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Abstract: Standard machine learning is unable to accommodate inputs which do not belong to the
training distribution. The resulting models often give rise to confident incorrect predictions which
may lead to devastating consequences. This problem is especially demanding in the context of dense
prediction since input images may be only partially anomalous. Previous work has addressed dense
out-of-distribution detection by discriminative training with respect to off-the-shelf negative datasets.
However, real negative data may lead to over-optimistic evaluation due to possible overlap with
test anomalies. To this end, we extend this approach by generating synthetic negative patches along
the border of the inlier manifold. We leverage a jointly trained normalizing flow due to a coverage-
oriented learning objective and the capability to generate samples at different resolutions. We detect
anomalies according to a principled information-theoretic criterion which can be consistently applied
through training and inference. The resulting models set the new state of the art on benchmarks for
out-of-distribution detection in road-driving scenes and remote sensing imagery despite minimal
computational overhead.

Keywords: dense out-of-distribution detection; normalizing flows; semantic segmentation; autonomous
driving; remote sensing

1. Introduction

Image understanding involves recognizing objects and localizing them down to the
pixel level [1]. In its basic form, the task is to classify each pixel into one of K prede-
fined classes, which is also known as semantic segmentation [2]. Recent work improves
perception quality through instance recognition [3], depth reconstruction [4], semantic
forecasting [5], and competence in the open world [6].

Modern semantic segmentation approaches [2] are based on deep learning. A deep
model for semantic segmentation maps the input RGB image x into the corresponding
prediction y. Both the input and the predictions have the spatial resolution H × W, where
H and W stand for the height and the width of the image. Typically, the model parameters
θ are obtained by gradient optimization of a supervised discriminative objective. Recent
approaches produce high-fidelity segmentations of large images in real time even when
inferring on a modest graphical processing unit (GPU) [7]. However, standard learning is
susceptible to overconfidence in incorrect predictions [8], which makes the model unusable
in the presence of semantic outliers [9] and domain shift [10]. This poses a threat to models
deployed in the real world [11,12].

We study the ability of deep models for natural image understanding to deal with out-
of-distribution (OOD) input. We desire to correctly segment the scene while simultaneously
detecting anomalous objects which are unlike any scenery from the training dataset [13].
Such capability is important in real-world applications like road driving [14,15] and remote
sensing [16,17].
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Previous approaches to dense OOD detection rely on Bayesian modeling [18], image
resynthesis [14,19,20], recognition in the latent space [12], or auxiliary negative train-
ing data [21]. However, all these approaches have significant shortcomings. Bayesian
approaches and image resynthesis require extraordinary computational resources that
hamper development and make them unsuitable for real-time applications. Recognition
in the latent space [12] may be sensitive to feature collapse [22,23] due to relying on pre-
trained features. Training on auxiliary negative data may give rise to undesirable bias and
over-optimistic evaluation. Moreover, appropriate negative data may be unavailable in
some application areas, such as medical diagnostics [24] or remote sensing [16,25]. Our
experiments suggest that synthetic negatives may help in such cases.

This work addresses dense out-of-distribution detection by encouraging the chosen
standard dense prediction model to emit uniform predictions in outliers [26]. We propose
to perform the training on mixed-content images [21], which we craft by pasting synthetic
negatives into inlier training images. We learn to generate synthetic negatives by jointly
optimizing high inlier likelihood and uniform discriminative prediction [26]. We argue that
normalizing flows are better than generative adversarial networks (GANs) for the task at
hand due to much better distribution coverage and more stable training. Also, normalizing
flows can generate samples of variable spatial dimensions [27], which makes them suitable
for mimicking anomalies of varying size.

This paper proposes five major improvements over our preliminary report [28]. First,
we show that Jensen–Shannon divergence is a criterion of choice for robust joint learning in
the presence of noisy synthetic negatives. We use the same criterion during inference as a
score for OOD detection. Second, we propose to discourage overfitting the discriminative
model to synthetic outliers through separate pre-training of the discriminative model
and the generative flow. Third, we offer theoretical evidence for the advantage of our
coverage-oriented synthetic negatives with respect to their adversarial counterparts. Fourth,
we demonstrate the utility of synthetic outliers by performing experiments within the
domain of remote sensing. These experiments show that off-the-shelf negative datasets,
such as ImageNet, COCO, or Ade20k, do not represent a suitable source of negative
content for all possible domains. Fifth, we show that training with synthetic negatives
increases the separation between knowns and unknowns in the logit space, which makes
our method a prominent component of future dense open-set recognition systems. We refer
to the consolidated method as NFlowJS. NFlowJS achieves state-of-the-art performance on
benchmarks for dense OOD detection in road driving scenes [11,12] and remote sensing
images [16], despite not using auxiliary negative data [21], image resynthesis [14,19], and
Bayesian modeling [18].

Our method has a very low overhead over the standard discriminative model, making
it suitable for real-time applications.

2. Related Work

Several computer vision tasks require the detection of unknown visual concepts
(Section 2.1). In practice, this often has to be integrated with some primary classification task
(Sections 2.2 and 2.3). Our method generates synthetic negatives with a normalizing flow
due to outstanding distribution coverage and capability to work at arbitrary resolutions
(Section 2.4).

2.1. Anomaly Detection

Anomaly detection, also known as novelty or out-of-distribution (OOD) detection, is a
binary classification task which discriminates inliers from outliers [29,30]. In-distribution
samples, also known as inliers, are generated by the same generative process as the training
data. In contrast, anomalies are generated by a process which is disjoint from the training
distribution [31]. Samples of anomalous data may or may not be present during the
training [32,33]. The detection is typically carried out by thresholding some OOD score
sδ : [0, 1]C×H×W → R, which assigns a scalar score to each input image. Here, C stands for
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the number of channels, which is three in the case of RGB images. As before, H and W are
the height and width, respectively.

Some works address OOD detection in isolation, as a distinct computer vision
task [31,34–39]. Our work considers a different context where OOD detection is carried out
alongside some discriminative dense prediction task, such as semantic segmentation.

2.2. Classification in the Presence of Outliers

OOD detection [40] can be implemented by extending standard classifiers. The result-
ing models can differentiate inliers while also detecting anomalous content. A widely used
baseline expresses the OOD score for an image x directly from discriminative predictions
as s(x) = max softmax(fθ(x)) [40], where fθ computes dense logits based on the input
image. Entropy-based detectors can deliver a similar performance [41,42]. Another line
of work improves upon these baselines by pre-processing the input with anti-adversarial
perturbations [32], which cause significant computational overhead. OOD detection has to
deal with the fact that outliers and inliers may be indistinguishable in the feature space [23].
Feature collapse [22,43] can be alleviated by training on negative data, which can be sourced
from real datasets [33,42] or generative models [26,28,44].

