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Abstract: RADARs and cameras have been present in automotives since the advent of ADAS, as
they possess complementary strengths and weaknesses but have been underlooked in the context
of learning-based methods. In this work, we propose a method to perform object detection in
autonomous driving based on a geometrical and sequential sensor fusion of 3+1D RADAR and
semantics extracted from camera data through point cloud painting from the perspective view. To
achieve this objective, we adapt PointPainting from the LiDAR and camera domains to the sensors
mentioned above. We first apply YOLOv8-seg to obtain instance segmentation masks and project
their results to the point cloud. As a refinement stage, we design a set of heuristic rules to minimize
the propagation of errors from the segmentation to the detection stage. Our pipeline concludes by
applying PointPillars as an object detection network to the painted RADAR point cloud. We validate
our approach in the novel View of Delft dataset, which includes 3+1D RADAR data sequences in
urban environments. Experimental results show that this fusion is also suitable for RADAR and
cameras as we obtain a significant improvement over the RADAR-only baseline, increasing mAP
from 41.18 to 52.67 (+27.9%).

Keywords: autonomous driving; sensor fusion; RADAR; camera; point cloud painting; object
detection

1. Introduction

The progress of autonomous driving (AD) technologies involves the development of
perception techniques that enhance the scene-understanding capabilities of the vehicles.
The perception stage of an autonomous driving stack (ADS) is in charge of interpreting
the information from the sensors to understand the environment in which the vehicle is
moving. This is accomplished in three steps: obtaining the information from onboard
sensors, processing it, and interpreting the environment around the autonomous vehicle
(AV). The information gathered by the sensors is presented in the form of point clouds,
images or spectral signals.

The processing stage transforms these raw data into more refined information, such as
the location, dimensions, and speed of the rest of the road users (pedestrians, cyclists, and
other vehicles) or a semantic definition of the world in which every piece of information
is assigned to an inanimated category (drivable road, vegetation or road obstacles). The
literature reflects that learning-based algorithms have been predominant in this field since
the advent of Deep Learning (DL). Once this elaboration is finished, it is possible to interpret
the scene by adding a temporal and spatial coherence between the processed information
in a timestamp and the processed information of past timestamps. This temporal–spatial
association of information allows the system to predict which possible scenarios are likely
to happen within the successive timestamps. The final output of the perception processing
pipeline is used as the input of the upstream or downstream stages of the ADS.
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Since the advent of Advanced Driver Assistance Systems (ADASs), conventional
2+1D RADAR and camera sensors have played a major role in the automotive industry as
integral parts of these systems, such as Adaptive Cruise Control (ACC), Lane Departure
Warning (LDW) or Assistance Emergency Braking (AEB). The strengths and weaknesses
of both RADAR and camera sensors are complementary; thus, the mass implementation
of ADAS systems has been fulfilled with this combination of sensors. Whilst RADAR
provides sparse range, angle and velocity measurements, cameras provide pixel-level
density representations with richer semantic features.

Nevertheless, in the transition from ADAS to AD technologies, academia and industry
have shifted their main interests to perception systems based on LiDARs and cameras.
LiDAR has replaced conventional 2+1D RADAR due to its better spatial and angular
resolution and height measurement capabilities. In this situation, a new generation of
high-resolution RADARs (3+1D) has emerged. Providing richer point cloud represen-
tations than their predecessors, and with a higher density of range, angle, height and
velocity measurements, these new RADARs show potential for being reintroduced into
the perception sensor suite in the context of AD applications. A visual comparison of
the density of the point clouds obtained by a LiDAR and a 3+1D RADAR can be seen in
Figure 1. Furthermore, the 3+1D RADAR provides 1D Doppler velocity measurements for
each reflection, which are projected over the radial component of the detections. Doppler
velocity be used to enhance downstream tasks such as object detection, linear velocity
estimation and motion tracking. In contrast, LiDAR-based systems require the inference
of any velocity component by analyzing the evolution over time of the objects of interest.
The inclusion of radial velocity components enables the point cloud to be categorized into
two distinct subsets: static and dynamic objects. The set of static objects can be leveraged
to obtain 3D grid maps through the accumulation of multiple RADAR frames over time.

(a) (b)
Figure 1. Comparison of a LiDAR point cloud (a) and 3+1D RADAR point cloud (b) projected to the
image plane for an automotive scene of View of Delft dataset.

In this work, we aim to explore a geometrical data fusion approach to detect and
classify objects as 3D bounding boxes in the environment surrounding the vehicle. Overall,
the main contribution of this study is the implementation and evaluation of a multi-stage
DL system for 3D object detection in automotive applications. The system utilizes data from
3+1D RADAR point clouds and monocular camera images, aligning with contemporary
trends in sensor fusion in the perspective view (PV) with semantics. The primary goal is
to achieve object detection and classification around the vehicle, combining the strengths
of automotive RADAR and monocular cameras in a geometrical–sequential sensor fusion
scheme. We summarize the rest of the contributions of our work as follows:

• We reformulate PointPainting [1] and adapt it to the domain of RADAR point clouds
and camera images using YOLOv8 [2] as the instance segmentation network and
PointPillars [3] as the detection network, respectively.

• We design a set of rules based on heuristics to deal with the main disadvantage of the
previous method, the smearing effect, to mitigate the propagation of errors from the
segmentation stage to the detection stage.
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• We evaluate our system in the novel View of Delft (VOD) [4] dataset, which includes
3+1D RADAR point clouds and a monocular camera image to perform sensor fusion
for object detection, and we obtain significant improvements over the RADAR-only
object detection method.

