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Abstract: The global population is progressively entering an aging phase, with population aging
likely to emerge as one of the most-significant social trends of the 21st Century, impacting nearly all
societal domains. Addressing the challenge of assisting vulnerable groups such as the elderly and
disabled in carrying or transporting objects has become a critical issue in this field. We developed a
mobile Internet of Things (IoT) device leveraging Ultra-Wideband (UWB) technology in this context.
This research directly benefits vulnerable groups, including the elderly, disabled individuals, pregnant
women, and children. Additionally, it provides valuable references for decision-makers, engineers,
and researchers to address real-world challenges. The focus of this research is on implementing
UWB technology for precise mobile IoT device localization and following, while integrating an
autonomous following system, a robotic arm system, an ultrasonic obstacle-avoidance system, and
an automatic leveling control system into a comprehensive experimental platform. To counteract the
potential UWB signal fluctuations and high noise interference in complex environments, we propose a
hybrid filtering-weighted fusion back propagation (HFWF-BP) neural network localization algorithm.
This algorithm combines the characteristics of Gaussian, median, and mean filtering, utilizing a
weighted fusion back propagation (WF-BP) neural network, and, ultimately, employs the Chan
algorithm to achieve optimal estimation values. Through deployment and experimentation on the
device, the proposed algorithm’s data preprocessing effectively eliminates errors under multi-factor
interference, significantly enhancing the precision and anti-interference capabilities of the localization
and following processes.

Keywords: Internet of Things; UWB jitter value; BP neural network; follow algorithm; hybrid filtering;
indoor localization

1. Introduction

In recent years, with the rapid development of technology, the demand for precise po-
sitioning techniques has been increasingly growing [1]. Against this backdrop, autonomous
positioning and following Internet of Things (IoT) devices have gradually come into the
public eye. However, these devices still face numerous challenges in positioning accu-
racy and adaptability to complex environments, often leading to suboptimal following
performance and functionality. Although the market is not short of products capable of
autonomous positioning and following, they typically struggle to achieve flexible and
precise positioning and following, especially in varied and complex environments. Con-
currently, the global population is progressively aging, with the number and proportion
of elderly individuals rising in almost every country. Existing autonomous positioning
and following IoT devices often overlook the unique needs of vulnerable groups such
as the disabled, elderly, and pregnant women, urgently necessitating solutions for stable
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tracking and assistance in handling objects in complex terrains like stairs, plaza steps, and
campuses. Moreover, the inevitable Non-Line of Sight (NLOS) issues in real-world envi-
ronments significantly impact positioning accuracy [2–6]. In this context, Ultra-Wideband
(UWB) technology, known for its excellent penetration capabilities, low power consump-
tion, and high positioning accuracy, has attracted widespread attention in high-precision
positioning [7].

In the current market landscape, autonomous following robots predominantly utilize
visual sensor technology to track moving targets. However, these vision-based following
methods are susceptible to lighting conditions, prone to interference from external light
sources, and often lose track of their target [8,9]. In environments such as indoors, train
stations, and airports, multipath and NLOS interferences impede effective positioning and
following. Jinhai Liu et al. [10] designed a cart that autonomously follows a target using
UWBxuzo technology, yet UWB signal fluctuations significantly disrupt the positioning in
complex environments. Qingkun Song et al. [11] attempted to mitigate indoor multipath
and NLOS effects using Kalman filters for range data processing, but the results were
suboptimal. To enhance positioning accuracy, Bi J et al. [12] proposed an indoor WiFi
positioning algorithm based on Particle Swarm Optimization-Support Vector Regression.
Their findings indicated a reduction in Root-Mean-Squared Error (RMSE) compared to
methods based on Convolutional Neural Networks. Edgar S et al. [13] introduced an
improved hybrid technique that combines received signal strength information from avail-
able WLAN access points with wireless sensor network technology for fingerprint-based
indoor positioning, effectively reducing positioning errors. Peng S et al. [14] developed an
algorithm that integrates Weighted K-nearest neighbors and Kalman Filtering, proposing
enhancements like weighted K-nearest neighbor Particle filtering and weighted K-nearest
neighbor extended Kalman filtering to lower positioning errors effectively. Yue D et al. [15]
proposed a navigation localization model based on an improved-bee-algorithm-optimized
BP network. They utilized the IABC algorithm and a Kalman filter to establish a navigation
localization model for agricultural machinery BDS/INS, achieving reliable navigation and
precise positioning in a short time. Guoping D et al. [16] employed the GWO algorithm
to optimize a BP neural network, constructing a CFRP transmission shaft damage iden-
tification and localization system based on FBG sensor networks and GWO-BP neural
networks. This system enables real-time acquisition of CFRP transmission rod strain field
information, accurately identifying damage and its location. The Chan algorithm, known
for its low computational demand, is significantly affected by NLOS errors. The presence of
NLOS errors leads to multipath effects during positioning, causing a substantial decrease
in the accuracy of the Chan algorithm, significantly as indoor obstacles increase [17]. This
highlights the ongoing challenge of developing robust, accurate indoor positioning systems
in complex environments. The battery life of mobile devices and power wastage are also
hot topics of concern [18].