There are two prior approaches for replacing real negatives with synthetic
ones [26,45]. A seminal approach [26] proposes cooperative training of a generative adver-
sarial network and a standard classifier. The classifier loss requires uniform predictions in
generated samples and, thus, encourages the generator to yield samples at the distribution
border. This idea can be carried out without a separate generative model by leveraging
Langevin sampling [45]. However, adapting these approaches for dense prediction is not
straightforward. Similarly, synthetic outliers can be generated in the feature space by a
generative model to pre-trained features [44,46]. However, our experiments indicate that
this approach underperforms with respect to synthetic negative samples in input space.

Out-of-distribution detection becomes even more complicated in the case of object
detection and dense prediction, where we have to deal with outlier objects in inlier scenes.
These models strive to detect unknown hazards while correctly recognizing the rest of the
scene [47–49]. A principled Bayesian approach to OOD detection attempts to estimate epis-
temic uncertainty [18]. However, the assumption that MC dropout corresponds to Bayesian
model sampling may not be satisfied in practice. Another principled approach builds on
likelihood estimation in feature space [12], which is vulnerable to feature collapse [22].

Another line of work resynthesizes the input scene by processing dense predictions
with a conditional generative model [14,19,50]. Subsequently, anomalous pixels are detected
in reconstructive fashion [30] by measuring the dissimilarity between the input and the
resyntesized image. However, these approaches can detect anomalies only in front of
simple backgrounds, such as roads. Also, resynthesis requires a significant computational
budget, which limits applications. A related approach utilizes a parallel upsampling
path for input reconstruction [15]. This improves the inference speed with respect to
resynthesis approaches but still infers slower than our approach, while underperforming
in cluttered scenes.

Several approaches train on mixed-content images obtained by pasting negative
patches into positive training examples [19,21,51]. The negative dataset should be as broad
as possible (e.g., ImageNet or ADE20k) in order to cover a large portion of the background
distribution. The training can be implemented through a separate OOD head [21] or by
requiring uniform prediction in negative pixels [51]. However, this kind of training results
in biased models; test anomalies that are related to negative training data are going to give
rise to above-average outlier detection performance. Furthermore, competition on popular
benchmarks may gradually adapt negative training data to test anomalies, and, thus, lead to
over-optimistic performance estimates. Our method avoids the bias of particular negative
data by crafting problem-specific negative samples at the border of the inlier distribution.
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2.3. Open-Set Recognition

Open-set recognition [52] discourages excessive generalization for known classes and
attempts to distinguish them from the remaining visual content of the open world. This
goal can be achieved by rejecting classification in input samples which do not belong
to the known taxonomy [52–55]. The rejection mechanism is usually implemented by
restricting the shape of the decision boundary [56]. This can be carried out by thresholding
the distance from learned class prototypes in the embedding space [57,58]. The decision
boundary can also be restricted by requiring a sufficiently large projection of the feature
vector onto the closest class prototype [59]. This is also known as a max-logit detector,
which can equally be used for OOD detection and open-set recognition [59,60].

Open-set recognition performance can be further improved by employing a stronger
classifier [60] or training on negative data [61,62]. Unlike OOD detection approaches based
on softmax, open-set recognition methods demonstrably bound open-space risk [52,63].
However, these approaches are still vulnerable to feature collapse [22]. We direct the reader
to [64,65] for a broader overview of open-set recognition. Open-world approaches attempt
to disentangle the detected unknown concepts towards new semantic classes. This can be
performed in incremental [6,66] or low-shot [67–69] settings.

Although we mainly focus on OOD detection, our synthetic negatives could be consid-
ered as synthetic known unknowns [61,62]. Our experimental evaluation suggests that our
synthetic negatives increase the separation between known and unknown data in feature
space. This suggests that they may be helpful for open-set recognition [59,60].

2.4. Generative Models for Synthetic Negative Data

We briefly review generative approaches and discuss their suitability for generating
synthetic negative training samples. Energy-based [70] and auto-regressive [71] approaches
are unsuitable for this task due to slow sampling. Gaussian mixtures are capable of
generating synthetic samples in the feature space [44]. Variational autoencoders (VAEs) [72]
struggle with unstable training [73] and have to store both the encoder and the decoder in
GPU memory. GANs [74] also require a roughly double amount of GPU memory since they
have to backprop through the whole discriminator in order to train the generator. Moreover,
the produced samples do not span the entire support of the training distribution [43]. In
contrast, normalizing flows [27] offer both efficient sampling and outstanding distribution
coverage [75].

Normalizing flows [27,76] model the likelihood as bijective mapping towards a prede-
fined latent distribution p(z), typically a fully factorized Gaussian. Given a diffeomorphism
fγ parametrized by γ, the likelihood is defined according to the change of variables formula:

pγ(x) = p(z)
∣∣∣∣det

∂z
∂x

∣∣∣∣, z = fγ(x). (1)

This setup can be further improved by introducing stochastic skip connections, which
increase the efficiency of training and improve convergence speed [75].

A normalizing flow fγ can be sampled in two steps. First, we sample the latent
distribution to obtain the factorized latent tensor z. Second, we recover the corresponding
image through the inverse transformation x = f−1

γ (z). Both the latent representation
and the generated image have the same dimensionality (RC×H×W → [0, 1]C×H×W). This
property is useful for generating synthetic negatives since it allows to sample the same
model on different spatial resolutions [27].

3. Dense OOD Detection with NFlowJS

We train dense OOD detection on mixed-content images obtained by pasting synthetic
negatives into regular training images. We generate such negatives by a jointly trained
normalizing flow (Section 3.1). We train our models to recognize outliers according to
a robust information-theoretic criterion (Section 3.2), and use the same criterion as our
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OOD score during inference (Section 3.3). Finally, we present a theoretical analysis which
advocates for training with synthetic negatives generated through likelihood maximization
(Section 3.4).

3.1. Training with Synthetic Negative Data

We assemble a mixed-content image x′ by sampling a randomly sized negative patch
x− from a jointly trained normalizing flow fγ, and pasting it atop the inlier image x+:

x′ = (1 − s) · x+ + pad(x−, s) where x− = f−1
γ (z). (2)

The binary mask s identifies pixels of a pasted synthetic negative patch within the
input image. As usual in normalizing flows, z is sampled from a factorized Gaussian and
reshaped according to the desired spatial resolution. The negative patch x− is zero-padded
in order to allow pasting by addition. The pasting location is selected randomly.