2. Related Works

Sensor fusion aims to fuse the data of different modalities or sensors, taking advantage
of the synergies that can result from the combination of them to fulfill a specific task. In
the context of AD, sensor fusion improves the robustness and reduces the uncertainty
of perception systems. In this Section, we define how sensor fusion can be performed
by answering four main questions: what to fuse, where to fuse, when to fuse and how
to fuse [5]. Then, a set of selected methods based on camera and automotive RADAR
is revised.

What to Fuse? In determining the fusion targets, RADAR presents a diverse array
of modalities. These modalities span from the raw Analog-to-Digital Converter (ADC)
data to point cloud representations, encompassing spectrograms and RADAR cubes. Each
modality bears distinct advantages and limitations. Conversely, in the domain of cameras,
representation diversity is diminished. Common modalities include RGB or gray-scale
images for visible light cameras alongside infrared or thermal representations.

Where to Fuse? Spatial coherency must exist when fusing data from various sources.
Data must be referenced to the same coordinate frame. To tackle this, there are two main
options in RADAR–camera fusion: the perspective projection of the image plane or the
bird’s eye view from space. Fusing in the image plane involves the projection of the RADAR
tensors or point clouds via calibration matrices, forming sparse RADAR images. Fusing in
the BEV plane involves the lifting of camera-based features inside a neural network since
geometric projections under-perform in this task.

How to Fuse? Fusing two sensor modalities involves keeping spatial and temporal
coherence or alignment. Temporal misalignment can occur when the latencies are not
controlled or compensated. Spatial misalignment occurs when calibration methods are
not accurate. Fulfilling these conditions, fusion is accomplished by means of fusion oper-
ators. These include transformation matrices for data-level fusions as well as additions,
multiplication, concatenation and attention mechanisms for feature-level fusions.

When to Fuse? Depending on the stage of the perception pipeline, we can classify
fusion schemes in these levels: object-level fusion, data-level fusion, feature-level fusion and
any combination of them (hybrid-level fusion). Object-level fusion involves two separate
independent methods that return their respective detections and a later fusion mechanism.
In this case, Bayesian theory, Kalman filters and matching algorithms are used to associate
detections spatially. The data-level fusion involves the creation of a new representation
of the environment before any detection network or method, i.e., projecting the RADAR
features to the image plane and concatenating those channels with the original RGB image,
resulting in a different tensor that will feed a Neural Network (NN). The feature-level
fusion involves the combination of RADAR feature maps and camera feature maps inside
an NN applying any fusion operator (keeping spatial coherence). Then, hybrid approaches
can make combinations of any of the previous ones applying different fusion operators.

Methods. Having reviewed the main components of sensor fusion, it is possible to
review the recent literature in terms of RADAR–camera fusion for perception.

nuScenes [6] has become the dataset of reference for AV applications and has been the first
big-scale benchmark to introduce conventional (2D+1) RADAR data. One of the first methods
ranked in nuScenes for the camera and RADAR Detection Track was CenterFusion [7]. Nabati
and Qi propose a feature-level fusion scheme with two main branches. The imaging
branch uses CenterNet [8] as the backbone. The RADAR branch opts for a pillar rendering
mechanism, which is similar to KPConv. The head is split into two parts: primary and
secondary. The primary head obtains preliminary 3D bounding boxes. Pillar features and
preliminary boxes are associated through a frustum-based mechanism, and a RADAR
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feature map is generated. Image and RADAR feature maps are concatenated and are the
input to the secondary head, which refines the preliminary proposals. They performed a
performance comparison in which the camera-only KPConv scored an NDS = 0.328 and
the fusion of both sensors scored an NDS = 0.453, which is an improvement of 0.125 due to
the fact including RADAR data information.

Nobis et al. [9] proposed a method to fuse RADAR and camera information in the im-
age plane, extending the image with RADAR channels that include range, velocity and RCS
information. The method is built based on RetinaNet [10] with two branches. The camera
image follows a VGG [11] backbone, and the RADAR branch applies max pooling opera-
tions to preserve the maximum information possible when the dimensionality is reduced
as it is a sparse image. Then, feature maps from RADAR and image branches are concate-
nated at multiple scales. An FPN and a detection head end the architecture. The method
introduced a novel augmentation method called BlackIn. BlackIn shut down the neurons at
the input of the camera image, so the network must rely on the RADAR channels to obtain
the information.

A remarkable network that opted for a data-level approach is RadSegNet [12]. The
method uses a 2D detector for oriented bounding boxes. In this case, a BEV grid map is
generated from the RADAR point cloud. The grid is augmented with semantic information
coming from the camera. A 2D semantic segmentation network is applied to the image.
Then, a semantics-to-RADAR module projects the information from the image plane to
the BEV grid map. The final grid map is composed of multiple channels: the grid map,
point-based feature maps and semantic maps, leading to a 22-dimensional tensor. The
architecture for semantic segmentation is a DeepLabV3+ with a ResNet-101 backbone
trained in CityScapes [13] due to the absence of semantic labels in RADAR–camera-based
datasets. The architecture for object detection is based on RADAR, treating detection as a
per-pixel task, which was trained on the Astyx dataset [14].

Revisiting the existing literature and the methods that have been previously explained,
it is possible to conclude that the future direction of sensor fusion is shifting from object
or data-level fusion schemes to relying on BEV fusion mechanisms for perception [15].
Combining both modalities in the bird’s eye view space leads to the design of novel
mechanisms to either lift camera features to 3D space solely [16] or assisted by RADAR [17]
via attention mechanisms.

Table 1 summarizes the methods revisited in this section. All methods are based on
conventional 2+1D RADAR, and neither of them fuses 3+1D RADAR and image semantics
in the image plane as our proposal.