In the current landscape, several companies and teams have developed analogous
products with similar functionalities. In 2013, researchers at FTR Systems designed a
robotic caddy named CaddyTrek, employing sensor technology to achieve the dynamic
following of moving targets. However, widespread adoption has proven challenging.
In 2017, the COWAHOBOT team developed an intelligent suitcase called COWAHOBOT
R1, equipped with radio-frequency positioning technology, laser radar technology, and pres-
sure sensor technology. It features functions such as human recognition and automatic
following positioning. Due to its high cost, this smart suitcase faces difficulties in achiev-
ing broad accessibility. In 2019, the Italian company Piaggio introduced an autonomous
cargo-carrying robot named Gita, utilizing camera sensor technology to construct three-
dimensional maps for localization and tracking functionalities. However, these products
primarily incur elevated costs and are designed for general users, lacking personalized
adjustments for vulnerable, elderly, and disabled populations. They are not suitable for
assisting these specific demographic groups in their daily lives.



Sensors 2024, 24, 1257 3 of 24

The mobility of special populations, such as the elderly, disabled individuals, and preg-
nant women, is fraught with challenges, mainly when it involves carrying items or maneu-
vering luggage. These difficulties are further exacerbated in scenarios requiring navigation
around obstacles like stairs, steps, plaza stairs, and entrance halls. Moreover, traditional
autonomous following mobile IoT devices often falter in the face of such impediments and
are hindered by diffuse reflection and NLOS conditions during localization and following
processes. Addressing these multifaceted challenges, our study introduces an innovative
mobile IoT device that combines following, obstacle negotiation, and material-handling
functionalities. This device is grounded in UWB positioning technology. It harnesses the
strengths of Gaussian, median, and mean filtering, integrated through a weighted fusion ap-
proach in conjunction with a BP neural network. We propose a novel UWB-based HFWF-BP
neural network localization and following algorithm tailored to adapt to diverse scenarios
and tackle the complexities of varied operational environments. Research and application
of this technology, from a societal perspective, can significantly assist modern societies in
addressing the challenges posed by population aging. Moreover, it can serve as a pivotal
component in the development of barrier-free facilities for smart cities, aiding policymakers
in formulating more-comprehensive social policies and contributing positively to overall
societal advancement. From the standpoint of user groups, it has the potential to enhance
the quality of life for the elderly, disabled individuals, pregnant women, and children in
their daily lives. Simultaneously, it can mitigate the inconveniences associated with the
lifting or carrying of heavy objects, promoting convenience and reducing the cost of living,
while providing heightened safety assurance.

We conducted secondary development on the DW1000 chip and designed a UWB
positioning system. Initially, hardware calibration and experimental environment setup
were performed. Subsequently, measurement values were obtained by calculating the
TDOA, and hyperbolic equations were constructed. The three-sided positioning method
was employed to determine the initial values of the target UWB tag. UWB measurement
data were collected, and the obtained data were input into the HFWF-BP neural network
localization algorithm to locate the moving target and obtain UWB measurement values.
By integrating geometric positioning, the optimal tracking results were obtained. The
performance evaluation of the experiment was conducted through dynamic/static CDF
analysis. On mobile IoT devices, the HFWF-BP neural network algorithm was utilized
to compute the distance and angular deviation from the UWB tag to the center of the
UWB base station. The PID algorithm was employed for adjustment to control the PWM
value, thereby regulating the motion of the autonomously tracking mobile IoT device.
In this research, we designed an articulated autonomous positioning and following mo-
bile IoT device based on UWB technology, which encompasses four major systems: an
autonomous following system, an automatic leveling control system, a mechanical arm
system, and an ultrasonic obstacle avoidance system. The mobile IoT device utilizes a
UWB module to design the autonomous following system, following the moving target
through a configuration of three UWB base stations and one UWB tag. The mechanical arm
and ultrasonic obstacle-avoidance systems are responsible for detecting and overcoming
or circumventing obstacles encountered during the following process. The automatic
leveling control system corrects the tilt angle while overcoming obstacles, achieving the
automatic leveling function. In the overall framework of the positioning and following
system depicted in Figure 1, the DecaWave DWM1000 chip was used for the positioning
module [19]; the STM32F103ZET6 chip serves as the main control chip of the system [20];
the motor drive module utilizes the L298N chip produced by the SGS Company [21]; a
voltage-stabilizing module ensures stable current for each module.
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Figure 1. Structure of mobile IoT device following system.
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As illustrated in Figure 2, to delineate the design structure, we developed a Parameter
Diagram for the autonomous positioning and following mobile IoT devices, which includes
input, output, noise, and control components. The input consists of individuals who have
difficulty moving, such as the elderly, disabled, and pregnant women, as well as items
that meet the motor torque load requirements. The output is the capability to climb stairs,
overcome obstacles, and control the carrying platform to maintain self-balance. Various
noise factors and control elements must also be considered in practical tests.

