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Abstract: This paper explores the energy-intensive cement industry, focusing on a plant in Greece
and its mill and kiln unit. The data utilized include manipulated, non-manipulated, and uncontrolled
variables. The non-manipulated variables are computed based on the machine learning (ML) models
and selected by the minimum value of the normalized root mean square error (NRMSE) across nine (9)
methods. In case the distribution of the data displayed in the user interface changes, the user should
trigger the retrain of the AI models to ensure their accuracy and robustness. To form the objective
function, the expert user should define the desired weight for each manipulated or non-manipulated
variable through the user interface (UI), along with its corresponding constraints or target value.
The user selects the variables involved in the objective function based on the optimization strategy,
and the evaluation is based on the comparison of the optimized and the active value of the objective
function. The differential evolution (DE) method optimizes the objective function that is formed by
the linear combination of the selected variables. The results indicate that using DE improves the
operation of both the cement mill and kiln, yielding a lower objective function value compared to the
current values.

Keywords: optimization; feature selection; machine learning; clustering; differential evolution;
cement mill; cement kiln; key performance indicator

1. Introduction

The present-day trend of energy preservation and emissions reduction has had an
impact on the cement sector as well. The incorporation of cement has emerged as an essen-
tial element in modern construction practices, as it contributes significantly to enhancing
the overall quality of building projects. The determination of cement type and quality is
reliant on the measurement of cement fineness, which is determined by the Blaine index
and the residue index. The level of fineness in cement directly influences the speed of
hydration and the development of strength. As the particle size decreases, there is an
increase in the surface area-to-volume ratio, facilitating a greater interaction between water
and cement. As a consequence, there is an accelerated response with water, leading to a
rapid increase in both strength development and heat generation during the hydration
process. Extensive research has been conducted to optimize separate processes in both the
mill and kiln. This has been achieved through the application of optimization techniques.
In work [1], an energy balance analysis is produced on the basis of raw materials and
product process employing an analytic hierarchy process (AHP) global optimizer and a
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multi-criteria decision method. The optimization of both energy and clinker compounds
reduce energy consumption. The research [2] focuses on mill load analysis considering me-
chanical vibration and acoustic signals, employing intelligent selective ensemble modeling.
The work [3] aimed to determine the best production method, estimate profits, and analyze
processing time and raw material usage. The goal programming (GP) model is utilized
to optimize the four objectives. Study [4] aims to optimize a ten (10)-objective problem,
including economic cost, energy, CO2, particulate matter (PM), nitric oxide (NOx) emis-
sions, and heavy metals. Balancing these objectives is the main challenge, and the optimal
values result from combining Spearman’s correlation, technique for order of preference
by similarity (TOPSIS), conservation supply curves, and quadrant methods. In work [5],
a real cement plant embraces the proposed predictive control system, and consequently,
the system performance attains both economic benefits and the minimization of environ-
mental noxious emissions. According to a study conducted [6], it was determined that
increasing the grinding circuit capacity within the mill by 12–20% results in a decrease
in overall specific energy consumption. The work [7] aims to find a temporary optimal
operating point that is recomputed at each iteration using a cement mill’s dynamic model
to approximate linearization.

However, the current research efforts have also focused on the integration of AI models
in the optimization process of cement production. The study [8] revealed a direct relation-
ship between feed quantity and composition, cement residue increase, and a decrease in
Blaine fineness. In [9], the hardness in a cement mill is estimated. The nonlinear cement
mill is modeled by Takagi-Sugeno modeling considering unmeasurable premise variables.
Using this model, a proposition is made for a nonlinear observer to estimate state variables
and clinker hardness. The work [10] centers around the utilization of a Markov chain model
to generate the optimal particle size distribution (PSD) in an industrial mill, taking into
account Blaine and residue indices. The study [11] emphasizes that AI-driven fault analysis
should evaluate each model based on factors such as data source, data acquisition, data
fusion, algorithm selection, and optimization. The study [12] explored the utilization of
the fuzzy inference system (FIS) and the adaptive neuro-fuzzy inference system (ANFIS)
for modeling and simulation of optimal production quantity and machine fault prediction.
This approach integrates the benefits of rule-based fuzzy systems with the learning capa-
bilities offered by neural networks. In the study [13], five (5) ML models were employed
to optimize the cubic compressive strength (CCS) of the mix ratio design of magnesium
phosphate cementitious composites (MPCC) by 55% to 85% over a one-month period.
These models included particle swarm optimization of back propagation artificial neural
network (PSO-BP-ANN), random forest (RF), decision tree (DT), linear regression (LR),
and support vector machine (SVM). The work [14] aims to put forth a framework for the
optimization of concrete mixture proportions. To achieve this, multi-objective optimization
(MOO) are utilized, alongside ML models. These ML models are developed using K-fold
cross-validation, Bayesian hyperparameter optimization, regression feature elimination,
and the constrained–targeted adaptive evolutionary algorithm (C-TAEA). The work [15]
demonstrates the use of ML models in the design of concrete based on construction and
demolition waste. Despite the advantages in terms of sustainability, the design and material
proportions for this type of concrete rely on non-linear relationships discovered through
ML models. In [16], the water–cement ratio is explored, revealing that reduced cement
content concrete takes three months, rather than one month, to achieve full strength. The
achievement of optimizing the design of the concrete mix of structural elements is made
possible through the utilization of ML models, specifically the artificial neural network
(ANN) and regression algorithms. The studies conducted in the cement kiln have primarily
concentrated on two key areas: the utilization of industrial waste materials like kiln dust
and the reduction of pollutant emissions, specifically targeting the reduction of NOx levels.
The examination carried out in [17] focuses on determining the optimal content of cement
kiln dust (CKD) in cement substitution. The determination of the optimal CKD content and
estimation of compressive strength in CKD-modified cement mortar was based on three
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distinct models: multiple expression programming (MEP), nonlinear regression (NLR), and
an ANN. In [18], the reduction of NOx emissions in the kiln is achieved by using adaptive
neural inference systems and genetic algorithms (ANFIS-GA).