Table 1. Summary of revisited state-of-the-art methods.

Method Fusion Type Description Dataset Year

Nobis et al. [9] Data Fusion in the image plane and
extension in height of RADAR data. nuScenes [6] 2019

CenterFusion [7] Feature Dual-branch backbone and
feature fusion for detection. nuScenes [6] 2021

RadSegNet [12] Data
Fusion-then-detection in BEV.

RADAR point cloud and image
semantics projected.

Astyx [14] 2022

3. Method

The problem dealt with is 3D object detection, which is typically formulated in the
literature as the regression and classification of 3D-oriented bounding boxes that enclose
objects of interest for the autonomous navigation task. To address this task, we propose a
pipeline based on [1] to perform 3D object detection based on painted automotive RADAR
point clouds via segmented camera images. The method is composed of four stages:
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instance segmentation, point cloud painting, rule-based cluster refinement and 3D object
detection. A diagram representing the whole pipeline is shown in Figure 2.

Figure 2. Overview of the complete pipeline.

3.1. Two-Dimensional (2D) Instance Segmentation

The first step of the framework consists of the application of a 2D instance segmenta-
tion network to the camera image to obtain the semantic category of the objects of interest
that are present in the scene. We employ YOLOv8x-seg as an instance segmentation neural
network to mitigate the performance drop that occurs due to the absence of specific seman-
tic labels and a domain shift in the dataset studied, as this network has been extensively
pre-trained on the COCO dataset [18].

YOLOv8 formulates the instance segmentation task as a “segmentation-by-detection”
problem. It first detects an object of interest and then adjusts a binary mask that indicates
which pixels in the image belong to that corresponding instance. The structure of the
network is as follows: a CSP-Darknet53 backbone [19], a PAFPN-based neck, a decoupled
head for detection and Proto heads for upscaling the images to their original size and
extracting the segmentation mask per instance. Therefore, the output of this network is
a set of instances where each instance is characterized by a bounding box, a semantic
category, an objectness score that ranks from 0 to 1, which are output by the decoupled
detection head and a binary segmentation mask output by the Proto segmentation heads.
The main innovation in this stage is the use of instance segmentation networks, which
focus on VRUs, instead of semantic segmentation networks as were in PointPainting [1] in
which also background elements are segmented.

We run inference for each image, and after that, we apply the following processing.
We filter the masks that belong to the classes: vehicle, person and bicycle. For each
filtered instance, we multiply its segmentation mask by its objectness score. We sum all
the masks, encoding each one of the semantic categories in an image channel. Finally, we
saturate the channels to 1 to cover the edge case in which various masks within the same
semantic categories overlap in the same area of the image. We call this representation the
instance map, and an example can be seen in Figure 3. In this figure, an urban scenario
is represented. In the left part of the image, multiple bicycles (green) and cars (blue)
are segmented correctly. It can be noticed that the bluer tone is decreasing to distance,
meaning that the confidence in the segmentation network is decreasing following the same
pattern. In the center of the road, multiple pedestrians are correctly segmented (red). As
previously stated, it can be seen that cyclists are segmented as a person (red) and bicycle
(green) independently.
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(a) (b)
Figure 3. Monocular camera image (a) and instance map highlighting pedestrians, bicycles and cars
(b) for frame 03456 in the View of Delft dataset.

3.2. Point Cloud Painting

To perform sensor fusion between camera and RADAR data coherently, both sources
of data must be spatially aligned. Painting a point cloud implies fusing features that are
located in pixels of an image plane into their corresponding points in 3D space. Therefore,
we follow [1] to perform data fusion. Nevertheless, we apply painting with both RGB
images and instance maps.

We apply a homogeneous transformation from the RADAR coordinate frame to the
image coordinate frame and project all RADAR points into the image plane via Equation (1),
where PXYZ1 is an R4×N matrix of N homogeneous points in the RADAR coordinate frame,
Tradar to cam is a homogeneous transform from RADAR to the camera (R4×4), R0, rect is a
rectification matrix (R4×4), P2 is a pseudo-intrinsic parameters matrix for stereo systems
(R3×4) and PUVW is the output result, a matrix.

PUVW = P2 · R0, rect · Tradar to cam · PXYZ1 (1)

Once the points are located in the image plane, we can establish a point–pixel corre-
spondence for all the elements of the point cloud. After this process, we obtain a painted
point cloud whose dimensionality has been increased, RN×C+3+3, where C is the original
number of features in the RADAR point cloud, 3 additional channels encode the RGB
color of the image, and the last three channels encode the semantic category assigned to
that point at the instance segmentation stage. The inclusion of color RGB channels in the
painting mechanism is the main innovation of this stage.

3.3. Cluster Refinement

The main weakness of the painting method is the smearing effect. It is an effect that
occurs when the segmentation of an object of interest is imperfect and produces a trace
of colored or segmented points in the angle bin in which this object is projected. Objects
of interest affected by this effect will show a different spatial distribution than objects
that are correctly segmented. This potentially leads to the propagation of errors from the
segmentation stage of the pipeline to the detection stage.

We identify four potential causes that could lead to the appearance of smearing phe-
nomena: the quality imperfection of the segmentation masks, the calibration and temporal
misalignment between the point cloud and the image, the absence of motion compensation
and the propagation scheme of RADAR reflections, since multiple reflections can appear in
the same angle bin.

