not tackle the energy-efficient aspect from a
BWP radio resource allocation perspective and do not consider the multi-slice users.
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In fact, the main focus of our work is to optimize the energy efficiency for users con-
nected to multiple slices in order to ensure a balance between QoS satisfaction and energy
efficiency, which is rarely considered in the SOTA. In fact, for these users, two options are
available. The first is using a single numerology and a single BWP for all services and
slices. With this option, energy consumption is reduced since BWP switching is avoided
as well as scanning a larger bandwidth. However, it is not optimal to use a single BWP
for all services, as each service may require the use of different numerologies for QoS
performance satisfaction. For example, the URLLC service typically requires a higher
numerology than the eMBB service [16]. The second option would be to use different BWPs
and numerologies for each service, which helps to optimize the services’ QoS but at the cost
of increasing energy consumption and inflicting additional delays due to BWP switching.
Hence, a satisfactory compromise is needed between QoS satisfaction and energy efficiency.
For this reason, we consider a scheme that flexibly selects one of these two options for each
UE depending on the UE characteristics, since resorting to a single choice is detrimental to
UE performance.

In fact, opting for a single numerology will reduce the energy consumption of the UE
relative to BWP scanning and BWP switching. Nonetheless, a single numerology bestows
lower data rates on the UE, which increases its sojourn time, leading to higher energy
consumption. Conversely, a multi-numerology reduces the UE sojourn time owing to
higher QoS satisfaction and data rates but in turn increases energy consumption because of
costly BWP scanning and switching. Hence, this work tackles the challenging problem of
energy-efficient BWP configuration selection for users connected to multiple slices.

The BWP configuration selection between a multi-numerology and single numerology
is assessed for each user depending on multiple factors.

The devised BWP configuration selection aims to strike a good balance between the
size of the scanned BWP and the UE sojourn time in the network depending on the UE QoS
and UE battery level. Two approaches are adopted:

• A distributed approach based on a non-cooperative congestion game.
• A centralized approach based on a global optimization problem.

These approaches are compared against one another and against the legacy scheme
where a single BWP for all services is selected for all users.

Thus, the contributions of our work are summarized as follows:

• Users connected to multiple slices are considered, which are rarely tackled in the SOTA.
• The selection of a BWP configuration for multi-slice users is used to address the radio

resource allocation problem unlike other works from the literature focusing on the
PRB allocation.

• This BWP configuration scheme is based on a novel concept where either the multi-
numerology or single-numerology BWP configuration is selected for each multi-slice
user while aiming to optimize the users’ energy consumption and QoS.

• The energy-efficiency aspect is considered in the BWP configuration selection process
instead of using existing mechanisms from the standards such as DRX and the BWP
Inactivity Timer to reduce users’ energy consumption.

• A centralized and a distributed approach are proposed and are compared against each
other and against the legacy scheme.

The proposed schemes are detailed in the next sections.

3. System Model

The system model is represented in Figure 1.
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Figure 1. System model.

As can be seen, we consider a fixed random number of users Nusers and a single next
generation NodeB (gNB) with a total band Btotal which corresponds to the amount of
bandwidth owned by a 5G operator. The gNB covers an area with radius R. Additionally, it
operates on the foperator = 3.5 GHz frequency (Frequency Range 1) in Time-Division Duplex
(TDD) mode. As for the users, they are randomly distributed in the gNB coverage area
within the radius R where each user is connected to two slices: eMBB and URLLC. Each slice
will have a dedicated number of radio resources. Additionally, three bandwidth parts are
considered for each slice: the first BWP denoted by BWP 1 consists of the band attributed
to the eMBB slice and uses numerology 1 (the lower numerology) with a band BeMBB
MHz, the second BWP denoted by BWP 2 is the band attributed to the URLLC slice using
numerology 2 (a higher numerology) with a band BURLLC MHz. Note that users selecting
the multi-numerology BWP configuration will scan both these BWPs (BWP 1 and BWP 2)
consecutively to retrieve the data for each slice. The third BWP denoted by BWP 3 is the one
shared between both slices using numerology 1 with a band Bmixed with BeMBB + BURLLC +
Bmixed ≤ Btotal . This particular BWP (BWP 3) is scanned by users affected with a single
numerology for both services. Each UE u has a given volume of data Vu,s to retrieve for
each service s and remain in the network until the total data volume for both services
is consumed. A fair queuing scheduling is applied at the level of each BWP where the
BWP radio resources are attributed equally among users. For each user, we calculate
the throughput to determine at a later stage the user’s sojourn time in the network. The
throughput of UE u for service s is computed as follows:

Thru,s =
AllocPRBu,s × Bits_per_PRBu

D
(1)

where AllocPRBu,s is the number of allocated PRBs to UE u for service s from its attached
BWP during a TTI with duration D. Furthermore, Bits_per_PRBu is the number of bits per
PRB that depends on the modulation and coding rate of the UE, which in turn are based on
its Signal-to-Interference-plus-Noise Ratio (SINR). It is calculated as follows:

Bits_per_PRBu = 12 × 14 × log2(MOu)× CRu (2)

In (2), the PRB is considered to be composed of 12 subcarriers in the frequency domain
and 14 OFDM symbols in the time domain, which explains the displayed values. In ad-
dition, MOu is the modulation order and CRu is the coding rate of the considered UE. As
for the number of allocated PRBs to the UE for service s, it depends on the total number
of PRBs TotPRBbwp allotted to its attached BWP bwp, which is linked to the service s and
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the total number of connected users to this particular BWP Nusers,bwp, since a fair resource
scheduling is applied:

AllocPRBu,s =
TotPRBbwp

Nusers,bwp
(3)

As for the total number of PRBs available at each BWP, it is determined by Table 5.3.2-1
from [17] depending on the attributed BWP band and numerology.

Such performance indicators will be used to devise the cost function presented here-
after and used to stir adequately the BWP selection configuration in centralized and
distributed approaches.

The Cost Function

The cost function for UE u selecting BWP configuration strategy c is given by:

Cu,c = ∑
s∈{eb,uc}

αu,s · DSTu,s,c + θc · SwDlu + βu · Bc (4)

where

• DSTu,s,c is the sojourn time of UE u for retrieving the data of a particular service s
when selecting strategy c. The service s can be either eMBB denoted by eb or URLLC
denoted by uc.

• SwDlu is the BWP switching delay of UE u (also a part of the user’s overall sojourn time).
• Bc is the total band scanned by the user depending on its devised strategy c.
• αu,s and βu are normalizing factors. The former reflects the class of service s for UE u

and the latter represents the battery level of UE u.
• θc is an indicator variable that equates to one in the presence of BWP switching delay

and to zero otherwise, and hence it depends on the selected strategy.

In the cost function (4), the first term represents the UE’s sojourn time in the network,
which is necessary for retrieving the data of all its services. That first term is used as a QoS
indicator as the higher the user sojourn time, the lower its QoS, since the user will endure
a higher delay and will stay active in the network longer, which may increase its energy
consumption. Hence, a higher sojourn time increases the cost function. The second term is
the BWP switching delay (when applicable), which is also a part of the user’s sojourn time
in the network. The third term of the cost function represents the scanned BWPs by the UE.
The higher this band, the higher the energy consumed by the user for scanning a larger
band. In fact, if UE u chooses the multi-numerology strategy MN, it will scan consecutively
BWP 1 and BWP 2 to retrieve the data of each service s, and the corresponding sojourn
time for service s is determined by the following equation:

DSTu,s,MN =
Vu,s

Thru,s
(5)

where

• Vu,s is the volume of data to be retrieved by UE u for service s.
• Thru,s is the throughput of UE u for service s.