Figure 2. Parameter map of following mobile IoT device.

2. Hybrid Filtering Localization Algorithm
2.1. Time Difference of Arrival Positioning Model

The Time Difference of Arrival (TDOA) model is solved to obtain the target location by
measuring the arrival time difference between two base stations and the mobile target [22].
Let (x, y) denote the position of the mobile station (MS), (xi, yi) denote the position coor-
dinates of the i-th base station (BSi), c be the propagation speed of the airwaves, and Ri1
denote the difference in the distance between the MS and BSi and BS1, then:

Ri1 = c · (ti − t1) = Ri − R1 =√
(Xi − x)2 + (Yi − y)2 −

√
(X1 − x)2 + (Y1 − y)2 (1)

i = 2, 3, · · · , N

Linearization can be obtained:

R2
i1 + 2Ri1R1 = Ki − 2Xi1x − 2Yi1y − K1 (2)

which is Xi1 = Xi − X1, Yi1 = Yi − Y1; (i = 2, 3, · · · ,N); N is the number of base stations.

2.2. Weighted Hybrid Filtering Localization Model

The sources of error in the positioning and following system of mobile IoT devices
include antenna errors of the DWM1000, multipath errors, and NLOS errors, among oth-
ers [23]. The fixed values within the chip largely determine the multipath errors, which
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originate from the transmission and reception mechanisms of UWB signals. In practical
environments, obstructions can lead to signal energy loss. Therefore, by integrating filtering
algorithms, the system can eliminate outlier data points, smoothing the overall system
error and keeping it within an acceptable range.

The singular application of filtering techniques does not yield optimal results in data
processing [24]. Therefore, this research synthesizes the strengths and weaknesses of vari-
ous filtering methods, combining Gaussian, mean, and median filters in a complementary
manner to process UWB measurement data. This approach led to the development of a
hybrid filtering weighting algorithm, the process of which is illustrated in Figure 3.

Figure 3. Technology roadmap for weighted hybrid filtering algorithm.

The proposed hybrid filtering weighting algorithm is as follows:
Step 1: The UWB information-receiving module reads a set of UWB measurements.

These measurements are then processed using a Kalman filter to eliminate outliers.
Step 2: Gaussian filtering is applied to the dataset for secondary smoothing, resulting

in refined m sets of UWB data groups.
Step 3: The filtered UWB data groups are sorted in ascending order, sequentially

arranged as UG1, UG2, and · · · , UGm. m represents the count of remaining UWB measure-
ments from which the mean Umean and median Umid values are derived.

Step 4: For each UWB measurement, the mean-squared deviation from the mean
and median values is calculated and used as a threshold. If the squared deviation is less
than this threshold, the threshold value itself is used to determine the weight. Otherwise,
the squared deviation is used to ascertain the optimal weight. The formula for calculating
the weight is as follows:

ωmeani =
1

1+C1i

∑n
i=1

1
1+C1i

(3)

ωmidi =
1

1+C2i

∑n
i=1

1
1+C2i

(4)

which,

C1i = max

{
m

∑
i=1

(UGi − Umean)
2

m
, (UGi − Umean)

2

}
(5)

C2i = max

{
m

∑
i=1

(UGi − Umid)
2

m
, (UGi − Umid)

2

}
(6)
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Step 5: Perform the following for ωmeani and ωmid: ωi = a × ωmeani + b × ωmidi, where
a + b = 1. Let each UWB measurement be multiplied with the weights ωi, after which, the
sum is obtained to obtain the new weighted UWB measurements after correction.

UGMM =
m

∑
i=1

ωiUGi (7)

The hybrid filtering-weighted algorithm integrates the advantages of three distinct
filtering methods, incorporating weights to eliminate outliers and smooth data by filtering
edge values, ultimately yielding optimal positioning data. The proposed localization
method in this article effectively suppresses interference in follow-up positioning caused by
various factors, mitigating the jitter in UWB positioning data. The resulting UWB estimated
values align more closely with the actual values, laying a solid foundation for subsequent
integration with positioning and following algorithms and models.

2.3. Weighted Fusion Model

The ranging information of any node is subject to issues such as mean drift and large
error fluctuations. From the perspective of the simulation model, this can be attributed
to the UWB signal model exhibiting a clustered pattern. Within each cluster, the distri-
bution conforms to a Poisson distribution, and the overall process aligns with a Poisson
process. Additionally, human interference can lead to even more-significant ranging errors.
Furthermore, UWB ranging information at short distances tends to be significantly less
than the actual distance. This characteristic can lead to the decreased training effectiveness
of the BP neural network, introducing biases in processing long-distance data. However,
the ranging information processed through the Exponentially weighted moving average
(EWMA) retains the characteristics of the original data and exhibits higher accuracy at
longer distances. This can compensate for the deficiencies of the BP neural network. There-
fore, weighted fusion is introduced, utilizing multiple measurement data sets to design
the corresponding weighting functions. A cubic function form is employed to design the
weighting coefficients, enhancing the overall effectiveness of the data-processing approach.