We train our discriminative model by minimizing the cross-entropy over inliers (mij = 0)
and maximizing the prediction entropy in the pasted negatives (mij = 1)[26,33,42]:

Ldisc(θ; γ) =
H,W

∑
i,j

(mij − 1) · ln pθ(yij|x′) + λ · mij · Lij
neg(θ, γ). (3)

Here, pθ(yij|x′) stands for the class posterior at ij pixel location and hyperparameter
λ controls the influence of the loss Lneg. We jointly train the normalizing flow alongside
the primary discriminative model (cf. Figure 1) in order to satisfy two opposing criteria.
First, the normalizing flow should maximize the likelihood of inlier patches. Second,
the discriminative model should yield uniform distribution in generated pixels. The former
criterion aligns the generative distribution with the inliers, while the latter pulls them
apart. Such training encourages generation of synthetic samples at the boundary of the
training distribution and incorporates outlier awareness within the primary discriminative
model [26]. The total loss applied to the generative model equals to:

Lgen(γ; θ) = Lnll(γ) + λ
H,W

∑
i,j

mij · Lij
neg(θ, γ). (4)

Lcls

Lneg

Lgen

x’
z

p(y|x’)

y

Dense 
classifier

NF-forward fƔ(x)

NF-inverse f−1
Ɣ(z)

x-

zc

z ~ N(0, I)

Shared
weights

xcln|det JƔ|

Figure 1. The proposed training setup. The normalizing flow generates the synthetic negative patch
x−, which we paste atop the raw inlier image. The resulting mixed-content image x′ is fed to the
dense classifier, which is trained to discriminate inlier pixels (Lcls) and to produce uniform predictions
in negative pixels (Lneg). This formulation enables gradient flow from Lneg to the normalizing flow,
while maximizing the likelihood of inlier patches (Lgen).

Lnll is the negative log-likelihood of the inlier patch which is replaced with the syn-
thetic sample. Formally, we have Lnll(γ) = − ln pγ(xc), where pγ is defined in (1) and
xc is a random crop of the given input image, as shown in Figure 1. We scrutinize Lneg
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in the following section. The end-to-end training learns both θ and γ simultaneously by
optimizing the following loss:

L(θ, γ) = Ldisc(θ; γ) + Lgen(γ; θ). (5)

Given enough training data and appropriate capacity, our synthetic negatives will
encompass the inlier manifold. Consequently, our method stands a fair chance to detect
visual anomalies that had not been seen during training due to being closer to the synthetic
negatives than to the inliers. Figure 2 shows this on a 2D toy example. The red color
corresponds to higher values of the OOD score. The left plot presents the max-softmax
baseline [40], which assigns a high OOD score only at the border between the inlier classes.
The right plot corresponds to our setup, which discourages low OOD scores outside the
inlier manifold. Synthetic negatives are denoted with red stars, while inlier classes are
colored in blue.

Inlier classes Synthetic negative samples

NFlowJSMax-softmax

Figure 2. Softmax-activated discriminative models do not bound the input-space volume with confi-
dent predictions (blue region, left). We address this issue by learning a generative normalizing flow
for a “negative” distribution that encompasses the training manifold (red stars, right). Training the
discriminative model to predict high entropy in the generated synthetic negative samples decreases
the confidence outside the inlier manifold (red region, right).

3.2. Loss in Synthetic Negative Pixels

The loss Lneg has often been designed as KL-divergence between the uniform distribu-
tion and the model’s predictive distribution [26,40,42]. However, our generative model is
also subjected to the Lnll loss. Hence, the generated samples occasionally contain parts very
similar to chunks of inlier scenes, which lead to confident predictions into a known class.
Unfortunately, such predictions lead to unbounded penalization by KL divergence and can
disturb the classifier, which is also affected by Lneg. If Lneg overrides Ldisc in such pixels,
then the classifier may assign high uncertainty in the inliers. In that case, the incidence of
false-positive anomalies would severely increase. We address this problem by searching
for a more robust formulation of Lneg.

The left part of Figure 3 plots several f-divergences in the two-class setup. We observe
that the Jensen–Shannon divergence mildly penalizes high-confidence predictions, which
makes it a suitable candidate for a robust loss. Such behavior promotes graceful perfor-
mance degradation in cases of errors of the generative model. The right part of Figure 3
visualizes a histogram of per-pixel loss while fine-tuning our model on road-driving images.
The figure shows that the histogram of JS divergence has fewer high-loss pixels than the
other f-divergence candidates. Long tails of the KL divergences (forward and reverse)
indicate a very high loss in pixels that resemble inliers. As hinted before, these pixels give
rise to very high gradients with respect to the parameters of the discriminative model.
These gradients may override the impact of the standard discriminative loss Ldisc, and lead
to high-entropy discriminative predictions that disrupt our anomaly score and lead to
false-positive predictions.
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Figure 3. (Left) f-divergences towards the uniform distribution in a two-class setup. Jensen–Shannon
offers the most robust response. (Right) Histograms of λLneg in synthetic negatives at the beginning
of joint fine-tuning. The modulation factors λ have been separately validated for each of the three
choices of Lneg. The Jensen–Shannon divergence produces a more uniform learning signal than other
f-divergences and avoids extremely high values of Lneg.

Consequently, we formulate Lneg in terms of the JS divergence between the uniform
distribution (U) over classes and the softmax output:

Lij
neg(θ, γ) = JS(U, pθ(yij|x′)) (6)

3.3. Outlier-Aware Inference with Divergence-Based Scoring

Figure 4 summarizes inference according to the proposed method for outlier-aware
semantic segmentation. The input image is fed into the discriminative model. The produced
logits are fed into two branches. The top branch delivers closed-set predictions through
arg-max. The bottom branch recovers the dense OOD map through temperature scaling,
softmax, and JS divergence with respect to the uniform distribution. Our dense OOD score
at every pixel i, j reflects the Lneg loss (6):

sij(x) = JS(U, softmax(lij/T)). (7)

U stands for uniform distribution over inlier classes, l represents logits, while T is
a temperature hyperparameter. The two branches are fused into the final outlier-aware
segmentation map. The OOD map overrides the closed-set prediction wherever the OOD
score exceeds a dataset-wide threshold.

Dense prediction 
model Arg max

JS-divergence

Fuse(δ)

RGB Input

Closed-set segmentation

Dense anomaly map

Outlier-aware segmentation

HxW

HxW, K class

HxW

HxW, K+1 class

Softmax(T=2)

Figure 4. Dense outlier-aware inference. We infer dense logits with a closed-set model. We recover the
dense OOD map according to our divergence-based score (JSD). Closed-set predictions are overridden
in the outlier-aware output wherever the OOD score exceeds the threshold δ.

Temperature scaling [8] reduces the relative OOD score of distributions with two
dominant logits as opposed to distributions with homogeneous non-maximum logits.
This discourages false-positive OOD responses at semantic borders. We use the same
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temperature T = 2 in all experimental comparisons with respect to previous methods.
Note that our inference is very fast since we use our generative model only to simulate
anomalies during training. This is different from image resynthesis [14] and embedding
density [12], where the generative model has to be used during inference. Next, we compare
the distributional coverage of synthetic negatives generated by the normalizing flow with
respect to their GAN-generated counterparts.

3.4. Coverage-Oriented Generation of Synthetic Negatives

We provide a theoretical argument that our synthetic negatives provide a better distribution
coverage than their GAN counterparts [26]. Our argument proceeds by analyzing the gradient
of the joint loss with respect to the generator of synthetic negatives for both approaches. For
brevity, we consider image-wide classification and omit the loss modulation hyperparameters.