Additionally, with the multi-numerology scheme, the BWP switching delay is taken into
account (θMN = 1) and the total scanned band by the user is the sum of BWP 1 and BWP 2
(BMN = BBWP1 + BBWP2). When UE u selects the single-numerology configuration SN, it
will scan BWP 3 solely to retrieve the data of both services. Therefore, it will have the same
achieved throughput for both services, since the same number of PRBs is allocated to the
user for each service s. Therefore, Thru is independent of the type of service in that case
and DSTu,s,SN = Vu,s

Thru
. Also, θSN = 0 and BSN = BBWP3 as only one BWP is scanned, which

prevents BWP switching. Choosing the multi-numerology configuration will improve
user’s KPIs and QoS and will increase user’s throughput, which in turn will reduce the
user’s sojourn time (first term) but at the cost of adding a BWP switching delay (second
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term) and increasing the BWP scanned by the user (third term) and hence the ensuing
energy consumption. In contrast, a single numerology avoids BWP switching (second
term) and reduces the energy consumption, as the BWP scanned by the user (third term) is
narrower but increases the user’s sojourn time (first term). Additionally, the user sojourn
time increases when the number of users choosing the same BWP increases as users
equally share limited amount of resources, which reduces the achieved throughput. Hence,
an astute load balance of users among available configurations (single or multi-numerology)
must be attained.

This cost function is later used in both the centralized and distributed approaches,
which are detailed in subsequent sections.

4. Distributed Approach: Congestion Game

Users connected to multiple slices strive to choose between the multi-numerology (MN)
and single-numerology (SN) BWP configurations in order to curb their energy consumption
without sacrificing their QoS. Thus, the problem can be modeled as a non-cooperative game
where the players are autonomous UEs competing over limited radio resources, which are
the PRBs available in the BWPs. The corresponding non-cooperative game J is presented
as follows:

• P is the set of players which are none other than the UEs connected to multiple slices.
• The set of strategies is S = {MN, SN} where MN and SN designate the multi-

numerology and single-numerology BWP configurations, respectively. Addition-
ally, vu is the strategy vector of UE u which is composed of binary variables vu,c.
The latter is equal to 1 when UE u chooses the BWP configuration c. Therefore,
the strategy profile is v = (vu)u∈P ∈ S . Also, the space of all profiles is denoted by
S = S1 × S2 . . . × SU .

• {C1, C2, . . . , CU} denotes the set of cost functions based on Equation (4) which assess
the players’ gain after their strategy selection.

In J , the Nash Equilibrium (NE) is sought. In fact, the NE is an equilibrium state where
every player u would select an optimal strategy in response to other players’ strategies and
where no further benefit is acquired after deviating from this strategy unilaterally.

The game J is guaranteed to have a mixed NE, since it is a finite game. With mixed
NEs, players select their optimal strategy following a probability distribution which
may be inconvenient. However, thanks to the Finite Improvement Path property which
J possesses similarly to the work in [6], the existence of a Pure NE (PNE) is guaranteed [18].
Thus, we prove this property below.

Proposition 1. The game J holds the Finite Improvement Path property.

Proof. The cost function of J is player specific and non-decreasing in the number of
players which select the same strategy. This is because the sojourn time Vu,s

Thru,s,bwp
is non-

decreasing in the number of players that selected the same strategy as the throughput is
inversely proportional to the number of users selecting the same BWP configuration. Thus,
J is an unweighted congestion game. Moreover, this type of game has the FIP property
only when two strategies can be selected according to [19]. J verifies this condition, since
only two strategies may be chosen MN and SN.

Subsequently, games holding the FIP property converge to the PNE using simple Best-
Response dynamics, as stated by [20], where each player in turn will choose the strategy
minimizing its cost function in response to other players’ strategies until convergence,
when the chosen strategy of each player is the same as in the previous round presented in
the below Algorithm 1.

In the next section, the same problem is tackled in a centralized approach.



Sensors 2024, 24, 1281 7 of 16

Algorithm 1: Distributed BWP Configuration Selection Best Response Dynam-
ics Algorithm

Input: BWP configuration cost
Output: BWP configuration selection based on lowest cost
repeat

Calculation of BWP configuration cost Cu,MN and Cu,SN by each UE u;
BWP configuration with lowest cost is selected by the user;

until BWP configuration selection is the same as previous iteration;

5. Centralized Approach: Optimization Problem

In the centralized approach, a central entity takes the decision of the BWP configuration
selection for each user by solving an optimization problem corresponding to minimizing
the total cost for all users.