The previous research on the utilization of ML models, along with optimization meth-
ods in cement production, has primarily concentrated on optimizing material proportions
in smaller sub-processes and chemical reactions, rather than predicting parameters in larger
processes. In addition, the proposed methods often neglect to consider the diverse nature
of the sensor data. The optimization of the primary components of the flowsheet in the
cement plant is a crucial matter, as it will concurrently optimize the specific parameters
of the sub-functions within the system. More specifically, the operation of the mill is
challenging due to its complex mechanism, constant changes in slurry composition, and
raw material grinding. In addition, overloading or underloading the mill can damage
the equipment over time, depending on the operator and material strength [2]. The mill
operator plays a critical role in optimizing the mill’s energy consumption, cement quality,
and equipment lifespan. ML models with optimized parameters are used to express the
non-linear relationships. However, this is not sufficient as optimized operation of the
cement plant is not guaranteed. For this reason, it is important to introduce the ML models
into an optimization function to derive a final optimized operation.

The primary intuition behind this work is the acknowledgment that the correlations
between dependent and independent variables in cement production are non-linear and
dynamic. Therefore, the integration of AI models, along with their continuous retraining
when data behavior changes, in an optimization method, can develop a robust cement
production optimization system. Moreover, it is crucial to take into account several factors
such as environmental impact, production cost, energy consumption, and more. This
highlights the importance for cement plants to regulate their production in accordance
with the preferences of the plant management while also complying with legal regulations
regarding environmental protection and energy saving.

In this work, the system operator determines the objective function to be optimized
rather than having a predetermined form. Once we have available data on the logger
and the kiln, we will focus on these two sub-modules. To be more precise, the operator
establishes whether a parameter is to be within predetermined bounds or converge to a
desired value. It is also defined whether the optimization will be maximized or minimized.
The data are extracted from a Mongo database that contains information about the Greek
cement factory’s kiln or mill. The objective is to predict seven (7) non-manipulated variables
for the mill and three (3) non-manipulated variables for the kiln. The manipulated variables
are those that the user can determine, whereas the non-manipulated variables are those that
are calculated using linear or non-linear relationships between the manipulated variables.
Since there are fifty-four (54) features for the mill and twenty (20) features for the kiln,
two feature selection algorithms named recursive feature elimination with cross-validation
(RFECV) and sequential feature selector (SFS) are used to select the most suitable features
for training the ML models. More specifically, the best features are the common features
selected by these two algorithms. ML models are used to compute the non-manipulated
variables because it is well known that the relationships between parameters in a complex
process are almost unlikely to be linear. The optimal model is selected from among the
regressors KNN, linear regression, LGBM, XGBoost, GBR, CatBoost, RF, and TTR based on
the target variable’s case.

Before training the models and selecting the best-performing of them, the user has
the right to intervene and define the optimal parameters of the model. Then the user
switches to the next interface and specifies the bounds or the target value together with
the monotony. This study adds to a dynamic optimization system in an actual Greek
cement factory where the operator or the system defines the active artificial intelligence (AI)
models and the expert determines the objective function. Essentially, the current method
utilizes mathematical models to combine equipment optimization through mathematics
and user participation to create a hybrid model. The machine operator’s experience should
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be combined with the AI model training and the optimization process. The expert is
concerned with the data distribution and then utilizes the data clustering method. The
clusters of data are divided based on the concept drift of the data. The occurrence of concept
drift means that certain points of data signal a new distribution of data or a new behavior
of data. In the next step, the intelligent decision making system (IDMS) interacts with the
expert user. The user establishes the bounds of the non-manipulated parameters both for
the kiln and the mill. The recommendations of the method are shown on the dashboard,
where the user can determine whether they are appropriate values. Furthermore, the user
possesses the ability to specify the parameters of the active prediction AI model. After
training, the system can, nevertheless, choose the active AI model based on the NRMSE
metric. Last but not least, the form of the objective function is defined by the user. In
general, human–system interaction is the foundation of the entire system.

A main contribution of the paper is the reconciliation of non-manipulated variables
with manipulated and uncontrolled variables using AI models. The AI models incorporate
non-linear relationships between variables and changes in equipment condition and de-
preciation, accounting for periods of operation and non-operation. In order to ensure high
accuracy, multiple AI methods are utilized to produce accurate forecasts. In this respect,
the contribution of the user is also important, who triggers the models to be retrained
when he/she considers that the behavior of the data has changed. An additional important
contribution of the present work is that for the first time, a dynamic optimization system is
created in a cement plant where the conditions and parameters that constitute the objective
function are defined by the user. This property allows plant operators to define and com-
pare different optimization strategies using various parameters. If the goal is to reduce the
environmental impact, the objective function should consider both the mill’s environmental
dust and the kiln’s fuel consumption. However, if the user considers that the material feed
contributes to environmental impact, he/she may include it in the objective function with a
weight of his/her choosing. The current project also contributes to the provision of a way
to display factory data on the user interface and allows the user to select a specific time
range. Additionally, the user can view the most recent data up to the last hour.

2. Related Work

More than half a century has passed since the first attempts to automate the process
of cement production through the interconnection of the various parts of the factory with
computer systems [19]. Many works have dealt with the optimal management of industrial
units and cement plants. By exploiting exhaust gases [7] and utilizing high temperatures
in the rotary kiln shell [20], thermal energy loss and the release of polluting gases are
reduced. Nitrogen oxides in the kiln also contribute to the worsening of the environmental
impact of cement industries [21,22]. The optimization of water, heat, and electricity was
addressed in [23] and the optimization of nitrogen dioxide in [18], as well as in work [24].
The work [25] suggests that incorporating micro-encapsulated phase change materials
(PCMs) into cement contributes to the reduction of energy consumption in buildings. In an
extension of this work [26], a PCM based on decanoic acid/polyethylene glycol is created.
The temperature of the lime kiln was investigated in [27]. However, individual parameter
optimization does not create an overall reliable solution that optimizes the cement plant
as a whole system. In work [4], several objective functions were created to reduce energy
consumption, gas emission intensity, and economic cost. In the same work, nonlinear
or linear relationships between parameters are not considered, thus, ML models could
play this role. In work [28], the combination of AI and optimization methods is used to
determine the optimal composition of the mix concerning the cement mortar materials. The
study [29] considers the slurry’s optimal composition and the properties relevant to cement
production. In the work [30], AI and optimization models are used to find the optimal
point for environmental, economic, and engineering objectives in silica concrete production.
The proportion of materials in concrete also occupied the work [31]. The ML models are
created using nine (9) parameters. These models, in combination with heuristics, establish a
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system of proposals regarding the “recipe” of the concrete. The work [32] used ML models
and an optimization algorithm to determine the content of free calcium oxide in cement
clinker. In [33], a method for the management of big data coming from the installations
of a cement plant is proposed. The analysis of the data and their presentation is carried
out using an Enterprise resource planning (ERP) system. However, neither innovative
optimization models nor AI models are involved in the process. The same idea is also the
basis of the work [34], where more emphasis is placed on optimizing the presentation of the
results in the user interface (UI) than on the data processing method. In this case, simple
statistical methods are used. The work [35] proposes a method to optimize cost, energy,
and material supply using PLC-based controllers. However, neither ML models nor an
advanced mathematical optimization model are used.