UGMM = αUEWMA + (1 − α)UGMM (8)

α =
1
2

[(
UEWMA − µ

100

)3
+ 1

]
(9)

In Equation (8): Ūt represents the range information after weighted fusion; UEWMA
denotes the result of processing the original ranging data using the EWMA; UGMM is the
data post-processing by the Gaussian median mean (GMM); α is the weighting coefficient,
which is derived through empirical induction and fitting; µ is adjusted based on the sensor
hardware specifications. To simplify the experiment, differences between base stations are
not considered here and uniformly set to 520. The EWMA algorithm is as follows:

Exponentially weighted average formula:

νt = βνt−1 + (1 − β)dt (10)

Exponentially weighted average formula with correction bias:

UEWMA =
νt

1 − βt (11)

Equation (11) νt refers to the processed data from the EWMA during a cold start,
which is adjusted using Equation (5) to correct the initial data deviation caused by the cold
start, obtaining UEWMA; β represents the rate of the weighted decrease, with a larger value
indicating a slower rate of decrease, generally taken as 1 > β ≥ 0.9. Ut is the actual distance
measurement information at time t.
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3. BP Neural Network Localization Algorithm
3.1. NLOS Error Model

Let rm(ti) be the measured value of the distance between the unknown node M and
the m anchor node at time ti. In a typical positioning environment, it is considered to be
the sum of the system ranging error nm(ti), the accurate distance Lm(ti), and the NLOS
error NLOSm(ti). Therefore, Equation (12) is as follows:

rm(ti) = nm(ti) + Lm(ti) + NLOSm(ti) (12)

where nm(ti) follows a normal distribution with parameter N
(
µ, σ2) and NLOSm(ti) de-

notes the extended delay induced by the propagation of radio waves in the NLOS, obeying
the COST259 model.

3.2. Chan Algorithm

Indoor mobile IoT devices typically require the acquisition of two-dimensional po-
sitioning data. In this study, three UWB base stations were positioned within the same
horizontal plane in space. Utilizing the Chan algorithm, the coordinates of the target were
calculated.

d2
2,1 + 2d2,1d1 = K2 − 2x2,1x − 2y2,1y − K1 (13)

d2
3,1 + 2d3,1d1 = K3 − 2x3,1x − 2y3,1y − K1 (14)

The associative Equations (13) and (14):

{x = a1 + b1d1
{y = a2 + b2d2

(15)

where:

a1 =
(K1 − K2)y3,1 − (K1 − K3)y2,1 + d2

2,1y3,1 − d2
3,1y2,1

2(x3,1y2,1 − x2,1y3,1)

b1 =
d2

2,1y3,1 − d2
3,1y2,1

x3,1y2,1 − x2,1y3,1

a2 =
(K1 − K2)x3,1 − (K1 − K3)x2,1 + d2

2,1x3,1 − d2
3,1x2,1

2(y3,1x2,1 − y2,1x3,1)

Substituting the above Equation (15) into the above Equation (1) yields a quadratic
equation about d1, and solving for the positive root is the estimated positional value.

3.3. BP Neural Network Error Correction

Choosing a different model or algorithm for a specific problem is a great challenge for
researchers [25]. The back propagation (BP) neural network can solve nonlinear problems
through learning data, encompassing two primary processes: forward propagation of
signals and backward correction of errors [26]. The robust nonlinear approximation ability
of the BP neural network is utilized to mitigate NLOS errors, thereby enhancing positioning
performance. Typically, the hidden layer of the BP neural network employs a Sigmoid
continuous function as the transfer function, enabling the implementation with a three-
layer BP neural network. Given the often significant magnitude differences in the sample of
input vectors, it is essential to normalize the input and output vectors. This normalization
facilitates computation and prevents neurons from reaching an excessively saturated state,
as illustrated in Equation (16):

U∗ =
UGMM − UGMM−min

UGMM−max − UGMM−min
(16)
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In Equation (16), U∗ is the normalized TDOA value, UGMM−min is the minimum value
of the TDOA in the weighted fusion sample, and UGMM−max is the maximum value of the
TDOA in the weighted fusion sample.

By integrating the TDOA measurements from multiple base stations, this study cor-
rects for NLOS errors, followed by position estimation using the Chan algorithm, thereby
achieving higher localization accuracy in NLOS environments. Figure 4 presents the BP
neural network model used for correcting TDOA measurements in NLOS environments
provided by three base stations. The BP neural network comprises input, hidden, and out-
put layers. The input layer comprises seven TDOA measurements provided by three
correlated base stations.

The input vector is:

X̄ = [Uk21,Uk31,Uk41,Uk51,Uk61,Uk71]

Figure 4. BP neural network model for TDOA error correction in NLOS environment.