5.1. The Objective Function

The optimization problem is the following:

min
A1,A2

∑
u∈P

Cu,MN(A1) + ∑
u∈P

Cu,SN(A2)

subject to:

a1u, a2u ∈ {0, 1}, ∀u ∈ P
a1u + a2u = 1, ∀u ∈ P

(6)

where

• A1 = (a1u)∀u∈P is the vector of binary decision variable a1u which is equal to 1 when
UE u has the MN strategy configured and equal to 0 otherwise.

• A2 = (a2u)∀u∈P is the vector of binary decision variable a2u which is equal to 1 when
UE u has the SN strategy configured and equal to 0 otherwise.

• Cu,MN and Cu,SN are the cost functions when UE u is configured with the MN and SN
strategy, respectively, and are determined in the below Equations (7) and (8).

Cu,MN(A1) = a1u ·
αu,eb · Vu,eb · D1 · (∑k ̸=u a1k + 1)
TotPRBBWP1 · Bits_per_PRBu

+a1u ·
αu,uc · Vu,uc · D2 · (∑k ̸=u a1k + 1)
TotPRBBWP2 · Bits_per_PRBu

+a1u · (θMN · SwDlu + βu · BMN)

(7)

Cu,SN(A2) = a2u ·
αu,eb · Vu,eb · D3 · (∑k ̸=u a2k + 1)
TotPRBBWP3 · Bits_per_PRBu

+a2u ·
αu,uc · Vu,uc · D3 · (∑k ̸=u a2k + 1)
TotPRBBWP3 · Bits_per_PRBu

+a2u · (βu · BSN)

(8)

with D1, D2 and D3 representing the duration of the TTI when UE u is served by either
BWP 1, 2 or 3, respectively.

Equations (7) and (8) are derived from Equations (1) and (3)–(5) after replacing each
term. To note that the number of users attached to each BWP is determined by the sum
of the binary decision variables which leads to Nusers,BWP1 = Nusers,BWP2 = ∑k ̸=u a1k + 1
and Nusers,BWP3 = ∑k ̸=u a2k + 1. Therefore, the aim of this optimization problem is to
minimize the cost function of all users globally by choosing for every user the adequate
binary variables a1u and a2u. Note that the constraint a1u + a2u = 1, ∀u ∈ P is added to
limit the user’s selection to only one strategy.
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The optimization problem defined in Equation (6) is non-convex, since it is an integer
(binary variables) non-linear problem due to the product of the decision variables with
a1u · (∑k ̸=u a1k + 1) and a2u · (∑k ̸=u a2k + 1). Therefore, an exhaustive search may be used to
solve this problem. With exhaustive search, all possible combinations for user distributions
among the BWPs are assessed to choose the one with the lowest cost function, as seen in the
below Algorithm 2. Nonetheless, this approach is highly time consuming with a complexity
of 2Nusers . For this reason, we transform the non-linear integer optimization problem in (6)
to a linear one by replacing the multiplicative decision variables in what follows.

Algorithm 2: BWP Configuration Selection Exhaustive Search Algorithm
Input: Cost function for all (a1u, a2u)∀u∈P combinations possible

(2Nusers combinations)
Output: Combination of (a1u, a2u)∀u∈P with the lowest cost function for all users
repeat

Calculation of BWP configuration cost function for all users
∑u∈P Cu,MN + Cu,SN ;

Store the combination of (a1u, a2u)∀u∈P with the calculated BWP configuration
cost function for all users;

until Every combination of (a1u, a2u)∀u∈P is executed;
Select (a1u, a2u)∀u∈P with the lowest BWP configuration cost function for all users.