Adversarial outlier-aware learning [26] jointly optimizes the zero-sum game between
the generator Gψ and the discriminator Dϕ, the closed-set classification Pθ , and the confi-
dence objective that enforces uncertain classification in the negative data points [26]:

Ladv(ϕ, ψ, θ) =
∫

p∗(x) ln Dϕ(x) dx +
∫

pGψ
(x) ln(1 − Dϕ(x)) dx

−
∫

∑
y

p∗(y, x) ln Pθ(y|x) dx +
∫

pGψ
(x)F (Pθ , U) dx. (8)

We denote the true data distribution as p∗, y is the class, and ϕ, ψ, and θ are learnable
parameters, while F corresponds to the chosen f-divergence. The gradient of the joint loss (8)
with respect to the generator parameters ψ vanishes in the first and the third term. The
remaining terms enforce that the generated samples fool the discriminator and yield high-
entropy closed-set predictions:

∂Ladv(ϕ, ψ, θ)

∂ψ
=

∂

∂ψ

∫
pGψ

(x) ln(1 − Dϕ(x)) dx +
∂

∂ψ

∫
pGψ

(x)F (Pθ , U) dx. (9)

However, fooling the discriminator does not imply distributional coverage. In fact, the ad-
versarial objective may cause mode collapse [77], which is detrimental to sample variability.

Our joint learning objective (5) optimizes the likelihood of inlier samples, the closed-set
classification loss, and low confidence in synthetic negatives:

L(θ, γ) = −
∫

p∗(x) ln pγ(x) dx −
∫

∑
y

p∗(y, x) ln Pθ(y|x) dx +
∫

pγ(x)F (Pθ , U) dx. (10)

The gradient of the loss (10) with respect to the normalizing flow parameters γ vanishes
in the second term. The remaining terms enforce that the generated samples cover all modes
of p∗ and, as before, yield high-entropy discriminative predictions:

∂L(θ, γ)

∂γ
= − ∂

∂γ

∫
p∗(x) ln pγ(x) dx +

∂

∂γ

∫
pγ(x)F (Pθ , U) dx. (11)

The resulting gradient entices the generative model to produce samples along the
border of the inlier distribution. Hence, we say that our synthetic negatives are coverage-
oriented. The presented analysis holds for any generative model that optimizes the density
of the training data. The experimental evaluations in Section 5 provide empirical confirma-
tion for the advantages of synthetic negatives generated by the normalizing flow (cf. the
table in Section 6.2).

4. Experimental Setup

This section describes our experimental setup for dense out-of-distribution detection.
We review the datasets, introduce performance metrics, and describe the training details.
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4.1. Benchmarks and Datasets

Benchmarks for dense OOD detection in road-driving scenes have experienced sub-
stantial progress in recent years (cf. Figure 5). In parallel, significant effort has been
invested into artificial datasets by leveraging simulated environments [59,78]. Similarly,
remote-sensing segmentation datasets have grown both in size in complexity [16].

We test our method on WD-Pascal [79], which allows for evaluating outlier detection
in demanding conditions. However, the random pasting policy disturbs the scene layout,
as shown in Figure 5 (left). We test our method on Fishyscapes [12], which consists of
two datasets: FS LostAndFound and FS Static. FS LostAndFound is a small subset of
original LostAndFound [80], which contains small objects on the roadway (e.g., toys, boxes,
or car parts that could fall off). FS Static contains Cityscapes validation images overlaid
with Pascal VOC objects. The objects are positioned according to the perspective and
further post-processed to obtain smoother OOD injection, as shown in Figure 5 (center).
Also, we test on SegmentMeIfYouCan (SMIYC) [11], which consists of three datasets:
AnomalyTrack, ObstacleTrack, and LostAndFound-noKnown. AnomalyTrack provides
large anomalous objects, which are fully aligned with the environment. For instance, they
have a leopard in the middle of a dirt road, as shown in Figure 5 (right). LostAndFound-
NoKnown tests the detection of small hazardous objects (e.g., boxes, toys, car parts, etc.) in
urban scenes. Finally, ObstacleTrack tests the detection of small objects on various road
types. ObstacleTrack and LostAndFound measure OOD detection performance solely
on the driving surface, while AnomalyTrack considers the detection across the whole
image. Consequently, SMIYC provides a solid notion of OOD segmentation performance
of a model deployed in the wild. The last test dataset is StreetHazards [59], which is
simulated with the CARLA game engine. We use StreetHazards for measuring outlier-
aware segmentation according to open-mIoU [81].

We test our method on remote sensing images from BSB [16], which captures aerial
images of Brasilia. It contains 3400 labeled images of 512 × 512 pixels. The official split
designates 3000 train, 200 validation, and 200 test images. The labels include three stuff
classes (street, permeable area, and lake) and 11 thing classes (e.g., swimming pool, vehicle,
sports court). We extract boat and harbour into the OOD test set. The resulting BSB-OOD
dataset contains 2840 training images with 12 inlier classes, while the OOD test set contains
184 images. This setup is similar to [28,59,82] that also select a subset of classes as OOD
samples. Note that there are other remote sensing datasets, such as Vaihingen and Potsdam
from the International Society for Photogrammetry and Remote Sensing (ISPRS). However,
these datasets have fewer labels and an order of magnitude fewer images. Also, the So2Sat
LCZ42 dataset [83] contains only small-resolution images and image-level labels. Hence,
we opt for a larger dataset and better performance estimates.

Figure 5. Development of dense OOD detection in road driving through time. Early work pastes
objects at random locations [79]. This was improved by carefully choosing pasting locations and
post-processing [12]. Contemporary outliers match the environment from the real-world scenes [11].

4.2. Metrics

We measure OOD segmentation performance using the average precision (AP) [1], the
false-positive rate at a true-positive rate of 95% (FPR95) [40], and the area under the receiver
operating characteristic curve (AUROC). AP is well suited for measuring OOD detection
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performance since it emphasizes the minority class [11,12,84]. A perfect OOD detector
would have AP equal to one. Likewise, FPR95 is significant for real-world applications since
high false-positive rates would require a large number of human interventions in practical
deployments and, therefore, severely diminish the practical value of an autonomous system.
We measure outlier-aware segmentation performance by open-mIoU [81]. Open-mIoU
penalizes outliers being recognized as inliers and inliers being wrongly detected as outliers.
Compared to mIoU over K + 1 classes, open-mIoU does not count true-positive outlier
predictions and averages over K instead of K + 1 classes. The Open-mIoU performance
of an outlier-aware segmentation model with ideal OOD detection would be equal to
the closed-set mIoU of the same model. Hence, the difference between the two metrics
quantifies the performance gap caused by the presence of outliers [81].