The number of neurons in the hidden layer can be determined by an empirical formula,
which is N2 ≥ lbT, where N2 represents the number of neurons in the hidden layer, and T
is the dimensionality of the training samples. Increasing the number of neurons in the
hidden layer can enhance localization accuracy, but this comes at the cost of increased
computational load. Considering both the efficiency and accuracy of the algorithm and
after multiple rounds of experimentation, the number of nodes in the hidden layer of this
network was established as seven. The transfer function for the hidden layer employs a
Sigmoid function, f1(x) = tanh(x), which accepts any value as the input and produces an
output value that ranges between −1 and +1.

The output layer comprises six neurons, employing a linear transfer function, Purelin,
denoted as f2(x) = kx, for its operation. The output of this layer is the adjusted TDOA
values. The output vector is expressed as follows:

Ȳ = [rk21, rk31, rk41, rk51, rk61, rk71]

3.4. Weighted Fusion BP Neural Network Localization Algorithm

The Chan algorithm exhibits minimal error in TDOA measurements, particularly
under the ideal conditions of zero-mean Gaussian random variables, where it achieves
high localization accuracy. However, its performance is significantly affected in NLOS
environments, where TDOA measurements are prone to more-significant errors [27]. By em-
ploying a WF-BP neural network to correct TDOA measurement data, the NLOS errors
within TDOA measurements can be reduced, thereby effectively enhancing the localization
accuracy when using the Chan algorithm for positioning. This study integrates the WF-BP
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neural network algorithm with weighted fusion, calculating the estimated values through
the Chan algorithm, as illustrated in Figure 5.

Figure 5. Localization Flowchart.

The specific steps of localization using the WF-BP neural network are as follows:
Step 1: Assume K sets of TDOA values are measured in an NLOS environment.

The measurement data set is processed using hybrid filtering for smoothing, and weights
are introduced to obtain optimized values.

Step 2: A weighted fusion BP network is established to correct NLOS errors and is
subsequently trained. TDOA measurements without NLOS errors are used as target sample
vectors for network training. Normalize X̄, and use it as the input for the BP neural network.
Each set of TDOA values contains n TDOA data points. The normalized TDOA data of n
reliable nodes and each anchor node under ideal conditions (i.e., without NLOS errors)
are used as the output of the training samples. The aforementioned BP neural network is
trained with these samples.

Step 3: The trained BP neural network is used to correct the TDOA measurement data,
and the output obtained is the corrected normalized TDOA values.

Step 4: Post-correction normalized TDOA values are used in the Chan algorithm for
position estimation.

4. Weighted Hybrid Filter Following Algorithm

Utilizing the weighted fusion BP neural network algorithm proposed in this article,
a more-accurate following trajectory is achieved in conjunction with geometric positioning
techniques. Three DWM1000 sensors were strategically placed vertically, forming an
equilateral triangle on the mobile IoT device and serving as positioning bases. These
selected sensors were fixed at the apexes of an equilateral triangle. The human subject and
the mobile IoT device operated in the same environment. An appropriate DWM1000 sensor
was chosen to be worn by the individual being followed, functioning as a mobile UWB tag,
as illustrated in Figure 6.

In the three-dimensional space, the mobile IoT device functions as a coordinate plat-
form. Utilizing a set of fixed base stations arranged in an equilateral triangle as the reference
system, the XYZ spatial Cartesian coordinate system is established. The midpoint of the
P2P3 side of the equilateral triangle is designated as the origin O(0, 0, 0). The three vertices
of the equilateral triangle serve as the coordinates, respectively. The coordinates of the
tag worn by the object being tracked are denoted as P(x, y, z). The direction of motion
of the mobile IoT device is consistently aligned with the positive direction of the Y axis,
as illustrated in Figure 7.
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Figure 6. Schematic Diagram of autonomous following mobile IoT device.

Figure 7. Schematic of the spatial location of the UWB base stations and the UWB tag.

Assume that the lengths of the sides P1P2, P2P3, and P1P3 in Figure 7 are all d, the height
of the equilateral triangle P1P2P3 with the base side P2P3 is OP1, and the projection height
of OP1 from the UWB tags to the plane of the fixed base station is PQ, O′, and let O′ be
the center of the three fixed base stations of the equilateral triangle; the distance between
the IoT device and the followed object is PO′. Assuming that the target being followed is
initially locked by the mobile IoT device at a specific moment, the setup involves placing
three UWB positioning base stations at the vertices of an equilateral triangle. The distance
is calculated by transmitting and receiving UWB signals between these base stations and
the mobile UWB tag. After processing through the weighted fusion BP neural network
algorithm, analytical geometric calculations yield the line connecting the tagged object P
being followed and the center point O′ of the equilateral triangle as follows:

L = PO
′
=

√(
D4

1 + D4
2 + D4

3 − D2
1 × D2

2 − D2
2 × D2

3
)

3 × d2 (17)

The angle between the positive directions of the PO′ and Y axes is

θ = ∠PO
′
P1 = arctan

( √
3(D2

3 − D2
2)

D2
2 + D2

3 − 2 × D2
1

)
(18)
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Consequently, the position coordinates of the tracked object can be represented as
(L, θ), thereby determining the relative position information of the tracked object to the
mobile IoT device. This position information is updated in real-time, with the cumulative
error being nearly negligible, ensuring the acquisition of the optimal following estimation.