As the instance segmentation networks allow us to propagate the instance concept,
it is possible to discern which RADAR points belong to which segmented instance. We
design a set of heuristic rules to identify objects affected by smearing and mitigate the
propagation of erroneous paintings into the detection stage. We approach this problem by
analyzing the radial dispersion of the detected objects, ∆r = max(r)− min(r). We obtain
the radial distance to all points in an instance of interest and determine their difference. If
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the dispersion is greater than a certain threshold, the object is considered to be affected by
smearing. To set these thresholds, we double the anchors set by the object detection network
that will be used in the detection stage for the semantic categories we are coping with. The
reason behind doubling the anchors and taking them as thresholds is to detect the most
affected cases in which smearing will contaminate the data fusion process. The doubled
anchors chosen are 7.8 m for the Car category, 3.52 m for the Cyclist category and 1.6 m for
the Pedestrian category.

Once an object is considered to be affected by smearing, we determine if the object is
dynamic or static by analyzing the presence of points with a component of compensated
radial velocity in absolute value, |Vr comp| ≥ 0.3 m/s. If an object is considered to be
dynamic, we apply DBSCAN [20] clustering over the radial velocity features and we extract
the cluster with more detections and mean velocity different from zero. If an object is
considered static, we apply DBSCAN clustering over the spatial dimensions, and we retain
the closest cluster in range, i.e., the first one encountered in the line of sight. An example of
the application of this cluster refinement can be seen in Figure 4. In this qualitative scenario,
the smearing effect is present as a large set of reflections that range from 10 to 30 m, which
is produced due to the effect of RADAR scattering and noisy propagation inside a shop. As
a pedestrian is standing in front of the shop door and multiple reflections are lying behind
in the same radial direction, various points are incorrectly assigned to this instance when
the painting procedure is performed. Applying the cluster refinement algorithm, we can
identify the blob of points that belong to the object and filter noise that is not propagated
into the following stage of the system.

3.4. Three-Dimensional (3D) Object Detection

The final step of the pipeline consists of the application of a 3D object detection network
over the painted point cloud, by using a version of PointPillars [3] which is adapted for
RADAR data.

The architecture of PointPillars can be seen in Figure 5 and is structured as follows:
a data preprocessing module, which is responsible for voxelizing point clouds with a
random sampling strategy to augment the training data; a Pillar Feature Net extracts
features per pillar using the arithmetic mean of points and their offset from the center; a
Middle Encoder converts learned features to a sparse pseudo-image, facilitating subsequent
processing; then, the architecture comprises a backbone, neck, and head, following the
typical scheme of a 2D object detection network. The backbone is a convolutional network,
SECOND [21], producing features with decreasing resolutions. The neck performs upsam-
pling and concatenates features from different resolutions. The head incorporates prior
information about bounding box sizes and generates anchors for pedestrians, cyclists, and
cars. Object detection is treated as a matching problem using Intersection over Union (IoU),
with additional regression tasks for height and elevation, forming a complete 3D object
detection network.

The main innovation in this stage is the adaptation of PointPillars to fit RADAR data.
For this purpose, we perform the following modifications to the previously explained scheme:

• We adapt the point cloud range to the dataset we are coping with, which is explained
in Section 4.1. We modify as a consequence the anchor generation range.

• We increase the voxel size. Since the RADAR sensors are placed in the front bumper
of the vehicle, we explore the height range of [−2, 3] m.

• We reduce the maximum number of points per voxel. Since RADAR point clouds are
sparser than LiDAR ones, we decrease this threshold from 32 to 10 points.

• We delete data augmentation that deforms or rotates point clouds, since the RADAR
information would become physically incoherent.

• We modify all the components that load point clouds and adapt them to the new
dimensionality from LiDAR (RN×4) to RADAR (RN×7) or Painted RADAR (RN×13).
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(a)

(b) (c)
Figure 4. Example of cluster refinement algorithm applied in frame 00125 of the View of Delft dataset.
A large set of reflections produced by scattering is generated inside the shop and projected into the
pedestrian standing at the door in image (a), producing a large smearing that can be seen in (b). The
cluster refinement algorithm detects the radial dispersion and corrects the probabilities assigned to
the points in the point cloud (c).
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Figure 5. Overview of the PointPillars architecture. Adapted from [3].

With these modifications taken into consideration, PointPillars can perform inference
and detect 3D objects in modified and painted RADAR point clouds.

4. Experiments and Results
4.1. Dataset

The experiments are carried out on the View of Delft (VoD) dataset. It was released in
Q2 2022 and includes a collection of urban sequences recorded in Delft, The Netherlands.
These sequences lead to 8682 individual frames with an official training–validation–testing
split of 5139, 1296, and 2247, respectively. Each frame contains readings from multiple
sensor modalities, of which LiDAR, RADAR, camera and their respective calibration and
transform matrices are of particular interest for the validation of this work. Moreover,
annotations for 2D and 3D object detection tasks are provided.

Delving into the sensor readings, LiDAR point clouds are captured at 10 Hz by a
Velodyne HDL-64 S3. Every LiDAR point cloud is a vector LPC ϵRN×4, where N denotes the
number of points in a point cloud and every point is a tuple PL = (x, y, z, i) that represents
its spatial location (x, y, z) and its reflection intensity (i). RADAR is captured by a ZF
FRGen21 3+1D sensor at 13 Hz. Analogously, a RADAR point cloud is a vector RPC ϵ RN×7

with N points and seven features per point. Then, PR =
(
x, y, z, vr, vrcomp, σ, t

)
, where

(x, y, z) is the spatial location of the reflection,
(
vr, vrcomp

)
is the radial velocity without

and with ego-motion compensation, respectively, (σ) is the RADAR cross-section and (t) is
a time component that allows the accumulation of multiple timestamps in a single point
cloud. Lastly, a stereo vision system provides a single color image in the form I ϵ Z3×H×W ,
where the height and width are H = 1216 and W = 1936, respectively.