4.3. Implementation Details

All our models are based on Ladder DenseNet-121 (LDN-121) due to memory effi-
ciency and fast experimentation [85]. However, our framework can accommodate any
other dense prediction architecture. All our experiments consist of two training stages. In
both stages, we utilize Cityscapes [86], Vistas [87], and Wilddash 2 [9]. These three datasets
contain 25,231 images. The images are resized to 1024 pixels (shorter edge), randomly
flipped with the probability of 0.5, randomly resized in the interval [0.5, 2], and randomly
cropped to 768 × 768 pixels. We optimize our models with Adam. In the first stage, we
train for 25 epochs without synthetic negatives. We use a batch size of 16 as validated
in previous work [85]. The starting learning rate is set to 10−4 for the feature extractor
and 4 × 10−4 for the upsampling path. The learning rate is annealed according to a cosine
schedule to the minimal value of 10−7, which would have been reached in the 50th epoch.

In the second stage, we train for 15 epochs on mixed-content images (cf. Section 3.1).
In this stage, we use a batch size of 12 due to limited GPU memory. We did not use
gradient accumulation due to the batch normalization layers. Instead, we opted for gradient
checkpointing [85,88,89]. The initial learning rate is set to 1 × 10−5 for the upsampling path
and 2.5 × 10−6 for the backbone. Once more the learning rate is decayed according to the
cosine schedule to the value of 10−7. We set the hyperparameter λ to 3 × 10−2.

This value is chosen so that the closed-set segmentation performance is not reduced.
We generate rectangular synthetic samples with dimensions from U (16, 216) by lever-

aging DenseFlow-25-6 [75]. The flow is pre-trained on random 64 × 64 crops from Vistas.
We train the flow with the Adamax optimizer with the learning rate set to 10−6. In the case
of WD-Pascal, we train our model only on Vistas in order to achieve a fair comparison with
the previous work [21]. In the case of StreetHazards, we train on the corresponding train
subset for 80 epochs on inlier images and 40 epochs on mixed-content images. In the case
of Fishyscapes, we train exclusively on Cityscapes. We train for 150 epochs during stage 1
(inliers) and 50 epochs during stage 2 (mixed content). In the case of the BSB-OOD dataset,
we train LDN-121 for 150 epochs with a batch size of 16 on inlier images and then fine-tune
on mixed-content images for 40 epochs. We sample synthetic negatives with dimensions
from U (16, 64). The flow was pre-trained on 32 × 32 random inlier crops of BSB-OOD
images for 2k epochs with a batch size of 256. All other hyperparameters are kept constant
across all experiments. Each experiment lasts for approximately 38 h on a single GPU.

5. Experimental Evaluation

We evaluate OOD detection performance on road-driving scenes and aerial images.
Road-driving experiments suggest that our synthetic negatives can deliver comparable
performance to real negatives (Section 5.1). Our synthetic negatives become a method of
choice in setups with a large domain between the inliers and negative datasets (Section 5.2).

We compare our performance with respect to contemporary methods which do not
require the negative dataset and image resynthesis. We list all methods in our tables, so we
can discuss our method in a broader context. We also analyze the sensitivity of our method
with respect to the distance of the OOD object from the camera. Finally, we measure the
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computational overhead of our method with respect to the baseline and visualize our
synthetic samples.

5.1. Dense Out-of-Distribution Detection in Road-Driving Scenes

Table 1 presents the performance on WD-Pascal averaged over 50 runs [21]. All the
methods have been trained on the Vistas dataset and achieve similar mIoU performance.
The column “Aux Data” indicates whether the method trains on real negative data. We
choose ADE20k for this purpose since it offers instance-level ground truth. The bottom
section compares our method with early approaches: MC dropout [18], ODIN [32], and
max-softmax [40]. These approaches are not competitive with the current state-of-the-art.
The top section shows that training with auxiliary negative data can significantly improve
performance. However, our method closes the performance gap. It outperforms all other
methods in FPR95 and AUROC metrics while achieving competitive AP.

Table 1. Performance evaluation on WD-Pascal [21].

Method Aux Data AP ↑ FPR95 ↓ AUROC ↑
OOD head [21] ✓ 34.9 ± 6.8 40.9 ± 3.9 88.8 ± 1.6
Max-softmax [21] ✓ 33.8 ± 5.1 35.5 ± 3.4 91.1 ± 1.0
Void Classifier [12] ✓ 25.6 ± 5.5 44.2 ± 4.7 87.7 ± 1.7

MC Dropout [18] ✗ 9.7 ± 1.2 41.1 ± 3.7 86.0 ± 1.2
ODIN [32] ✗ 6.0 ± 0.5 53.7 ± 7.0 79.9 ± 1.5
Max-softmax [40] ✗ 5.0 ± 0.5 48.8 ± 4.7 78.7 ± 1.5
NFlowJS (ours) ✗ 30.2 ± 4.1 32.3 ± 5.9 92.3 ± 1.3

Table 2 presents a performance evaluation of SMIYC [11] and Fishyscapes [12]. Our
method outperforms all previous methods on AnomalyTrack, ObstacleTrack, as well as LAF-
noKnown. We achieve such results despite refraining from image resynthesis [14,19,20],
partial image reconstruction [15], or training on real negative images [12]. Our method
achieves very low FPR95 (less than 1%) on ObstacleTrack and LostAndFound-noKnown.
This is especially important for real-world applications, where a high incidence of false-
positive anomalies may make OOD detection useless. Note that ObstacleTrack includes
small obstacles in front of a variety of road surfaces, which makes it extremely hard not to
misclassify road parts as anomalies. Moreover, this dataset includes low-visibility images
captured at dusk and other challenging evaluation setups. Our synthetic negative data also
achieve competitive performance on FS LostAndFound. Our method outperforms others
in terms of FPR95, while achieving the second best AP. We slightly underperform only with
respect to SynBoost, which trains on real negative data and precludes real-time inference
due to image resynthesis. In the case of the FS Static dataset, our method achieves the best
FPR95 and the second best AP among the methods which do not train on auxiliary data.

We also applied our method to a pre-trained third-party closed-set model and submitted
the results to the Fishyscapes benchmark. We chose a popular DeepLabV3+ model which
achieves high performance due to training on unlabeled video data [90]. This choice promotes
fair comparison, since the same model has also been used in several other benchmark submis-
sions [15,91]. Please note that we use parameters which have not been trained on Cityscapes
val in order to allow fair evaluation on FS Static. The corresponding dense OOD detection
model achieves 43.7 AP and 8.6 FPR95 on FS LAF, 54.7 AP, and 10.0 FPR95 on FS Static, while
having 80.7 mIoU on Cityscapes val. We do not show these results in Table 2 in order to keep
the same model across all assays. This result clearly shows that our method can also be applied
to third-party models and deliver strong results.
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Table 2. Dense out-of-distribution detection performance on SegmentMeIfYouCan and Fishyscapes.