In complex environments, factors such as NLOS and multipath errors inevitably affect
the positioning and following performance of the mobile IoT device. The study integrates
the advantages and disadvantages of various filtering algorithms, introduces weighting fac-
tors, and incorporates these into a weighted fusion approach. This is combined with the BP
neural network algorithm to derive new UWB measurement values. The optimal following
results are obtained by reconstructing the Line of Sight (LOS) UWB measurements and in-
tegrating geometric positioning. The performance of the positioning and following system
was then analyzed to evaluate the effectiveness of the following mechanism, as illustrated
in Figure 8.

Figure 8. Weighted hybrid filtering follow algorithm roadmap.

5. Experiments and Analysis of Mobile IoT Device Localization and Following
5.1. Experimental Testing and Analysis of Mobile IoT Device Localization
5.1.1. Hybrid Filtering Localization Analysis

In the indoor environment, three fixed base stations were established with coordinates
designated as A1 (0 m, 0 m), A2 (5 m, 6 m), and A3 (0 m, 10 m). A mobile object carrying a
UWB tag moved constantly from the starting point at coordinates (1 m, 1 m) to the endpoint
at coordinates (8 m, 5 m). The real-time distances measured by the three base stations
to the positioning tag enabled the determination of the actual location of the mobile IoT
device. Assuming that we neglect weather-related factors such as wind speed and humidity,
the real-time positioning experiment of the mobile IoT device is illustrated in Figure 9.

Figure 10 demonstrates that the weighted hybrid filtering algorithm yields positioning
estimates closer to the actual values than the traditional Kalman filtering positioning
algorithm. This is particularly evident in the analysis of distances to various base stations,
as shown in Figures 11–13. The Cumulative Distribution Function (CDF) value indicates
the frequency of positioning values within a certain error margin; a higher CDF value
suggests better positioning performance [28]. As depicted in Figure 14, at a positional error
of approximately 20 cm, the CDF value for the traditional Kalman filtering positioning
algorithm is 45%, whereas for the weighted hybrid filtering positioning algorithm, it is
93%. This indicates that the weighted hybrid filtering approach achieves more-accurate
positioning estimates.
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Figure 9. Live view of mobile IoT device localization experiments.

Figure 10. Mobile IoT device movement and localization trajectories.

Figure 11. Measured distance between a mobile IoT device and the first UWB base station.
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Figure 12. Measured distance between a mobile IoT device and the second UWB base station.

Figure 13. Measured distance between a mobile IoT device and the third UWB base station.

Figure 14. Mobile IoT device localization error.

5.1.2. Experimental Analysis of BP Neural Network Localization

The collected dataset of 1000 samples was divided into two parts: 900 samples for
training and 100 samples for testing. Through network training, it was determined that the
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optimal number of nodes in the hidden layer was 7. The maximum number of iterations
was set to 100, with a learning rate of 0.1. Predictions were made on 100 test data sets.
Figure 15 shows that the training predictions for the localization results were conducted
in a 10 × 10 m² two-dimensional space. The network convergence trend, depicted in
Figure 16, indicates that convergence occurred at the 20th step. As illustrated in Figure 17,
the prediction error of the localization results reveals that, upon this convergence, the input
of any 100 sets of TDOA values resulted in a localization error of less than 0.15 cm in 95%
of the cases. The regression analysis results, shown in Figure 18, demonstrate that the
correlation coefficients (R) for the training set, validation set, test set, and the entire dataset
were all greater than 0.99, indicating a good fit for the model.

Figure 15. Localization results of weighted fusion BP neural network.

Figure 16. Network training error variation curve.
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Figure 17. Localization error.

Figure 18. Regression analysis results.

5.1.3. Weighted Fusion BP Neural Network Localization Analysis

Under the same environmental conditions depicted in Figure 9, four base stations were
arranged within a 7 × 10 m2 two-dimensional space, where NLOS errors were introduced.
The positioning results, as corrected by the WF-BP neural network algorithm, demonstrated
a significant improvement in rectifying the NLOS errors. This is evident from the enhanced
alignment with the actual positions, as illustrated in Figures 19 and 20.
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Figure 19. Weighted fusion of BP neural network trajectory records.

Figure 20. Error in X and Y directions of weighted fusion BP neural network.

5.2. Experimental Testing and Analysis of Mobile IoT Device Following

In the indoor setting, the following UWB tag and UWB base stations formed an
equilateral triangle, with the straight-line distance between the center of this triangle and
the UWB tag set at 1 m. The three base stations were positioned at a mutual distance of 0.3 m
from each other. Both the individual carrying the mobile UWB tag and the mobile following
IoT device were equipped with separate UWB positioning tags. Several UWB base stations
were uniformly distributed within the indoor environment. The individual with the mobile
tag moved at a walking speed (approximately 5 km/h), and his/her position and that
of the additional tag were determined through the base stations distributed across the
experimental site. The movement trajectories of the individual carrying the mobile tag and
the mobile following IoT device are illustrated in Figure 21. The WF-BP neural network
proposed in this paper was employed to analyze the moving targets, with the following
trajectories depicted in Figures 22 and 23.
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Figure 21. Mobile IoT device following experiment photo.