The architecture and design of the mill and separator are altered to create an advanced
process control (APC) system in work [36], which uses a costly method to improve the mill
feed and cement fineness without allowing the user to provide feedback on the quality
of the results in the control panel. In the current study, the user defines the optimization
process via the dynamic dashboard. In [37], the problem in the optimal management of
information systems in the cement industry is identified in terms of the system’s acquisition
cost, usability, quick response time, and KPIs management. The work [38] aims to optimize
the kiln and the quality of the clinker extracted from the kiln. Although AI models are being
used and considerable data points are being taken into account, advanced optimization
methods are not being employed, and the models are retrained with data of varying
distributions. In the current study, these issues are solved. This work is an extension
of the study [39], where now the objective function is dynamic, the parameters of the
objective function have been enriched in both the mill and the kiln and the method has
been integrated into a cement production process control system. Last but not least, in the
current study, the user can determine the retraining of the models through the control table
if he/she observes from the visualization of the data distribution based on the clustering
method that there is a concept drift in the data. In our case, we have a small improvement
in the performance of the algorithms after changing the data understanding in energy
consumption. A comprehensive summary of the pertinent works is presented in Table 1,
indicating the production process under consideration, inclusion of mathematical equations,
and the corresponding method utilized.

Table 1. Overview of the relevant works. The checkmark point indicates that the method is relevant
to the category indicated in the corresponding column.

Reference Cement Mill
Optimization

Cement Kiln
Optimization

Optimization of
Other

Functionality

Mathematical
Optimization

Method

Improvement of
Architecture

and/or Control
Process

Method

[7] - - ✓ ✓ - GA

[18] - ✓ - ✓ - ANFIS-GA

[20] - ✓ ✓ - ✓ HRSO

[21] - ✓ ✓ - ✓
PM-NOx

concentration

[22] - ✓ ✓ - ✓ CFD

[23] ✓ ✓ ✓ ✓ - GA

[24] - ✓ ✓ - ✓ RMCM

[25] - - ✓ ✓ ✓
Introducing
nano-SiO2

[26] - - ✓ ✓ ✓
Creation of

DA-PEG

[27] - ✓ - ✓ - PC - SCN - SSA
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Table 1. Cont.

Reference Cement Mill
Optimization

Cement Kiln
Optimization

Optimization of
Other

Functionality

Mathematical
Optimization

Method

Improvement of
Architecture

and/or Control
Process

Method

[28] ✓ - ✓ ✓ - MOBAS

[29] ✓ - ✓ ✓ - BBD

[30] ✓ ✓ ✓ ✓ - BPNN - MOBAS

[31] ✓ - ✓ ✓ - PSOA

[32] ✓ - ✓ ✓ - BO-LightGBM

[33] ✓ ✓ ✓ ✓ - BDA

[34] ✓ ✓ ✓ ✓ - BDA

[35] ✓ ✓ ✓ - ✓ PLC

[36] ✓ - - - ✓ APC

[37] ✓ ✓ ✓ - ✓ IS

[38] - ✓ - ✓ - SAAS, AI, APC

[39] ✓ - - ✓ - AI, DE

Our Approach ✓ ✓ - ✓ - AI, DE

3. Materials and Methods
3.1. System Overview

In general, the developed system is based on the production needs of the cement in-
dustry of Thessaloniki and aims to provide manufacturing industries with an autonomous,
cognitive, intelligent, and reliable framework. Based on embedded mechanisms of collec-
tive cognitive thinking, the goal is to efficiently use and reuse raw resources and energy.
Furthermore, the system aims to monitor, control, and optimize the production process
performance while minimizing human intervention.

The system is a digital technology unit that utilizes an industrial Internet-of-Things
(IoT) subsystem to collect real-time data from sensors during the production process. The
system also employs algorithmic AI and decision-making tools to analyze the collected
data, all to optimize the production process through predictive analysis. The industry
facilities that interact with the system are demonstrated in Figure 1. The following are the
basic functions performed in the cement mill and cement kiln.

Figure 1. The cement industry facilities in Greece.

3.1.1. Cement Mill and Grinding System

A vertical mortar plant is utilized for grinding raw materials such as lime, clay, and
other substances to produce cement. The operator can regulate several variables to control
the process, such as:

Total Feed: This refers to the total amount of raw materials fed into the mill. The
operator can adjust the total feed to control the residence time of the materials in the plant,
which affects the fineness of the finished product.
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Separator Speed: The separator plays a critical role in separating fine and coarse
particles after grinding. By adjusting the separator speed, the operator can regulate the
fineness of the cement. Typically, a higher separator speed leads to finer particles.

Fan Speed: The fan is responsible for circulating air in the mill. By adjusting the
fan speed, the operator can manage the temperature and airflow within the mill, which
influences the grinding process and the quality of the finished product (Blaine).

Water Flow: Water is usually sprayed onto the material inside the plant to manage
the milling process and control the temperature. The operator can adjust the water flow to
prevent overheating and regulate the consistency of the final product.

In terms of qualitative variables, Blaine is a measure of the cement particles’ fineness
and strength. It can be controlled by adjusting the separator speed and total feed rate. On
the other hand, residue refers to the amount of material left in the filter after grinding. This
factor is influenced by the separator speed, total feed, and other variables. Operators must
maintain the residue within certain limits to ensure the desired quality of the product.

3.1.2. Cement Kiln

A kiln is a crucial component in the cement industry as it is used for producing clinker.
The following description outlines the essential components and variables that an operator
must manipulate to ensure the desired quality parameters in a kiln.