Method
SegmentMeIfYouCan [11] Fishyscapes [12]

Aux Img Anomalies Obstacles LAF-nK FS LAF FS Static CS val
Data Rsyn. AP FPR95 AP FPR95 AP FPR95 AP FPR95 AP FPR95 IoU

SynBoost [19] ✓ ✓ 56.4 61.9 71.3 3.2 81.7 4.6 43.2 15.8 72.6 18.8 81.4
Prior Entropy [92] ✓ ✗ - - - - - - 34.3 47.4 31.3 84.6 70.5
OOD Head [21] ✓ ✗ - - - - - - 31.3 19.0 96.8 0.3 79.6
Void
Classifier [12] ✓ ✗ 36.6 63.5 10.4 41.5 4.8 47.0 10.3 22.1 45.0 19.4 70.4

Image Resyn. [14] ✗ ✓ 52.3 25.9 37.7 4.7 57.1 8.8 5.7 48.1 29.6 27.1 81.4
Road Inpaint. [20] ✗ ✓ - - 54.1 47.1 82.9 35.8 - - - - -

Max softmax [40] ✗ ✗ 28.0 72.1 15.7 16.6 30.1 33.2 1.8 44.9 12.9 39.8 80.3
MC Dropout [18] ✗ ✗ 28.9 69.5 4.9 50.3 36.8 35.6 - - - - -
ODIN [32] ✗ ✗ 33.1 71.7 22.1 15.3 52.9 30.0 - - - - -
SML [91] ✗ ✗ - - - - - - - 31.7 21.9 52.1 20.5
Embed. Dens. [12] ✗ ✗ 37.5 70.8 0.8 46.4 61.7 10.4 4.3 47.2 62.1 17.4 80.3
JSRNet [15] ✗ ✗ 33.6 43.9 28.1 28.9 74.2 6.6 - - - - -
NFlowJS (ours) ✗ ✗ 56.9 34.7 85.5 0.4 89.3 0.7 39.4 9.0 52.1 15.4 77.4

Figure 6 shows qualitative performance on two sequences of images from SMIYC
LostAndFound. The rad-surface ground truth is designated in grey while the detected
obstacles are in yellow. The top sequence contains obstacles which change position through
time. The bottom sequence contains multiple anomalous objects. Our method succeeds
in detecting a toy car and cardboard boxes even though no such objects were present
during the training. The leftmost image contains distant obstacles, so please zoom in for
better visibility.

Figure 6. OOD detection on LostAndFound dataset. Our method can detect obstacles at different
distances from the camera (top) as well as multiple obstacles in one image (bottom). The road ground
truth is designated in grey and the predicted OOD in yellow. Zoom in to see the distant obstacles.

Table 3 shows OOD detection and outlier-aware semantic segmentation on StreetHaz-
ards. We produce outlier-aware semantic predictions by correcting closed-set predictions
with our dense OOD map (Section 3.3). We validate the OOD threshold in order to achieve
TPR = 95% [81] and measure performance according to mIoU over K + 1 classes as well as
with open-mIoU [81]. To the best of our knowledge, our method outperforms all previous
work. In particular, our method is better than methods which utilize auxiliary negative
datasets [21,33,93] and the method based on image resynthesis [50]. We note that there
is still a significant performance degradation in the presence of outliers. The closed-set
performance is more than 65% mIoU, while the outlier-aware performance peaks at 45%.
Future research should strive to close this gap to provide safer segmentation in the wild.
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Table 3. Performance evaluation on StreetHazards [59].

Method Aux. Anomaly Det. Closed Open
Data AP FPR95 IoU IoU o-IoU

SynthCP [50] ✗ 9.3 28.4 - - -
TRADI [94] ✗ 7.2 25.3 - - -
OVNNI [95] ✗ 12.6 22.2 54.6 - -
Synthetic Outliers +
Entropy [28] ✗ 12.7 25.2 59.7 - -

Deep Metric Learning [57] ✗ 14.7 17.3 - - -
Max-softmax [40] ✗ 7.5 27.9 65.0 32.4 35.1
Max logit [59] ✗ 11.6 22.5 65.0 38.0 41.2
ODIN [32] ✗ 7.0 28.7 65.0 - 28.8
ReAct [96] ✗ 10.9 21.2 62.7 31.8 34.0
Energy [93] ✓ 12.9 18.2 63.3 39.6 42.7
Max-softmax + Outlier
Exposure [33] ✓ 14.6 17.7 61.7 40.8 43.8

Outlier Head [21] ✓ 19.7 56.2 66.6 - 33.9
Outlier Head*Max
Softmax [13] ✓ 18.8 30.9 66.6 - 43.6

NFlowJS (ours) ✗ 22.2 16.2 65.0 41.6 44.9

We incorporated [32,33,93,96] into our codebase according to official implementations.
For the energy fine-tuning, we conducted hyperparameter search as suggested in [93]:
min ∈ {−15,−23,−27} and mout ∈ {−5,−7}. The optimal values for the dense setup are
min = −15 and mout = −5. We validated ReAct [96] for c ∈ {0.9, 0.95, 0.99}. The best
results are obtained with c = 0.99.

Figure 7 compares the outlier-aware semantic segmentation performance of the pro-
posed method with respect to the max-logit baseline [59] on StreetHazards. Anomalous
pixels are designated in cyan. Our method reduces the number of false-positive anomalies.
However, safe and accurate outlier-aware segmentation is still an open problem.

RGB input Max-logit NFlowJS Ground truth

Figure 7. Outlier-aware segmentation on StreetHazards. The detected outliers are marked with cyan.
Our method reduces the number of false-positives over the max-logit baseline.

5.2. Dense Out-of-Distribution Detection in Remote Sensing

We compare our method with standard baselines for OOD detection [33,40,93], as well
as with methods specifically developed for OOD detection in remote sensing imagery [17,25].
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Table 4 shows the performance on the BSB-aerial-OOD dataset [16]. Some methods train on
real negative data (cf. Aux data). The top section presents several OOD detection baselines.
We observe that training with real negative samples outperforms the MSP baseline [40] but
underperforms with respect to our synthetic samples. This is not surprising since the pasted
negative instances involve a different camera perspective than aerial imagery. The middle
section presents methods that are explicitly designed for aerial images. Morph-OpenPixel
(MOP) [17] erodes the prediction confidence at object boundaries with morphological filtering.
Morphological filtering improves FPR95 but impairs AP with respect to the MSP baseline.
DPN− [25] achieves runner-up AUROC and FPR95 performance. The bottom part shows the
performance of our model. JSDiv is the same as NFlowJS except that it uses negatives from
ADE20k instead of synthetic ones. NFlowJS generates dataset-specific negatives along the
border between the known and the unknown. NFlowJS outperforms methods which train on
real negative data, indicating that synthetic negatives may be a method of choice when an
appropriate negative dataset is unavailable.

Table 4. Performance evaluation on images from BSB-aerial-OOD.