5.2. Integer Linear Programming Formulation

The non-linear terms a1u · a1k and a2u · a2k from (6) are replaced by the linear decision
variables π1u,k and π2u,k. Additionally, inequality constraints are added to ensure that
the new variables are behaving the same way as the replaced non-linear terms. Also,
π1u,u is none other than a1u since π1u,u = a1u · a1u = a1u since a1u is binary. The same
applies for π2u,u. Therefore, our Integer Linear Programming (ILP) problem is formulated
as follows:

min
Π1,Π2

∑
u∈P

Cu,MN(Π1) + ∑
u∈P

Cu,SN(Π2)

subject to:

π1u,u, π2u,u ∈ {0, 1}, ∀u ∈ P
π1u,u + π2u,u = 1, ∀u ∈ P
π1u,k − π1u,u ≤ 0, ∀u, k ∈ P
π2u,k − π2u,u ≤ 0, ∀u, k ∈ P
π1u,k − π1k,k ≤ 0, ∀u, k ∈ P
π2u,k − π2k,k ≤ 0, ∀u, k ∈ P
π1u,u + π1k,k − π1u,k ≤ 1, ∀u, k ∈ P
π2u,u + π2k,k − π2u,k ≤ 1, ∀u, k ∈ P

(9)

where

• Π1 = (π1u,k)∀u,k∈P is the vector of binary decision variable π1u,k, which is equal
to 1 when both users u and k have the MN strategy configured and equal to 0 otherwise.

• Π2 = (π2u,k)∀u,k∈P is the vector of binary decision variable π2u,k, which is equal
to 1 when both users u and k have the SN strategy configured and equal to 0 otherwise.

• π1u,u and π2u,u are the same as a1u and a2u respectively.
• The first two constraints replace the ones defined in the previous problem, and

the additional ones ensure that the new decision variables behave correctly with
π1u,k = a1u · a1k and π2u,k = a2u · a2k.
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• Cu,MN and Cu,SN are the same cost functions when UE u is configured with the MN
and SN strategy, respectively, but taking into account the new decision variables as
shown in the below Equations (10) and (11).

Cu,MN(Π1) =
αu,eb · Vu,eb · D1 · ∑k∈P π1u,k

TotPRBBWP1 · Bits_per_PRBu

+
αu,uc · Vu,uc · D2 · ∑k∈P π1u,k

TotPRBBWP2 · Bits_per_PRBu

+π1u,u · (θMN · SwDlu + βu · BMN)

(10)

Cu,SN(Π2) =
αu,eb · Vu,eb · D3 · ∑k∈P π2u,k

TotPRBBWP3 · Bits_per_PRBu

+
αu,uc · Vu,uc · D3 · ∑k∈P π2u,k

TotPRBBWP3 · Bits_per_PRBu

+π2u,u · (βu · BSN)

(11)

Therefore, this ILP problem can be solved with CPLEX solver, achieving the same
optimal result as the exhaustive search algorithm but much more swiftly.

6. Performance Evaluation

We used Python for simulations to compare both approaches against each other and
against the legacy scheme where all users are configured with a single BWP for both services
with a band Blegacy. CPLEX solver was used to solve the ILP problem in the centralized
approach. Simulations were run several times (≈100 times) with a different number of
users each time, and the same results were observed regardless of the number of users.
Therefore, we start by putting the focus on the scenario with Nusers = 20. Afterwards, we
display results for Nusers = 30. The simulation parameters from the system model are
shown in Table 1.

Table 1. Simulation parameters.

Parameter Description Value

R Coverage area 300 m
VURLLC URLLC volume of data 2–15 Mbits
VeMBB eMBB volume of data 5–50 Mbits
SwDlu User’s BWP switching delay 1 ms [5]
Btotal Operator band 100 MHz

BeMBB eMBB BWP band 40 MHz
BURLLC URLLC BWP band 20 MHz
Bmixed Mixed BWP band 30 MHz
Blegacy Legacy BWP band 60 MHz
PBWP1 Power consumption for scanning BWP 1 (eMBB) 1000 mW
PBWP2 Power consumption for scanning BWP 2 (URLLC) 500 mW
PBWP3 Power consumption for scanning BWP 3 (mixed) 750 mW
Plegacy Power consumption for scanning legacy BWP 1500 mW