Kiln Feed: This refers to the raw materials, such as lime, clay, and other additives, that
are fed into the kiln. The operator manages the kiln feed to control the clinker’s chemical
composition and maintain the desired quality parameters.

Solid and Alternative Fuel Feed: Cement kilns can use alternative fuels like waste-
derived fuels or biomass in addition to traditional solid fuels. The operator optimizes the
feeds for combustion efficiency and maintains appropriate temperature profiles.

Kiln Speed: The rotational speed of the kiln influences the residence time of the
materials inside. By adjusting the kiln’s speed, the operator influences heat transfer and
chemical reactions, which affect the clinker’s quality.

Oxygen in the Preheater: Monitoring and controlling the oxygen level in the preheater
is crucial for efficient combustion. Proper oxygen levels help achieve the desired clinker
characteristics and prevent problems such as incomplete combustion.

Cooling Fan Flows: The fan flows in the cooler affect the clinker’s cooling process. By
regulating these flows, the operator controls the cooling rate, which is critical to the final
quality and characteristics of the cement.

Pressure Below the Grating: This parameter refers to the pressure below the cooler
grate. Maintaining the correct pressure is crucial for proper operation of the cooling system
and to prevent backflow of gases.

In terms of qualitative variables, free calcium oxide (Free CaO) refers to the amount of
free calcium in the clinker, which is an essential quality parameter in clinker production.
The free calcium levels can affect the cement’s properties and its behavior during storage
and use.

3.2. System Architecture

The main responsibility of the physical layer–factory is to send sensory data to the
system to optimize production. The exchange of this data is achieved by using mes-
sage queuing telemetry transport (MQTT) protocol requests, which are received by the
message broker. The message broker has direct communication with all the algorithmic
tools/services in the system and, thus, forwards the data received to them.

The autonomous agent establishes connections between the individual algorithmic
processes, namely, IDMC, model training, and AI subsystem, with the message broker and
the REST API. Through the REST API, the user activates the autonomous agent in order
to activate the algorithmic procedures. Additionally, the REST API interfaces with the
message broker to provide notifications to the user regarding completed model training or
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recommendations from the IDMS. The information flow between the functions is shown
in Figure 2.

Figure 2. High-level architecture overview diagram.

The RESTful application programming interface (REST API) is the intermediary for
any action to store or retrieve data from the database. This is how the algorithmic tools
communicate: (i) with the message broker for data requiring real-time exchange and
(ii) with the REST API to retrieve and/or store data in the database. The services of the
system include the IDMS and AI subsystem tools, which exchange data between them
through the message broker. These services utilize predictive models that are trained and
acting during production. The message with the predictive data is also traced by the API,
which stores the data in the database for future use. The autonomous agent tool is either a
real user or an intelligent system. After obtaining the evaluation of the acting AI model
(training parameters, performance metrics, historical data, historical predictions), the agent
decides if the retraining routine should be called so the re-training parameters are entered
into it.

3.3. System Sub-Modules

The sub-modules developed for the system consist of tools and technologies that
are necessary for its operation. Using Docker allows the creation of images for each of
these subunits and ensures that they work uniformly in every environment. The system
sub-modules are listed below:

3.3.1. The Mongo Database

The Mongo Database server sub-module is the one that hosts the database that is
utilized by the system to store the data necessary for its operation. The Mongo database
image includes the Mongo server and all the necessary dependencies for its operation. The
Dockerfile for the database defines the sequence of actions to be performed to install and
configure the Mongo database server inside the Docker container.

3.3.2. User Interface (UI)

The graphical interface is one of the most important tools of the system, as it enables
the user to manipulate the system functions. It is hosted by the Web Server, which includes
all the necessary dependencies for executing the interface code and communicating it with
the various sub-modules of the system. The interface, which is configured for the respective
sub-module, is a central platform for collaboration between the different sub-modules of
the system. It offers a set of methods and functions, allowing the other sub-modules of the
system to exploit its methods for training, prediction, optimization, and decision-making
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in an automated and coordinated manner. Finally, the interface aims to ensure maximum
flexibility and efficiency of the process by ensuring that the methods are extensively used
by the other sub-modules of the system.

3.3.3. Mosquitto MQTT Broker

The message broker sub-module is responsible for the real-time communication be-
tween the different sub-modules of the system. It includes all the necessary dependencies
required for its operation and the security of the communication. Cedalo’s Mosquitto
Management Center is a modern graphical environment that enables organized control
and management of customers connected to an IoT architecture through the Mosquitto
message broker, provided by Eclipse. It offers several features aimed at improving the pro-
cess of managing and monitoring the information generated by customers. Some of these
features include real-time data visualization, organizing customers into hierarchical groups,
the ability to perform searches based on various criteria, and extracting data for further
processing. Finally, Cedalo’s Mosquito Management Center offers easy configuration of
security levels, allowing the definition of access rights for customers. The image for the
message broker includes the Mosquitto message broker, an MQTT protocol server, and
all the necessary dependencies for its operation. The Dockerfile for Mosquitto defines the
commands to install and configure it.

3.3.4. Mosquitto Management Center

The image of the Management Center includes its implementation and all the necessary
dependencies for its operation. The Dockerfile defines the commands to be executed to
install and start the management center application. The system’s services are divided into
two main elements, as follows.

3.3.5. AI Subsystem

The AI subsystem is responsible for applying the models generated by the retraining
algorithm as well as generating predictions and making decisions. The AI subsystem
combines the historical data with the recently collected data to provide real-time predictions
of the values of the variables in the IDMS.

3.3.6. Intelligent Decision Making System (IDMS)

The IDMS utilizes the methods provided by the AI subsystem and promotes the
optimal values to the other sub-modules of the system. The DE optimization method is
used to compensate the system for the optimized values of the manipulated variables,
as derived from the combination of the optimization method of the AI methods and the
feature selection methods.