Method Aux. Data AP FPR95 AUROC

Max-softmax [40] ✗ 35.1 13.5 96.4
Max-softmax + Outlier
Exposure [33] ✓ 32.2 9.6 97.0

Energy [93] ✓ 38.1 11.0 96.8
GAN negatives [26] ✗ 31.7 9.2 96.9

MOP [17] ✗ 24.5 10.9 96.0
Dirichlet Prior Network [25] ✓ 27.3 9.1 97.1

JSDiv (ours) ✓ 38.4 12.5 96.5
NFlowJS (ours) ✗ 44.1 8.8 97.8

Figure 8 visualizes our performance on the BSB-aerial-OOD dataset. The left column
shows the input images. The center column shows OOD objects—harbour and boats. The
right column shows that NFlowJS delivers a well-aligned score.

RGB Input Ground Truth NFlowJS OOD Score RGB Input Ground Truth NFlowJS OOD Score

Figure 8. Images from BSB-aerial-OOD (left columns). Boats and harbour are selected as OOD
samples (center columns). NFlowJS delivers accurate OOD scores (right columns).

5.3. Sensitivity of OOD Detection to Depth

Self-driving applications challenge us to detect anomalies as soon and as far as possible.
However, distant anomalies are harder to detect due to being represented with fewer
pixels. We analyze the influence of depth to dense OOD detection on the LostAndFound
dataset [80]. The LAF test set consists of 1203 images with the corresponding pixel-level
disparity maps and calibration parameters of the stereo rig. Due to limitations in the
available disparity, we perform analysis in the range from 5 to 50 m. Also, more than 60% of
anomalous pixels are closer than 15 m. Hence, the usual metrics (AP and FPR95) are biased
towards closer ranges. As we further demonstrate, many methods fail to detect anomalies
at larger depths. We compare our method with the max-logit (ML) and max-softmax [40]
baselines, ODIN [32], SynBoost [19], and OOD head [21]. Table 5 shows that our method
produces a low false-positive rate even at high distances. For example, at distances higher
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than 20 m, we outperform others by a wide margin. This finding is consistent with Figure 6,
which shows accurate detection of anomalies at larger distances.

Table 5. Analysis of FPR95 at various distances from the camera.

Range (in Meters) NFlowJS MSP ML SynBoost OOD-Head ODIN

5–10 0.7 16.6 4.7 0.2 7.9 10.9
10–15 1.2 18.0 7.3 17.7 10.6 9.0
15–20 0.8 19.3 5.9 25.0 16.9 11.1
20–25 1.1 23.2 5.8 23.3 23.6 13.4
25–30 1.8 28.0 7.1 18.8 26.7 16.6
30–35 2.7 32.6 7.6 27.4 30.8 22.6
35–40 3.5 37.9 10.1 25.4 36.8 25.9
40–45 5.6 41.4 13.2 25.8 42.2 30.3
45–50 8.8 46.3 15.8 29.9 52.0 37.9

5.4. Inference Speed

A convenient dense OOD detector should not drastically increase the already heavy
computational burden of semantic segmentation. Hence, we measure the computational
overhead of our method and compare it with other approaches. We measure the inference
speed on NVIDIA RTX 3090 for 1024 × 2048 inputs. Table 6 shows that SynBoost [19]
and SynthCP [50] are not applicable for real-time inference due to 20× and 3× overhead
over our baseline. Our baseline LDN-121 [85] achieves near real-time inference for two
megapixel images (46.5 ms, 21.5 FPS). ODIN [32] requires an additional forward–backward
pass in order to recover the gradients of the loss with respect to the image. This results
in a 3-fold slow-down with respect to the baseline. Similarly, MC Dropout [18] requires
K forward passes for prediction with K MC samples. This results in a 45.8 ms overhead
when K = 2. NFlowJS increases the inference time for only 7.8 ms with respect to the
baseline, while outperforming all previous approaches. The SynthCP measurements are
taken from [91], while SynBoost is measured using publicly available code.

Table 6. Comparison of inference speed on 2MPix images and RTX3090.

Method Resynth. Infer. Time (ms) FPS

SynthCP [50] ✓ 146.9 6.8
SynBoost [19] ✓ 1055.5 <1

LDN-121 (Base) [85] ✗ 46.5 21.5
Base + ODIN [32] ✗ +149.1 5.11
Base + MC = 2 Dropout [18] ✗ +45.8 10.83
Base + NFlowJS (ours) ✗ +7.8 18.4

5.5. Visualization of Synthetic Outliers

Our method is able to generate samples at multiple resolutions with the same nor-
malizing flow. The generated samples have a limited variety when compared to a typical
negative dataset, such as ImageNet or COCO [21,51]. However, training with them greatly
reduces overconfidence since the model is explicitly trained to produce uncertain predic-
tions in outliers. Figure 9 shows synthetic outliers generated by our normalizing flow after
joint training on aerial images. Even though the synthetic negatives look visually abstract,
they are a good proxy for real negative data. Consequently, fine-tuning the model on such
negatives improves the OOD detection performance.
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Figure 9. Samples of DenseFlow-25-6 after joint training on aerial images.

Similarly, Figure 10 shows samples of a normalizing flow after joint training on
road-driving scenes. Again, fine-tuning on such negatives improves the OOD detection
performance on road-driving scenes. Comparison with Figure 9 reveals that the appear-
ance of our synthetic negative samples strongly depends on the underlying inlier dataset.
Samples from Figure 9 resemble lakes and forests, while samples from Figure 10 resemble
road, sky, cars, and buildings. These observations do not come as a surprise since our
normalizing flows are trained to generate data points along the border of the inlier distribu-
tion (cf. Figure 2). In other words, our method reduces the open-space risk of a particular
segmentation model by adapting the synthetic negative data to the training dataset.

Figure 10. Samples of DenseFlow-25-6 after joint training on road-driving images.

5.6. Synthetic Negatives and Separation in the Feature Space

Up to now, we have considered softmax-activated models. However, softmax can
assign arbitrarily large probabilities regardless of the distance from the closest training
datum in the feature space [56], which fails to bound open-space risk [52,63]. We analyze
the usefulness of synthetic negatives in open-set recognition by considering a popular
baseline that is denoted as max-logit [58–60]. The max-logit value is proportional to the
projection of the feature vector of a given sample onto the closest class prototype vector.
This value can be thresholded to bound the open space risk [63,97].

The left part of Figure 11 shows histograms of max-logit values for known and un-
known pixels on Fishyscapes val. The right part shows the same histograms after fine-
tuning with our synthetic negative samples. The figure shows that training with our
synthetic negatives increases the separation between known and unknown pixels in feature
space and improves the AUROC score. Similar effects have been reported after training
with real negative data [61,62]. However, as argued before, our approach avoids the bias
towards test anomalies that are related to the training data. Furthermore, it offers a great
alternative for non-standard domains, as shown in Table 4. Hence, the proposed method
appears to be a promising component of future approaches for dense open-set recognition.
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w/ synthetic negatives

FS StaticFS Lost&Found

w/o synthetic negatives

FS StaticFS Lost&Found

Figure 11. Training on synthetic negative data improves the separation between test inliers and test
outliers in the feature space.