The annotations are provided in a KITTI-like style and are provided for each LiDAR
scan in the dataset and cover an area of 50 × 50 m on both lateral and longitudinal axes. A
set of 15 semantic classes is contained within the dataset with a focus on Vulnerable Road
Users (VRUs), such as pedestrians and cyclists. For evaluation purposes, we map the original
classes to Pedestrian, Car and Cyclist to follow the KITTI evaluation protocol.

4.2. Implementation Details

The components of the detection pipeline are trained and/or executed on an Intel
i9-12700 CPU and an NVIDIA RTX4090 24 GB GPU; therefore, the training and infer-
ence times are reported concerning these hardware specifications. The implementation of
the instance segmentation network is based on the ultralytics (Ultralytics on GitHub:
https://github.com/ultralytics/ultralytics, accessed on date: 27 December 2023) pack-
age and the 3D object detection is implemented modifying PointPillars for LiDAR at
mmdetection3d (mmdetection3d on GitHub: https://github.com/open-mmlab/mmdetect
ion3d, accessed on date: 27 December 2023).

4.3. Performance on 3D Object Detection

We evaluate the performance of the pipeline on the 3D object detection task. For this
procedure, we train PointPillars models following a KITTI standard training procedure:
80 epochs, where the learning rate is configured using around an initial value of η = 1 × 10−3

https://github.com/ultralytics/ultralytics
https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d
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and is modified every epoch using a learning rate scheduler: Cosine Annealing with
two stages. The first stage covers from the beginning of the training to epoch 32 and
increases from 10−2 to 10−3 in a linear trend. The second stage covers from epoch 32 to the
end of the training in epoch 80 and decreases η from 10−3 to 10−7 following Equation (2).
The optimizer is AdamW, which is an adaptive momentum optimizer with weight decay.

ηt = ηmin +
1
2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax
π

))
(2)

As for the loss function, we employ a weighted sum of three different components:
focal loss [10], smoothed L1 [22] and cross-entropy, as Equation (3) states.

L = α1 · LFL + α2 · LL1smooth + α3 · LCE (3)

Focal loss is in charge of bounding box classification. It aims to address class imbal-
ance during training, adding a modulating term to cross-entropy loss to focus on hard
misclassified examples, following Equation (4). For our experiments, α1 = 1.0 and γ = 2.0.

LFL = −(1 − pt)
γ · log pt (4)

Bounding box regression is dealt with a Smooth L1 term that uses a square penalty
term term if an error falls below beta and an L1 otherwise. It prevents exploding gradients
and follows (5). For our experiments, we set α2 = 2.0 and β = 1.0/9.0.

LL1smooth =

{
0.5 · (xn − yn)

2/β if |xn − yn| < β

|xn − yn| − 0.5 · β otherwise
(5)

Finally, bounding box orientation is estimated formulating the problem as a classifica-
tion, where the goal is to categorize each box into predefined bins. For our experiments, we
set α3 = 0.2.

We use Mean Average Precision (mAP) and Average Orientation Similarity (AOS) as
metrics, which are defined as follows:

• Mean Average Precision (mAP) assesses the performance on axis-aligned 3D bounding
box detection and weights the Average Precision (AP) results across all n categories. It
is defined in Equation (6).

mAP =
1
n

k=n

∑
k=1

APk (6)

Average Precision for a single category is defined at Equation (7). It is a discrete
evaluation over the recall curve in which detections are iteratively assigned to a
ground truth object and assigned as true positive (TP) if their Intersection over Union
(IoU) is more than a certain threshold. Multiple detections over a single ground truth
object are considered false positives.

AP =
1

40

k=40

∑
k=0

Precision
(

k
40

)
(7)

Concerning the selection of IoU thresholds for every category, we follow the recent
literature for RADAR 3+1D detection [4], which defines the minimum IoU thresholds
necessary to consider an object as TP: IoU = 0.5 for Car category and IoU = 0.25 for
Pedestrian and Cyclist categories.

• Average Orientation Similarity (AOS) assesses the performance of estimating the
3D orientation of the bounding box. Moreover, it is related to the recall at the object
detection stage, from which multiple thresholds are set to perform a discrete evaluation
over the recall curve, which is expressed as shown in Equation (8).
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AOS =
1
40

k=40

∑
k=0

max s
(

k
40

> r
)

(8)

It is derived from a normalized variant of cosine similarity, s ϵ (0, 1), and computes
the error from the difference between an estimated and ground-truth orientation for
every 2D detection in the image plane, as Equation (9) states.

s(r) =
1

D(r)
· ∑

i

1 + cos ∆(i)
θ

2
· δi (9)

where D(r) is the set of detections for a certain recall value r and ∆(i)
θ is the difference

between angle θ estimation and ground truth for a matched detection i. Additionally,
δi acts as a penalization mechanism: δi = 1 if IoUi ≥ IoUmin or δi = 0 otherwise.

The comparison will be performed between PointPillars for RADAR, which we will
refer to as PointPillars-R, and the colorized version, which we will refer to as Painted
PointPillars-R. The first one will serve as a baseline to compare with the latter, our approach.
Moreover, we will experiment with the temporal aggregation of RADAR point clouds
among frames, and we will train for each of the versions of the VoD dataset: single frame,
3 frames and 5 frames. As a remark, the metrics will be obtained over the validation set
of VoD.

Table 2 shows the results of training the baseline PointPillars-R over the validation
set of the VoD dataset. The table is split among three different criteria: metric, difficulty
and categories. Among metrics, from left to right: mAP in the BEV plane, mAP in the 3D
space, and AOS. Among difficulties: easy, medium and hard, depending on the size of the
bounding box in the image plane and its occlusion level (moreover, in KITTI, the difficulty
includes the level of truncation as an additional criterion, but this attribute is not labeled in
the View of Delft dataset). Among categories, the three evaluated ones are Car, Pedestrian
and Cyclist.