3.3.7. Receiving Real-Time Data

The implementation of real-time communication between the system and the physical
layer is based on cloud tools and services. Azure Databricks and Azure Data Lake are two
critical tools for managing and processing large volumes of data. Data Lake is designed
for data storage, supporting the ability to store data in various formats. The data are
stored in the parquet format. This format is efficient in storing column-oriented data and
provides high performance in reading and processing data. Azure Databricks is a powerful
data processing and analysis tool. By leveraging Databricks, an algorithm for reading and
sending data was developed using the Python programming language. In Figure 3, the
Databricks interface is shown. The data are sent via HTTP request to the system’s server.
The server receives the data from Databricks and verifies whether the received values exist
or not. The new values received are stored in the system’s beta database, while those that
exist are ignored. In this way, the data loss is minimized and duplicate values are avoided
to achieve smooth and seamless real-time communication.
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Figure 3. Monitoring the results of timed executions in the data reading algorithm.

Figures 4–6 show the distribution of the mill and kiln data. Figures 4 and 5 yielded
the last data point in the mill optimization strategies, and Figure 6 yielded the final data
point in the kiln optimization strategies. Based on the data distribution, the user gains an
intuitive understanding of the presence of distinct data behavior and concept drift. The
evolution of this system is the automatic detection of the concept drift of data and the
subsequent activation of the AI training. In addition, the user has the possibility to export
the data distribution in a predefined time range according to the options given in the UI,
which are the following: Today, last twelve (12) hours, last six (6) hours, last two (2) hours,
and customized width.

(a) Environmental Dust (b) Vibrations

(c) Mill Motor (d) Separator Motor

Figure 4. Cont.
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(e) Mill DP (f) Mill Exit Temperature

Figure 4. The distribution of data by non-manipulated variables in the mill and their value at a
particular time point.

(a) Environmental Dust (b) Vibrations

(c) Mill Motor (d) Separator Motor

Figure 5. Cont.
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(e) Mill DP (f) Mill Exit Temperature

Figure 5. The distribution of data by non-manipulated variables in the mill and their value at a
particular time point.

(a) Kiln Amps (b) Preheater CO

(c) Calculated NOx

Figure 6. The distribution of data by non-manipulated variables in the kiln and their value at a
particular time point.

3.4. Data Description
3.4.1. Cement Mill

The data used for the training of the initial AI models were from a period of almost
three (3) years. Specifically, they consisted of the months of November 2020–December 2022
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and June–July 2023. The data prepossessing involves the elimination of the data points
where there is no mill operation. In the same context, the data relating to the first twenty
minutes (20 min) after starting the mill operation were also discarded due to the instability
of production in these intervals. The manipulated variables are the following: the mill
feed, the grinding pressure, the separator speed, the water flow, the mill inlet pressure, the
mill outlet pressure, and the mill inlet temperature. The prediction models are connected
with the mill energy consumption, the mill differential pressure, the separator energy
consumption, the mill exit temperature, the environmental dust, and the mill vibrations, as
well as the cement fineness indices (Blaine and residue).

3.4.2. Cement Kiln

The data used for the training of the initial AI models were obtained throughout
approximately six (6) months. Specifically, they relate to the period 1 December 2022–12
June 2023. The first step in the data pre-processing process involved cutting out the intervals
of kiln inactivity. Kiln operation was defined as those intervals during which the kiln feed
rate exceeds 135 t/h. The manipulated variables are the total feed, the PreheaterO2 , and
the solid fuel feed. The kiln prediction models are associated with models that calculated
nitrogen oxides, the kiln amps, and the preheater carbon dioxide.

3.5. Feature Selection Methods

For feature selection, we applied an automated selection procedure in which we
combined two well-known methods: RFECV and SFS. This combined approach allowed us
to identify a set of features that are highly relevant to the predicted variable. The subset
resulting from the combination of the RFECV and SFS results is then introduced as input
for training the prediction models.

3.5.1. Recursive Feature Elimination with Cross-Validation (RFECV)

The features are initially given weights according to an estimator such as the coeffi-
cients of a model. In the RFECV method, features are eliminated iteratively by considering
smaller sets of features in each iteration. The importance of each feature depends on some
metric such as the pseudo-efficiency [40]. The least significant features are excluded from
the selected features. The process is terminated when the desired features reach the desired
number. The RFECV method additionally uses the stratified validation method in the selec-
tion of mapping features [41]. In our case, the implementation of the method was based on
an estimator that consists of a serial procedure created with the sklearn.Pipeline python
library. The transformation of the data includes normalization with the min–max method
and training with the linear regression method. The measurement of the transformation is
the negative root mean squared error.

3.5.2. Sequential Feature Selector (SFS)

This method is based on the greedy approach, where at each step, a feature is added
or removed based on the overlap method [42]. However, it only considers the independent
variables in the training process and not the dependent variable to be predicted [43]. More
specifically, in this approach, both the method estimator and the performance measure are
carefully chosen. The creation of a sequential series of data transformations is facilitated
by the sklearn.Pipeline library of the Python programming language. Once the data is
normalized using min–max normalization, the assessment of the model’s performance
is carried out by examining each feature individually based on linear regression. The
approach involves commencing with a singular attribute and evaluating its performance
using k-fold cross-validation, as well as the negative root mean squared error metric. The
metric is derived by calculating the negative distance between the estimated and actual data
values [44]. With each iteration, significant attributes are introduced until the performance
remains below the predefined value defined by the tol variable, which equals 10−3. The
forward approach is employed as the direction parameter is set to forward.
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3.6. Artificial Intelligence Methods

The system selects by itself the optimal parameters for each model with the Gid-
SearchCV library. The selection of the best model is based on the NRMSE metric. In the
absence of user intervention, the model chosen is the one that combines the algorithm and
parameters with the lowest NRMSE for each non-manipulated variable. In rare instances,
the user may possess knowledge contrary to their typical experience regarding the associ-
ations between independent variables (manipulated variables) and dependent variables
(non-manipulated variables).

As an illustration, it can be observed that a non-manipulated variable prediction
model does not include any manipulated variable. In this scenario, the user has the option
to develop a model that incorporates one or more manipulated variables alongside the
selected features. In these extraordinary instances, the user has the option to manually
choose the active model. Randomly generating an active model can potentially disrupt
the optimization system and produce recommendations that are deemed unacceptable. As
a result, the user’s decision to manually train a model is a matter of utmost importance
and is undertaken only in exceptional instances. Subsequently, the model’s efficacy can be
assessed based on the outcomes it generates within the optimization system. Below are the
implementation details for each AI model.