6. Ablations

We ablate the impact of loss in negative pixels, the choice of generative model, the im-
pact of pre-training, as well as the impact of temperature scaling on dense OOD detection.

6.1. Impacts of the Loss Function and OOD Score

Table 7 analyzes the impact of the loss function Lneg and the OOD score sδ on Anom-
alyTrack val and ObstacleTrack val. The two chosen datasets feature large and small
anomalies, respectively. We separately validate the modulation factor λ for each choice
of the negative loss, as well as the temperature parameter. We set T for max-softmax to
10 and for divergence-based scoring functions to 2, which are optimal values. We report
the average performance over the last three epochs. Row 1 shows the standard setting
with KL divergence as Lneg and max-softmax as the OOD score [26,33]. Row 2 uses the KL
divergence both as the loss function and the OOD score. Row 3 features the reverse KL
divergence. Minimizing the reverse divergence between the uniform distribution and the
softmax distribution is equivalent to maximizing the softmax entropy [51]. Rows 4 and 5
feature the JS divergence loss. The JS divergence substantially outperforms all alternatives
both as the loss function (JSD-MSP vs. KL-MSP) and as the OOD score (JSD-JSD vs. JSD-
MSP and RKL-RKL). We explain this advantage with a robust response in the synthetic
outliers which resemble inliers, as well as with improved consistency during training and
scoring (cf. Sections 3.2 and 3.3).
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Table 7. Validation of the loss in negative pixels and the OOD score.

Loss s(x) AnomalyTrack-val ObstacleTrack-val
AP FPR95 AP FPR95

KL MSP 57.5 ± 0.7 29.0 ± 1.7 95.1 ± 0.2 0.2 ± 0.1
KL KL 55.7 ± 0.4 26.3 ± 1.3 94.3 ± 0.2 0.1 ± 0.0
RKL RKL 57.0 ± 0.3 28.9 ± 0.3 94.4 ± 0.1 0.3 ± 0.0
JSD MSP 63.0 ± 0.5 22.8 ± 0.7 96.1 ± 0.2 0.2 ± 0.0
JSD JSD 63.3 ± 0.6 19.8 ± 0.8 95.8 ± 0.2 0.1 ± 0.0

6.2. Impact of the Choice of Generative Model

Table 8 compares synthetic negative data generated by the normalizing flow with
synthetic negative data generated by GAN [26] and synthetic negative pre-logit features
generated by GMM [44]. Interestingly, training on synthetic OOD features produced
by GMM achieves better average precision than synthetic negative images generated by
GAN. However, generating synthetic negatives with a normalizing flow outperforms
both GAN images and GMM features. This advocates for the advantages of maximum
likelihood over adversarial training for the generation of synthetic negatives, as described
in Section 3.4. We also note that utilizing RealNVP [27] instead of DenseFlow [75] decreases
OOD detection performance.

Table 8. Impact of generative model on OOD detection performance.

Generator AnomalyTrack-val ObstacleTrack-val
AP FPR95 AP FPR95

GMM-VOS 56.7 ± 0.2 28.0 ± 0.4 81.8 ± 0.5 3.9 ± 0.2
GAN 56.1 ± 0.4 26.1 ± 0.6 80.8 ± 0.4 3.6 ± 0.1

NFlow 61.4 ± 0.8 21.7 ± 1.3 94.9 ± 0.1 0.1 ± 0.1

6.3. Impact of Pre-Training

Table 9 explores the impact of pre-training on OOD detection performance. Row 1
shows the performance when neither a generative nor discriminative model are trained
prior to the joint training (Section 3.1). In this case, we jointly train both models from
their random initializations. Row 2 reveals that discriminative pre-training improves OOD
detection. Introducing the synthetic negatives after discriminative pre-training improves
generalization. Row 3 shows that pre-training both models generalizes even better.

Table 9. Impact of pre-training on the success of joint training.

Cls. Flow AnomalyTrack-val ObstacleTrack-val
AP FPR95 AP FPR95

✗ ✗ 56.9 ± 1.2 27.8 ± 2.1 90.5 ± 0.3 1.0 ± 0.1
✓ ✗ 61.4 ± 0.8 21.7 ± 1.3 94.9 ± 0.1 0.1 ± 0.1
✓ ✓ 63.3 ± 0.6 19.8 ± 0.8 95.8 ± 0.2 0.1 ± 0.0

6.4. Impact of Temperature Scaling

Table 10 shows the impact of softmax recalibration on OOD detection. The table
explores three different temperatures. We observe that temperature scaling significantly
improves the Jensen–Shannon scoring. Values greater than 2 yield worse results.
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Table 10. Impact of temperature on JSD scoring.

Temp. AnomalyTrack-val ObstacleTrack-val
AP FPR95 AP FPR95

T = 1 59.7 ± 0.5 40.0 ± 0.8 92.6 ± 0.3 1.1 ± 0.1
T = 1.5 62.7 ± 0.6 23.7 ± 0.9 95.3 ± 0.2 0.2 ± 0.0
T = 2 63.3 ± 0.6 19.8 ± 0.8 95.8 ± 0.2 0.1 ± 0.0

7. Conclusions

We have presented a novel method for dense OOD detection and outlier-aware se-
mantic segmentation. Our method trains on mixed-content images obtained by pasting
synthetic negative patches into training images. We produce synthetic negatives by sam-
pling a generative model, which is jointly trained to maximize the likelihood and to give
rise to uniform discriminative predictions. Such collaborative learning leads to conserva-
tive outlier-aware predictions, which are suitable for OOD detection and outlier-aware
semantic segmentation.

We extend the previous work with the following consolidated contributions. First, we
replace the adversarial generative model (GAN) with a normalizing flow. We believe that
the resulting improvement is due to better coverage of the training distribution. Second, we
extend the collaborative training setup for dense prediction. Generative flows are especially
well-suited for this task due to straightforward generation at different resolutions. Third,
we improve the performance by pre-training the normalizing flow and the discriminative
model prior to joint training. Fourth, we propose using the JS divergence as a robust
criterion for training a discriminative model with synthetic negatives. We also show that
the same criterion can be used as a principled improvement over ad hoc scoring functions,
such as max-softmax.

We have evaluated the proposed method on standard benchmarks and datasets for
dense OOD detection and outlier-aware segmentation. The results indicate a significant
advantage with respect to all previous approaches on the majority of the datasets from two
different domains. The advantage becomes substantial in the case of non-standard domains
with few suitable auxiliary datasets for sampling real negative data. Additionally, we
demonstrate the great potential of our method for real-world deployments due to minimal
computational overhead. Suitable avenues for future work include extending our method
to setups with bounded open-set risk and other dense prediction tasks.
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