Figure 22. Comparison with weighted hybrid filtering algorithm.

Figures 22 and 23 illustrate that both following algorithms can achieve accurate
autonomous tracking recognition and are less prone to losing track with mobile IoT devices.
However, the WF-BP neural network algorithm demonstrated a higher trajectory alignment
with the target than the traditional Kalman filter algorithm, resulting in more-effective
following performance. It was observed that the mobile IoT devices exhibited less precision
in following accuracy at turns, leading to significant trajectory deviations in some curved
paths, yet without any instances of target loss or substantial deviation from the following
path. Through comprehensive comparison and analysis, we observed that the HFWF-BP
neural network localization algorithm exhibited higher algorithmic complexity compared
to the algorithms it was benchmarked against. This resulted in slight delays in controlling
the mobile IoT device. Simultaneously, the mobile IoT device, as shown in Figure 21,
adopted a tracked drive and steering mechanism for stability, contributing to increased
steering errors and reduced sensitivity. Consequently, these factors introduced some degree
of error in the experiments. These issues could be mitigated by upgrading hardware or
employing alternative auxiliary steering mechanisms, such as omnidirectional wheels (e.g.,
mecanum wheels), to further enhance performance. As depicted in Figure 24, the WF-BP
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neural network algorithm showed superior following precision compared to the traditional
Kalman filter algorithm, better fulfilling practical requirements and every day following
services. In a static environment, the distance between the follower and the three base
stations was set to 1 m, with a testing duration of 100 s. Both following algorithms were
employed for static ranging during this period to determine the UWB measurement error,
as shown in Figure 17.

Figure 23. Comparison with weighted fusion BP neural network following algorithm.

Figure 24. Estimation errors of two following algorithms.

As observed in Figure 25, the traditional Kalman filtering following algorithm demon-
strated that most range estimation errors were concentrated around 8 cm. This included
disturbances such as UWB jitter values and systematic errors. In contrast, the WF-BP neural
network following algorithm showed that most of the measurement estimation errors were
centered at 4 cm. Moreover, these errors were relatively more stable, better fulfilling the
practical requirements for accurate positioning and tracking.
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Figure 25. Static ranging UWB measurement error.

The comparison presented in Table 1 reveals that the HFWF-BP neural network lo-
calization algorithm, proposed in this study, exhibited notable improvements compared
to various technologies/algorithms despite not having the lowest device cost and deploy-
ment difficulty. Remarkably, it represents a significant enhancement over computer vision.
Simultaneously, this algorithm achieved ultra-high centimeter-level positioning accuracy.
The experimental outcomes, as depicted in the relevant figures, affirmed the effective and
stable performance of both tracking algorithms with mobile IoT devices. Notably, the WF-
BP neural network algorithm showcased superior trajectory alignment compared to the
traditional Kalman filter algorithm, resulting in more-efficient tracking capabilities. Despite
minor deviations during turns, the mobile IoT devices exhibited consistent accuracy in
following, avoiding target loss or significant path deviations. Upon in-depth analysis,
it became evident that the HFWF-BP neural network localization algorithm introduced
higher algorithmic complexity, resulting in slight delays in device control. The use of a
tracked drive and steering mechanism, as illustrated in the figures, contributed to increased
steering errors and reduced sensitivity. Addressing these challenges through hardware up-
grades or alternative steering mechanisms, such as omnidirectional wheels like mecanum
wheels, could enhance the overall system performance. Further insights underscored the
superior precision of the WF-BP neural network algorithm in following compared to the
traditional Kalman filter algorithm, making it more suitable for practical applications and
everyday tracking services. In a static environment with specified conditions, both tracking
algorithms underwent static ranging, revealing that the WF-BP neural network following
algorithm demonstrated stable and accurate measurement estimation errors, fulfilling
practical requirements for precise positioning and tracking.
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Table 1. Comparison of technologies/algorithms in various Aspects.