3.6.1. Multi-Layer Perceptron Regressor (MLP)

By calculating the partial loss derivatives at each MLP regressor training cycle, the
parameters are updated. In the loss function, the model parameters are reshaped using a
regularization term to avoid overfitting [45]. For the MLP model, the best value for the
hyperparameter hidden layer sizes was chosen among (1,), (2,), (5,), (1,1), (2,2), and (5,5),
where the number of hidden layers and the number of neurons in each is determined.
Furthermore, tanh was set as the activation function, blogs as the optimization method
(solver), 108 as the maximum number of iterations, and the regularization parameter α
was set equal to 0, as these options seemed to give generally better results than the default
values of these hyperparameters, based on preliminary experiments.

3.6.2. Gradient Boosting Regressor (GB)

By creating a progressively additive model through an estimator, it is possible to
optimize random differentiable loss functions. The negative slope of any given loss func-
tion is mapped to a regression tree [46]. For the GBR model, the best value for the max
depth hyperparameter was chosen between the values 5, 10, and 15 for the number of
estimators hyperparameter among the values 50 and 100, while for the min_samples_split
hyperparameter, the value 8 was set instead of the default, which is 2, as it seemed to give
better results based on preliminary experiments.

3.6.3. Light Gradient Boosting Regressor (LGBM)

LightGBM is a type of GB Regressor where discrete buckets sort continuous values
based on histogram algorithms. Thus, it speeds up the training process while being a
computer-memory-friendly process [47]. For the LGBM model, the best value for the max
depth hyperparameter was chosen among the values 5, 10, and 15 and for the number of
leaves hyperparameter among the values 8, 10, and 12.

3.6.4. Extreme Gradient Boosting Regressor (XGBoost)

The XG Boost algorithm is a variant of the GB algorithm and is based on trees to create
regression models using gradient boosting. The advantages of the XG Boost algorithm are
summarized in the intelligent splitting of trees into short leaf nodes and randomization [48].

3.6.5. Random Forest (RF) Regressor

A large number of decision trees create a meta-evaluator RF. Each of the decision trees
is mapped to different subsets of the dataset. The average error improves the predictive
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accuracy while controlling for overfitting. The size of each subset of the sample is expressed
by the hyperparameter max; otherwise, each tree is generated from the entire dataset [49].
For the RF regressor model, the best value for the hyperparameter number of estimators
was chosen among the values 10, 15, 20, 25, 50, and 100 and for the hyperparameter max
depth among the values 1, 2, 5, and 10.

3.6.6. K-Nearest Neighbors (KNN) Regressor

In this method, uniform weights are used. That is, in each local neighborhood of a
point, the distribution of candidate solutions is uniform. Depending on the case, weights
are given to nearby points or distant points [50]. For the KNN, the best value for the hyper-
parameter number of neighbors was chosen among the values 5, 10, 50, 100, and 200 and
for the hyperparameter leaf size among the values 20, 30, and 50 and the hyperparameter
weights between the values of uniform and distance.

3.6.7. Linear Regressor

In a linear regression analysis, there is the dependent variable to be predicted and the
independent variable that is known. The model is essentially a linear correlation between
the dependent and independent variable or independent variables [51].

3.6.8. Cat Boost Regressor

Combining decision trees with the greedy approach and gradient boosting theory to
combine several weak models at each step of the algorithm is the main idea behind the
CatBoost method. Each new tree improves its performance by learning from the errors of
previous trees until the intercept of the performance metric is not reduced [52].

3.6.9. Transformed Target Regressor (TTR)

This is used for non-linear transformations of the dependent variable. Either a trans-
former such as the quantile transformer or its inverse is used [53]. For the CatBoost model
and the TTR model, their hyperparameters were set equal to their default values.

3.7. Clustering Data Method
K-Means

The k-means algorithm is an unsupervised ML algorithm that clusters data points that
have some similarity. The number of clusters is predefined and the method sets the center
of each cluster (centroid). This value is representative of each cluster [54]. Depending on the
distance from each point to the centroids, the algorithm assigns it to the least distant cluster.

In order to accommodate the variable to be grouped, such as the total feed, the k-means
algorithm sets two behavior groups. The variable data would have been normalized with
the standard scaler in previous steps. Once the data points have been divided into two
groups, the resulting data from the dabricks are also divided into two groups. This division
is based on a threshold that is equal to the average value obtained from the maximum
value of the variable in the first group and the minimum value of the variable in the second
group, or vice versa.

3.8. Evaluation Measures
3.8.1. Normalized Root Mean Squared Error (NRMSE)

The NRMSE is a variant of the RMSE. The RMSE is calculated according to Equation (1).
The smaller the RMSE, the closer the predictions are to the actual prices.

RMSE =

√
∑n

i=1(yi − ŷ)2

n
(1)

where yi is the actual value of variable and ŷ its predicted value. The n reflects the number
of observations. The values that have a different measurement from the active forecasts
cannot be compared, and therefore, the construction of a metric that can be applied to all
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variables is necessary [55]. This metric is the NRMSE, which weights the mean squared
error in terms of mean, standard deviation, difference between maximum and minimum,
or interquartile range. When the NRMSE is equal to 0 it means that the predictions coincide
with the actual values [56]. In the current study, the mean square error is normalized with
respect to the standard deviation. The normalized form of the mean squared error is mainly
useful in large statistical samples and in cases of heterogeneous outcome variables. The
NRMSE is calculated according to Equation (2). The std(y) is the standard deviation of the
variable’s distribution.

NRMSE = RMSE
std(y) (2)

3.8.2. Quantitative Change

This metric measures how well production is optimized. It is calculated by comparing
the active value with the optimum value of the objective function from the DE. The active
value of the objective function is obtained by substituting the values of the most recent data
point in the user-defined objective function. Similarly, the optimal value of the objective
function is obtained by substituting the values of the manipulated variables proposed
by the DE into the objective function. The Equation (3) illustrates how to calculate the
quantitative variation.

QC =
Foptimization

FLastDatapoint
− 1 (3)

3.9. Objective Function

The objective function is also the KPI of the application. Essentially the degree of
optimization of the cement production process is user-oriented. The user dynamically
determines the form of the key performance indicator, which is equal to the objective
function as Equation (4).