Table 2. Quantitative results of PointPillars-R with IoU thresholds (0.5, 0.25, 0.25) over the validation
set of View of Delft dataset. Best results in bold.

BEV 3D AOS

Easy Med Hard Easy Med Hard Easy Med Hard

AP40 Car (IoU @ 0.5)

1 frame 29.63 40.10 33.21 24.20 30.42 27.40 20.14 28.28 23.60

3 frames 32.78 36.62 30.41 25.33 30.52 24.95 21.52 25.94 21.47

5 frames 31.69 32.31 26.44 25.85 28.77 21.13 21.06 21.02 17.07

AP40 Pedestrian (IoU @ 0.25)

1 frame 37.46 33.36 30.61 30.45 27.37 24.18 19.22 16.88 15.25

3 frames 38.20 33.62 29.85 31.76 28.26 24.88 21.27 18.45 16.55

5 frames 36.09 33.13 29.41 30.44 27.81 24.97 20.04 17.85 15.91

AP40 Cyclist (IoU @ 0.25)

1 frame 67.53 63.79 57.81 63.25 58.29 53.42 48.28 44.61 39.74

3 frames 71.53 66.19 59.94 66.88 61.50 55.40 51.71 46.71 42.26

5 frames 76.41 70.12 63.60 73.15 66.97 60.31 58.22 53.51 47.56

The performance results of the network indicate that RADAR-based methods have
difficulties extracting bounding boxes for the Car and Pedestrian categories. Poor spatial
resolution leads to scarce reflections in the targets of interest and difficulties in estimating
the shape of the objects. The network shows successful performance in the Cyclist category,
ranging from 63.25 3D AP40 in easy difficulty and single frame to 73.15 in easy difficulty
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and five accumulated frames. This is an atypical situation in automotive datasets, where
VRUs are detected with difficulty. This may be due to the appearance of radial velocity and
RCS as additional channels in the RADAR point clouds. After all, these features can be an
excellent source of information to distinguish the few reflections that fall within cyclists
from the static or different-in-terms-of-reflectivity background. Moreover, comparing
single-frame and multi-frame versions, the increment between 1 and 3 frames is more
notorious than the one between 3 and 5 scans for 3D AP40 across all categories. However,
a rising trend among frame versions is perceived. Then, the network is taking advantage of
the temporal aggregation of scans.

After this, we evaluate the performance of our proposal Painted PointPillars-R fol-
lowing the same schema as the baseline, whose results can be seen in Table 3. We train
the single-frame and multi-frame versions following the same procedure. At a glance, it
is observed that there is a clear improvement in both ways: comparing version to version
with the baseline and comparing between the number of scans used for temporal aggre-
gation. For example, in the case of 3D AP40 for Cars, the metrics increase for the baseline:
32.45 vs. 30.42 in medium difficulty; and they increase with respect to temporal aggregation
within the proposed architecture: from 32.45 in single-frame mode to 39.64 in five-frames
aggregation mode.

Table 3. Quantitative results of Painted PointPillars-R with IoU thresholds (0.5, 0.25, 0.25) over the
validation set of View of Delft dataset. Best results in bold.

BEV 3D AOS

Easy Med Hard Easy Med Hard Easy Med Hard

AP40 Car (IoU @ 0.5)

1 frame 45.27 41.03 33.85 32.95 32.45 26.00 24.65 25.79 20.80

3 frames 51.41 39.59 32.87 43.05 33.56 32.87 33.55 26.23 27.15

5 frames 62.59 51.95 43.16 47.21 39.64 32.00 33.83 30.20 24.73

AP40 Pedestrian (IoU @ 0.25)

1 frame 39.62 34.90 31.29 32.37 28.64 25.31 20.38 18.35 16.17

3 frames 44.51 40.85 36.94 40.06 35.66 31.98 28.71 25.60 23.11

5 frames 53.80 50.08 44.65 47.23 43.33 38.85 31.90 29.52 26.26

AP40 Cyclist (IoU @ 0.25)

1 frame 75.76 71.01 64.25 68.27 62.28 55.76 46.75 41.94 36.95

3 frames 79.70 75.69 69.31 77.36 73.24 66.67 65.23 60.42 54.43

5 frames 81.97 77.71 70.85 79.44 75.03 67.91 64.21 59.36 53.34

It is observed that for the proposed version, mAP40 for all classes increases in both
spaces, BEV and 3D, with respect to the baseline results. This means that the semantic
information not only improves the height estimation but also contributes to the estimation
of the width and length of the objects of interest, which leads to an overall better shape
estimation of the bounding box.

Lastly, as the main objective of this pipeline is to perform 3D object detection, we
compare the results on 3D mAP (medium difficulty) for PointPillars-R (in blue dots) and
Painted PointPillars-R (in orange dots) in Figure 6. In the X-axis, we plot the three different
versions depending on the temporal aggregation horizon (number of frames). In the Y-axis,
we plot the metrics extracted from taking the average of all categories in medium difficulty.
We remark on the incremental improvement between the baseline and our proposal for
all temporal-aggregated versions of the dataset: ∆mAP = (+3.23, +6.57, +14.73) for BEV
space and ∆mAP = (+2.43, +7.39, +11.49) for 3D space. Moreover, it is shown that this
delta increases with respect to the temporal aggregation of scans.
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(a) (b)

Figure 6. Comparison on Mean Average Precision (40 points) between PointPillars-R and Painted
PointPillars-R over the View of Delft dataset validation set for bird’s eye view (a) and 3D object
detection (b).