αu,eMBB Normalizing factor for cost function 1
αu,URLLC Normalizing factor for cost function 2

βu Normalizing factor for cost function 0.001–0.099

As for the results, we display the energy efficiency and total throughput Cumulative
Distribution Functions (CDFs) for all users and the users’ overall sojourn time in the
network CDF for all users. The energy efficiency of UE u selecting the strategy MN is
computed as follows:

EEu,MN =
Thru,eb + Thru,uc

PBWP1 + PBWP2
(12)

where
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• EEu,MN is the energy efficiency of UE u selecting the MN strategy.
• Pbwp is the UE power consumption for scanning BWP bwp.

When UE u selects the SN strategy, its energy efficiency is EEu,SN = Thru
PBWP3

.
As for the overall sojourn time of UE u, it is STu,c = ∑s∈{eb,uc} DSTu,s,c + θc · SwDlu.

As for the overall sojourn time of UE u, it is calculated as follows:

STu,MN = ∑
s∈{eb,uc}

Vu,s

Thru,s
+ SwDlu (13)

STu,SN =
∑s∈{eb,uc} Vu,s

Thru
(14)

Figure 2 displays the number of users associated with each strategy using the exhaus-
tive search algorithm for 20 users. Results show that a higher number of users prefer the
single-numerology scheme, as it is more adapted to these users from an energy-efficiency
perspective, since users scan a single and narrower BWP without BWP switching. Addi-
tionally, the single-numerology strategy is mainly selected for users with a low battery
level on average, whereas the nulti-numerology scheme is chosen for users with a high
battery level on average. This is due to the fact that users with a low battery level require
more energy savings, which explains why they favor the single-numerology scheme.

Figure 2. User distribution among strategies with an exhaustive research algorithm for 20 users.

Figure 3 represents the users’ energy-efficiency CDF for the centralized, distributed and
legacy schemes for 20 users. It can be concluded that both proposed solutions—centralized
and distributed—realize a higher energy efficiency than the legacy scheme thanks to the
astute cost function that helped strike a nice balance between energy efficiency and QoS.
Moreover, the centralized scheme performs slightly better than the distributed scheme.

Figure 4 represents the users’ total throughput CDF for the centralized, distributed
and legacy schemes for 20 users. It is clear that both proposed solutions achieve higher
throughput values than the legacy scheme thanks to the load balancing of users between
the BWP configurations and thanks to the devised cost function that aims to increase energy
efficiency, which leads to an increase of the users’ throughput.

Figure 5 shows the users’ sojourn time CDF for the centralized, distributed and legacy
schemes for 20 users. The three schemes realize very close performances, which means that
the proposed solutions aim to reduce the network’s sojourn time to a minimum.
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Figure 3. Energy-efficiency CDF for 20 users.

Figure 4. Total throughput CDF for 20 users.

Figure 5. Sojourn time CDF for 20 users.
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As the number of users increases, the number of users with the MN BWP configuration
is also increased to ensure a balance between both options with an inclination toward the
SN BWP configuration. This can be seen in Figure 6, which represents the user distribution
among strategies for 30 users.

Figure 6. User distribution among strategies with centralized solution algorithm for 30 users.

As for the energy-efficiency CDF, Figure 7 displays it for 30 users where we can see
that both solutions still provide better energy efficiency than the legacy scheme. However,
the performance of these solutions becomes closer to the legacy scheme performance as the
number of users increases, since the network becomes saturated. For the sojourn time CDF
for 30 users, the same results are observed as the scenario of 20 users.

Figure 7. Energy-efficiency CDF for 30 users.

Figure 8 represents the users’ total throughput CDF for the centralized, distributed
and legacy schemes for 30 users. Similar to the energy-efficiency results, we have lower
throughput values with the increasing number of users. Nonetheless, higher throughput
values are observed with the proposed solutions.
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Figure 8. Total throughput CDF for 30 users.