F = ∑N
n=0[Wboundsn × [Wminboolean × ( varn−minimumn

stdn
)2 × (boolean(varn < minimum)) + Wmaxboolean×

( varn−maximumn
stdn

)2 × (boolean(varn > maximum))] + signn × Wmonotonyn × varn−meann
stdn

+ Wtargetn × ( varn−targetn
stdn

)2]
(4)

where Wboundsn is the weight the user assigns to the variable when it is selected as the
variable to be within constraints. The Wminboolean and the Wmaxboolean are equal to either
the value 0 or 1 depending on whether the upper and lower ends of the constraints are
selected, respectively. The boolean(varn < minimum) and boolean(varn > maximum) are
both Boolean variables that are equal to False until the active value of the variable is
either less than the minimum threshold (minimum) or greater than the maximum threshold
(maximum). These thresholds are set by the user. signn is a binary variable where it is
equal to −1 if the user chooses to maximize the current variable and 1 if the user chooses
to maximize the current variable, since DE minimizes the objective function. Wmonotonyn

equals the weight the user gives to the monotony of the corresponding term in the objective
function. Wtargetn is the weight given if we choose for the variable to have values close to a
target value. In case we choose a target value, both the choice of bounds and monotony are
disabled. targetn expresses the target value, varn expresses the actual value of the variable
at the current step in the optimization process, stdn expresses the standard deviation, and
finally, meann expresses the mean value of the variable from the data.

If the selected variable varn belongs to manipulated variables, it receives the current
value within the predefined bounds (value(n)), and if the variable is non-manipulated,
then the value of the variable depends on the linear or non-linear relationships between
the selected variables. These variables were determined by the feature selection algorithms,
while the dependent value is estimated by the active ML models (prediction(n)), as is
represented in Equation (5).

varn =

{
prediction(n) if n in non-manipulated variables
value(n) if n in manipulated variables

(5)
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3.10. Differential Evolution (DE)

The DE is a metaheuristic of continuous iterations until the candidate solution is
judged to be the best. The initial assumptions about the problem are few or none and the
space of candidate solutions is very large. In general, DE is considered a stable and reliable
optimization algorithm. The origination of the method is in work [57]. The studies [58–61]
prove that DE is the most stable and reliable optimization algorithm. The DE method be-
longs to the stochastic evolutionary methods, chooses the best among numerous candidate
solutions, and has only three (3) parameters. The existence of a few parameters is one
of its main advantages. The main disadvantage of the method is that the selection of the
best parameter values is a hard task. Finding the optimal values of the control parameters
can be time-consuming and difficult, especially for difficult problems. For these reasons,
researchers study and develop new advanced DE variants that exhibit adaptive or self-
adaptive control parameters. The control parameters are adjusted based on the feedback
received during the search process [62]. In our case, the bound intervals of the manipulated
variables are the range between thirty percent (30%) less and thirty percent (30%) more than
the corresponding value of the last data point. We set the maximum number of iterations to
three hundred (300), which is quite a high number, while the population size of candidate
solutions is equal to five (5). The number of iterations is high since the problem is likely to
be multidimensional and the value of iterations depends on the ability of the algorithm to
find candidate solutions [63]. The optimization method is represented in the Equation (6).

min
xi

(
Ne

∑
i=1

Li) s.t. low bound ≤ gk(x) ≤ up bound, k = 1, . . . , K (6)

where Ne is the number of parameters, x = {x1, . . . , XNe } is the vector containing the
candidate solution areas xi of all elements, and Li is the value of element i. In addition,
gk(x) is the behavioral constraint of K variables. At each step, the algorithm generates
a new candidate solution by combining the existing solutions of the previous step. The
candidate solutions give the objective function the best value, which is either the highest or
lowest according to monotony, at each step. The procedure is iterative until the satisfaction
of a predefined criterion [64].

3.11. Flowchart of the Platform

At the outset, the user can examine the data distribution of the manipulated variables
through the user interface, illustrated in Figures 4–6, to determine any potential variations
in behavior. In the event that the data exhibits concept-drift behavior, it is necessary to
inform the developer to retrain the models using two subsets of data. It is important to
note that a significant limitation of the system is its inability to automatically detect concept
drift in the data, requiring human intervention. Subsequently, the user is directed to the
interface for AI model training. Under extraordinary circumstances, the user determines
the model to be trained; otherwise, the system automatically renews the active ML models
by extracting the most suitable parameters.

Following the retraining and exporting process of the best-performing models, which
are also the active models unless the user manually trains them, the user navigates to the
IDMS interface. Within this interface, the user has the ability to determine the parameters
of the linear objective function by selecting the non-manipulated variables that will be
included. Once the user has defined the parameters via the user interface, the system
generates suggested values for the manipulated variables on the screen, as long as the
optimization is considered appropriate. The described flowchart is shown in Figure 7.
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Figure 7. The flowchart of the platform.

The analysis of the AI subsystem should be approached as a process that is either
dependent on the user or the algorithm. Initially, the user chooses the forecast model, either
for the mill or the kiln in this particular scenario. Subsequently, the user establishes the
dependent variable on which the training is conducted. This variable is predicted by the
output model after the training process and should be a non-manipulated variable. The
user or the RFECV and SFS feature selection algorithms are responsible for selecting the
features to be trained in the first scenario and in the second scenario, respectively.

Upon reaching the subsequent interface, the user is presented with the option to either
personally determine the training model and its parameters or delegate the task to the
system, which selects the most suitable AI model and its parameters. When considering
the first scenario, it is imperative that the user possesses a profound understanding of
the problem in order to establish these parameters. The upcoming interface determines
whether the user sets the model as active or saves the parameters for future use without
training the model. If the user does not take any action, the system determines the best
model according to the NRMSE measure. The whole AI subsystem flowchart is depicted
in Figure 8.

The ultimate goal of the system is to create recommendations for optimal operation
to the user through the IDMS system. In this case, the user chooses which parameters—
manipulated or non-manipulated variables—participate as terms in the objective func-
tion (4) or receive a weight equal to 0 so they do not participate in the objective function.
Depending on which parameters are selected by the user interface, the objective func-
tion optimizes a specific aspect of the cement plant, such as product cost, environmental
footprint, or energy consumption.
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Figure 8. The flowchart of the AI subsystem.