4.4. Runtime Performance

In this section, an analysis of the runtime performance will be conducted. We measure
the execution time of the components of the pipeline following the experimental setup
described in Section 4.2. We will test the inference time of all the components separately,
performing cycles of 1000 executions and time measurements for each of them.

Firstly, we will test the inference time of the segmentation network, YOLOv8-seg. For
this study, we will compare all versions: from nano (n) to extra-large (x). Three processes are
taken into account: preprocessing (resize operation), inference and postprocessing (NMS).
We use version x in the final pipeline as it offers the best performance, and as VoD does not
have semantic labels, we minimize the impact of the domain shift. Table 4 reflects the results.
Processing steps consume a fixed amount of time, while inference time increases from
1.7 ms in the lightest version to 6.8 ms in the heaviest one.

Table 4. Inference time for YOLOv8-seg series.

Model Preprocessing Inference Postprocessing Total

YOLOv8n-seg 0.8 ms 1.7 ms 0.5 ms 3.0 ms
YOLOv8s-seg 0.7 ms 2.1 ms 0.5 ms 3.3 ms
YOLOv8m-seg 0.7 ms 3.9 ms 0.5 ms 5.1 ms
YOLOv8l-seg 0.7 ms 5.5 ms 0.5 ms 6.7 ms
YOLOv8x-seg 0.8 ms 6.8 ms 0.5 ms 8.1 ms

Subsequently, the following steps in the pipeline are the PointPainting geometric
fusion and the cluster refinement algorithm. The first one contains an upsampling operation,
so we measured a mean time of 7.28 ms with a standard deviation of 0.25 ms. The latter
one contains several runs of DBSCAN clusterings. We measured a mean time of 14.3 ms
and a standard deviation of 0.36 ms. Then, we test the inference time of PointPillars-R and
Painted PointPillars-R for the three versions of the VoD dataset. The results are reported
in Table 5. It is observed that all models infer at an approximate time of 6 ms, and there are
no variations among the baseline and our proposal or among dataset versions.

Finally, choosing YOLOv8x-seg and Painted PointPillars-R (the five frames temporal-
aggregated dataset version) as components of our proposed framework, the total inference
time is 35.94 ms or 27.82 Hz. Therefore, the solution is suitable for real-time applications
in the context of automotive perception systems, even when there is room for further
optimization in future works.
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Table 5. Inference time for PointPillars-R and Painted PointPillars-R models.

Model Dataset Version Mean Inference Time Std. Deviation
Inference Time

PointPillars-R
1 frame 6.15 ms 0.27 ms
3 frames 6.15 ms 0.25 ms
5 frames 6.14 ms 0.28 ms

Painted PointPillars-R
1 frame 6.27 ms 0.29 ms
3 frames 6.29 ms 0.30 ms
5 frames 6.34 ms 0.31 ms

4.5. Comparison with PointPainting for LiDAR

To set a fair comparison with LiDAR-based methods, we perform an experiment in
which we train PointPillars for LiDAR point clouds. We follow the same training and
evaluation procedures previously explained in Section 4.3, and transfer learning from
other datasets is not performed. We name these methods PointPillars-L and Painted
PointPillars-L, respectively. Table 6 shows the performance in medium difficulty for the
validation set of the VoD dataset, in which LiDAR-based methods outperform (69.40 and
73.14 mAP) RADAR-based methods (41.18 and 52.67 mAP). A remarkable fact is that the
camera contribution is far more significant from non-painted to painted methods in the
RADAR domain (+11.19 mAP) than in LiDAR (+3.74 mAP).

Table 6. Performance comparison between PointPillars and Painted PointPillars for RADAR (R) and
LiDAR (L).

AP40 Car AP40 Ped. AP40 Cyc. mAP40@3D

PointPillars-R (5f) 28.77 27.81 66.97 41.18
Painted PointPillars-R (5f) 39.64 43.33 75.03 52.67

PointPillars-L 70.80 56.79 80.59 69.40
Painted PointPillars-L 75.07 62.04 82.32 73.14

4.6. Ablation Study

In this section, we want to remark on the contribution of every single component of the
system: from the baseline, PointPillars-R, to the proposed system, Painted PointPillars-R
in an accumulated five-frames settings. For all the experiments, we follow the training and
evaluation procedures previously explained in Section 4.3.

Table 7 shows the results of the ablation study. Starting from the baseline (38.69 mAP), the
inclusion of the painting mechanism implies a significant performance boost (+2.17 mAP). Then,
the cluster refinement algorithm allows noise filtering and contributes a minor improve-
ment. Finally, the accumulation of frames contributes another significant performance
boost. Comparing with the results in Section 4.3, it can be observed that the painting
mechanism improves also its contribution concerning the number of frames.

Table 7. Ablation study for the pipeline of Painted PointPillars-R, reflecting the contribution of every
element of the system individually.

Baseline + Painting + Cluster Refinement + 3 Frames + 5 Frames mAP

✓ 38.69
✓ ✓ 40.86
✓ ✓ ✓ 41.12
✓ ✓ ✓ ✓ 47.48
✓ ✓ ✓ ✓ 52.67
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4.7. Quantitative Results

This section presents qualitative results for the model Painted PointPillars-R in the
version of five frames accumulated for the VoD dataset.

In Figure 7, a common use case within the dataset is presented. A narrow urban
street with one single direction with vehicles parked at the left hand of the ego vehicle
and pedestrians walking in front of the ego vehicle on the drivable road. In Figure 7b, a
trace can be observed behind the pedestrians, showing that are moving frontwards. The
algorithm can perceive correctly in this case. Few points with the semantics of Pedestrians
are enough to propose bounding boxes at coordinates ≈ (10, 0) m and ≈ (12, 0) m. Cars at
long range are perceived correctly.