Technology and Algorithm Accuracy Range Device Price Deployment
Difficulty

References [7,8] Computer vision Highly affected by
the environment

Depends, typically
within 5 m Expensive Difficult

and restricted

Reference [9] UWB 30–40 cm 50–100 m Moderate
cost Average

Reference [10] Kalman filter UWB 20–30 cm 50–100 m Moderate
cost General

Reference [12] Wireless LAN (WiFi) 50–60 cm 10–20 m Low cost Easy
to deploy

Reference [13]
Weighted K-nearest

neighbors and Kalman
filtering

Around 20 cm 50–100 m Moderate
cost Average

This research HFWF-BP neural network
localization algorithm 10 cm 50–100 m Moderate

cost Average

6. Conclusions

This paper establishes an experimental platform based on UWB technology and de-
signs a model for autonomous tracking of mobile IoT devices. It introduces an improved
TDOA positioning algorithm based on UWB, termed the HFWF-BP neural network po-
sitioning algorithm. This approach integrates the characteristics of Gaussian filtering,
median filtering, and mean filtering methods. Leveraging the neural network’s capability
to approximate arbitrary nonlinear mappings and its fast learning properties, the algorithm
effectively overcomes the deficiencies present in traditional TDOA positioning Chan al-
gorithms, making it more suitable for complex multipath environments. The simulation
results indicated that, through neural network correction of NLOS errors, the algorithm
exhibited stronger suppression capabilities against NLOS errors. Compared to traditional
Chan algorithms and Kalman filtering algorithms, the proposed algorithm demonstrated
higher positioning accuracy and reliability. Its performance surpassed that of the Chan
algorithm, and due to its simplicity and effectiveness, the UWB-based TDOA positioning
improvement algorithm utilizing neural networks holds significant practical value. Po-
tential applications include, but are not limited to, advanced autonomous navigation in
smart cities, precise tracking in industrial settings, and enhanced safety measures in health-
care environments. This research not only addresses current challenges in autonomous
positioning, but also paves a promising path by utilizing UWB technology and innovative
algorithms to enhance the precision and adaptability of IoT devices in real-world scenarios.

7. Potential Application Scenarios and Future Works

Automatic tracking IoT devices with low power consumption, strong anti-interference
capabilities, and high positioning accuracy have extensive application prospects across
various domains. They can significantly contribute to improving the overall quality of life
for vulnerable groups. These devices can assist in daily tasks, such as fetching items, pro-
viding companionship, or offering support in various activities. By reducing dependence
on external assistance, individuals can experience increased autonomy and a higher quality
of life. Furthermore, the deployment of mobile IoT devices can serve as a crucial compo-
nent in emergency response systems. These devices can be equipped to carry essential
life-saving equipment, such as Automated External Defibrillators (AEDs) and necessary
medications. In critical situations, these mobile devices can swiftly navigate through a
designated area, providing immediate access to crucial medical resources. This application
not only increases the chances of saving lives during emergencies, but also exemplifies
the versatile and impactful role that mobile IoT devices can play in enhancing community
well-being.
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Beyond addressing the needs of an aging population and individuals with disabilities,
this research can be applied to an automatic tracking shopping cart system in supermarkets,
enabling obstacle avoidance and seamless following of consumers throughout their shop-
ping journey. In the field of waste management, autonomous tracking cleaning vehicles
can navigate independently, allowing workers to focus on their tasks, reducing workload,
enhancing efficiency, and effectively preventing dust generation during construction pro-
cesses. Intelligent epidemic prevention and disinfection robots can autonomously follow
healthcare professionals or patients with infectious diseases, automatically disinfecting
areas they traverse, effectively curbing the spread of infectious diseases and safeguard-
ing public health. In outdoor environments, this technology holds significant potential.
For instance, in the realm of intelligent transportation, the HFWF-BP neural network UWB
positioning technology can be utilized for precise positioning and real-time tracking of
vehicles, pedestrians, and other modes of transportation. This enhances traffic efficiency,
reduces accidents, and contributes to the development of smart transportation and cities.

In future research, given the limitations of the BP neural network algorithm, such as
slow convergence, susceptibility to local optima, challenges in determining hidden layer
node quantities, and oscillations during training, we plan to incorporate the momentum
effect and adaptive learning rates for improvement, optimizing the performance of the BP
neural network. The introduction of momentum and adaptive learning rates will refine
the BP neural network, adjusting weights to enhance training robustness. Additionally, we
will explore advanced sensor technologies, such as millimeter-wave radar and stereoscopic
vision systems, to comprehensively and accurately capture environmental information.
By integrating data from multiple sources, we aim to enhance the perception capabilities of
the automatic tracking device in dynamic environments, thus strengthening its applicability
in complex settings, continuing to advance hardware technology is a priority, aiming to
reduce device size, weight, and power consumption while enhancing portability and lifes-
pan. This effort will contribute to the broader and more-effective deployment of automatic
tracking IoT devices in practical applications, promoting their widespread use in areas
such as smart cities and intelligent transportation. Finally, we aim to apply the research
findings more extensively in social services, particularly addressing the personalized needs
of vulnerable groups, elderly individuals, and those with disabilities. Through customized
design and intelligent adjustments, automatic tracking devices can better meet the diverse
requirements of different user groups, enhancing their sustainability and universality in
the realm of social services.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
NLOS Non-Line of Sight
LOS Line of Sight
UWB Ultra-Wideband
HFWF-BP hybrid filtering weighted fusion back propagation
WF-BP weighted fusion back propagation
RMSE Root-Mean-Squared Error
TDOA Time Difference of Arrival
EWMA Exponentially weighted moving average
GMM Gaussian median mean
BP back propagation
CDF Cumulative Distribution Function
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