Therefore, we deduce that the proposed solutions (centralized and distributed) achieve
better energy efficiency, which in turn helps with improving the users’ battery lifespan
while ensuring the same sojourn time as the legacy scheme.

6.1. The Price of Anarchy

To adequately compare the centralized and distributed approaches, we have recourse
to the well-known Price of Anarchy (PoA), which is computed as follows:

PoA =
GlobalCostoptimal

GlobalCostNE
(15)

Therefore, it is the ratio of the sum of all users’ costs obtained with the optimal
centralized approach and the sum of all users’ costs at NE for the distributed approach.
The PoA is between 0 and 1, and the higher its value, the closer the performances of the
distributed approach to the optimal centralized one.

Figure 9 displays the PoA as a function of the number of users. As can be seen, the PoA
is ≈1 regardless of the number of users. This explains why the distributed approach attains
very close performances to the centralized one.

Figure 9. Price of Anarchy as a function of the number of users.
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As for the convergence time of each approach, it is represented in Figure 10 for the
distributed approach with the best response algorithm and the centralized approach with
CPLEX solver for the ILP problem.

Figure 10. Convergence time as a function of the number of users.

The complexity of Algorithm 1 is O(Nusers × Nstrategies × Niterations = 2) where Nusers is
the number of users, Nstrategies is the number of strategies that can be selected which
is equal to 2 (MN and SN strategies), and Niterations is the number of iterations until
convergence is reached, which is also equal to 2 iterations. In fact, the algorithm duration is
≈0.01 s regardless of the number of users, which is very swift to meet the stringent delay
requirements. Nonetheless, the centralized solution with the ILP problem takes a slightly
higher computation time of ≈10 s when Nusers ≤ 20 but starts to increase exponentially
when Nusers > 20. In the latter case, the convergence time is too long, which will result
in failing to respect the tolerated latency. However, the learning of the optimal choice of
strategy may be learned offline prior to the arrival of users in order to make fast decisions.
Also, it is important to note that for the centralized approach, the ILP problem solver
CPLEX remains much faster than the exhaustive search algorithm where the convergence
time is ≈300 s for Nusers = 20.

We conclude that the distributed approach is able to achieve almost optimal results
with a much lesser computational time compared to the optimal centralized approach
where the convergence time becomes significantly important with an increasing number
of users.

6.2. Results Highlight

Based on these results, we can draw the following conclusions:

• Most users are likely to select the single-numerology BWP configuration, since it
provides a reduced power consumption. The latter increases with the frequency of
BWP scanning (Figures 2 and 6).

• Both approaches (centralized and distributed) provide better energy efficiency and
throughput while maintaining the UE’s network sojourn time to a minimum thanks
to the well-defined cost function (Figures 3–5, 7 and 8).

• As the number of users increase, the performances become closer to the legacy scheme
since the network becomes saturated (Figures 6–8).

• The distributed and centralized approaches realize almost the same performances as
can be explained by the PoA analysis (Figure 9).

• The distributed approach has the best performance in terms of convergence time while
achieving almost the same QoS performance as the centralized approach (Figures 9 and 10).
Hence, the distributed approach should be adopted for implementation.
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7. Conclusions

This paper proposes a savvy and flexible scheme to select an appropriate BWP con-
figuration for users connected to multiple slices that help such users reduce their energy
consumption without hindering their QoS. The BWP configuration selection between multi-
numerology and single-numerology BWPs is assessed for each user depending on multiple
factors, including battery level and QoS satisfaction. Two approaches are adopted. The first
approach is a centralized one based on a global optimization problem where a central
entity minimizes the total cost of users by selecting for each user the most adequate BWP
configuration. The second approach is a distributed one based on non-cooperative game
theory, where each user selects autonomously the BWP configuration that minimizes its
own cost. Extensive simulations prove the efficiency of our devised scheme against the
static legacy scheme, and our evaluation of the price of anarchy proves the precedence of
the distributed approach over the centralized one, as it combines fast convergence and near
optimal performances.

For future work, we intend to take into account additional services for users connected
to multiple slices.
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