(a)

(b)

Figure 7. (a) Monocular image with colored instance map and RADAR point cloud projected.
(b) Object detection in BEV space for frame 03970 with Painted PointPillars-R. Bounding boxes are:
solid for ground truth and dashed and filled for predictions; red for Pedestrians, green for Cyclists,
and blue for Cars. Older points are lighter orange and more recent points are darker orange.
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Figure 8 justifies the good performance on the Cyclist category. One of the main
characteristics of the VoD dataset is that this category is well represented and there are
frames in which it is the only category present. This is an atypical use case in automotive
datasets that takes place due to the location in which VoD is recorded is The Netherlands.

(a)

(b)

Figure 8. (a) Monocular image with colored instance map and RADAR point cloud projected.
(b) Object detection in BEV space for frame 04362 with Painted PointPillars-R. Bounding boxes are
solid for ground truth and dashed-and-filled for predictions; red for Pedestrians, green for Cyclists,
and blue for Cars. Older points are lighter orange, and more recent points are darker orange.

Figure 9 shows a crowded environment with multiple Pedestrians. Most of them are
detected correctly. It is remarkable to notice that most Pedestrian instances have few points
inside their ground-truth bounding box, so the network may show difficulties. The Cyclist
and Car are detected correctly. In the case of the Cyclist, a trace in the point cloud can be
observed. Most of the Cyclists in this dataset are moving objects, so the accumulation of the
frame plays a vital role in inferring the position of these VRUs.
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(a)

(b)

Figure 9. (a) Monocular image with colored instance map and RADAR point cloud projected.
(b) Object detection in BEV space for frame 00180 with Painted PointPillars-R. Bounding boxes are
solid for ground truth and dashed-and-filled for predictions; red for Pedestrians, green for Cyclists,
and blue for Cars. Older points are lighter orange, and more recent points are darker orange.

5. Conclusions and Future Works

In this paper, we validate the performance of a sensor fusion algorithm for 3D object
detection which originally was designed for LiDAR and a camera in the domain of 3+1D
RADAR and camera data fusion in the View of Delft dataset.

The research introduces compelling insights, particularly highlighting the potential of
RADAR–camera fusion for 3D object detection. This fusion significantly outperforms the
original RADAR-only baseline across all classes, showcasing the efficacy of projection-based
fusion methods. The study also emphasizes the positive impact of temporal information
aggregation on neural networks, elevating their precision.
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Notably, the analysis spotlights the unexpected performance boost in detecting cyclists,
which is a crucial aspect for the safety of vulnerable road users. The study challenges
conventional notions, indicating that an increased representation of cyclists enhances
network performance, which can be potentially attributed to the unique information
provided by radial velocity and RCS features.

Experiments were conducted to compare the performance of RADAR-based Point-
Painting and LiDAR-based PointPainting. Two main conclusions were drawn. Firstly,
LiDAR outperforms RADAR due to the higher density of reflections in the point cloud. As
a consequence, more research is needed to fully utilize RADAR data and shorten this gap.
Unique features such as RCS and 1D Doppler velocity have not received much attention
in the existing literature. Both the inclusion of these components and the investigation
of RADAR-specific network architectures could help to achieve LiDAR-like performance
for object detection networks. Secondly, it is observed that the contribution of the camera
sensor to the RADAR–camera fusion schemes is comparatively higher than that of LiDAR-
camera fusion methods, as the improvements from their respective baselines methods
are +11.19 mAP and +3.74 mAP. This experiment supports the claim that RADAR and
camera sensors have complementary strengths and weaknesses, making them suitable for
an intelligent transportation sensor suite for perception.

However, challenges emerge, such as the negative impact of eliminating data aug-
mentation on convergence during training. This underscores the importance of devising
new augmentation techniques that consider the physical nuances related to radial velocity.
Additionally, the study sheds light on the sensitivity of the validation set, particularly in
urban scenes, necessitating improvements for generalization with DL-based techniques.

As a result of this work, we identify future lines of research in the domain of RADAR
and camera fusion for perception techniques applied to the automotive domain.

• Comprehensive Object Detector Study: Incorporating additional 3D object detectors
from the state of the art aims to glean insights into the compatibility of different
detectors that were originally designed for LiDAR data with RADAR data.

• Temporal Aggregation Investigation: The research aims to delve deeper into multi-
frame aggregated networks specifically designed for temporal aggregation. The
demonstrated benefits of scan accumulation in the proposed architecture prompt
further exploration of its potential and optimization.

• Feature-Level Fusion Architectures: Novel approaches within the domain are con-
templated, focusing on fusing information at the feature level within NNs. Attention
mechanisms, such as cross-attention modules, are envisioned to facilitate the interac-
tion between features from different data modalities.

• Optimization with Acceleration Frameworks: The proposal’s optimization journey
involves leveraging DL acceleration frameworks and transitioning CPU processes to
GPU implementations. This optimization is a necessary step toward integrating and
testing algorithms within the real AD stack of the electric AV at the RobeSafe Research
Group (University of Alcalá).
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ACC Adaptive Cruise Control
AD Autonomous Driving
ADAS Advanced Driver Assistance Systems
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AV Autonomous Vehicle
BEV Bird’s Eye View
DBSCAN Density-Based Spatial Clustering for Applications with Noise
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LiDAR Lidar Detection and Ranging
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NN Neural Network
RADAR Radio Detection and Ranging
VOD View of Delft dataset
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