The variables to be optimized are determined either within a predetermined interval
or around a predetermined target value, depending on the case. In the initial scenario, it
is crucial to establish the monotony of the variable, that is, whether its objective is to be
minimized or maximized. In the second instance, the algorithm works towards reducing
the distance between the variable and the desired value. For the case described, there is
the corresponding user interface where the aforementioned parameters are defined. In the
following user interface, the parameters of the DE method such as the number of iterations
and the population size are defined. The information flow of the IDMS subsystem is
illustrated in Figure 9.
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Figure 9. The flowchart of the IDMS subsystem.

4. Results
4.1. Data Clustering

The data in the kiln feed exhibit two distinct distributions over time. As can be
observed from Figure 10, the first distribution describes the feed between 140 and 160 tons,
while the other describes the feed between 220 and 240 tons. The Kiln ambers distribution
is drawn in Figure 11. Kiln ambers are almost zero (0) during the lowest kiln feed period,
which is observed to indicate that the kiln is not operational. The model that is created
predicts the non-operational periods even when the kiln loading exceeds 135 t/h.

Figure 10. The Distribution of the Kiln Feed parameter.
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Figure 11. The Distribution of the Kiln Amps parameter.

4.2. AI Subsystem Results

Feature selection methods RFECV and SFS seek the features of the data that create
the best-performing model. The intersection of the results of the two methods, i.e., the
common features, are those with which the ML models were trained. These characteristics
are represented in Table 2 for the mill and in Table 3 for the kiln. Given that there are only
three (3) manipulated variables in the kiln, the selected features consist of the combined set
of social features identified by the methods and the manipulated variables.

Table 2. The selected features in cement mill for each variable.

Dependent Variable Y Independent Variables Manipulated Variables

Mill Motor

Grinding Pressure, Separator
Speed, Mill Feed, Water Flow, Mill

Inlet Pressure, Limestone%,
Pozzolana%, FlyAsh%, Grinding

Aid PV, Grinding Layer Roller

Grinding Pressure, Separator
Speed, Mill Feed, Water Flow, Mill

Inlet Pressure

Mill Differential Pressure
Mill Feed, Mill Outlet Pressure,
Bag Filter, Mill Inlet Pressure,
Separator Speed, Gypsum%

Mill Feed, Mill Outlet Pressure,
Mill Inlet Pressure, Separator

Speed

Separator Motor

Mill Feed, Separator Speed, Mill
Outlet Pressure, Grinding

Pressure, Mill Inlet Temperature,
Limestone%, Pozzolana%, Fly
Ash%, Grinding Layer Roller

Mill Exit Temperature

Mill Feed, Grinding Pressure,
Separator Speed, Mill Inlet

Temperature, Mill Inlet Pressure,
Limestone%, Pozzolana%,

FlyAsh%

Mill Feed, Grinding Pressure,
Separator Speed, Mill Inlet

Temperature, Mill Inlet Pressure

Environmental Dust Separator Speed, Bag Filter,
Limestone% Separator Speed

Blaine Mill Outlet Pressure, Limestone%,
FlyAsh% Mill Outlet Pressure

Residue Mill Inlet Pressure, Mill Outlet
Pressure, Water Flow, Limestone%

Mill Inlet Pressure, Mill Outlet
Pressure, Water Flow

Mill Vibrations
Mill Feed, Mill Inlet Pressure,
Water Flow, Separator Speed,

Grinding Pressure, Limestone%

Mill Feed, Mill Inlet Pressure,
Water Flow, Separator Speed,

Grinding Pressure
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Table 3. The selected features in Kiln for each variable.

Dependent Variable Y Independent Variables Manipulated Variables

Calculated NOx
Heat Main Burner, Clinker CaO,

Kiln Feed LSF, Total Feed,
PreheaterO2, Solid Fuel Feed

PreheaterO2, Solid Fuel Feed,
Total Feed

Kiln Amps

Total Air Flow, Secondary Air
Temp, Kiln Vortex Temp, Solid

Fuel Feed, Kiln Inlet Press, Total
Feed, PreheaterO2

PreheaterO2, Solid Fuel Feed,
Total Feed

Preheater CO

Kiln Inlet Press, Press Transport
Air, Press MAS Air, Total Air Flow,
Clinker CaO, Secondary Air Temp,

Total Feed, PreheaterO2, Solid
Fuel Feed

PreheaterO2, Solid Fuel Feed,
Total Feed

During the training of ML models, the one that performs best is always selected. This
is not an easy process, as the performance of the models often depends on the hyperparam-
eters of the algorithms and their numerous combinations. Therefore, it is necessary to find
a way to tune the hyperparameters to the set of hyperparameters of the best-performing
model [63]. The Python library scikit-learn with the GridSearchCV method provides a
hyperparameter tuning tool in an automatic and fast way [65].

Tables 4 and 5 represent the results obtained in each step for the cement mill and kiln,
respectively. After training the AI regression models, the represented results show the best-
performing model for each variable, as well as its test NRMSE and its optimal parameters.

Table 4. The results of supervised learning models for the cement mill.

Variable Model Type Number of Estimators Max Depth Number of Leaves NRMSE

Mill Motor RF 10 5 - 0.34

Mill Differential Pressure LGBM - 10 10 0.23

Separator Motor LGBM - 5 12 0.49

Mill Exit Temperature XGBoost 50 3 - 0.35

Environmental Dust GBR 50 3 - 0.89

Blaine GBR 50 3 - 0.67

Residue TTR - - - 0.78

Mill Vibrations RF 50 5 - 0.69

Table 5. The results of supervised learning models for the kiln.

Variable Model Type Fit Intercept Number of
Estimators Max Depth Hidden Layer Sizes Number of Leaves NRMSE

Calculated NOx MLP - - - (5,) - 0.95

Kiln Amps XGBoost - 50 3 - - 0.14

Preheater CO LGBM - - 5 - 8 0.96

The results in Tables 6 and in 7 are derived after applying the feature selection methods
combined with the clustering method for the cement mill and kiln, respectively. Indeed, the
clustering method achieves the segregation of data into operational periods. The NRMSE
of the models is examined in the case where there are two behaviors in the data. The total
NRMSE is obtained by summing the squared errors of all classes in a single square root in
the numerator, which is equal to the deviations between the actual value and forecast and
the denominator, which is equal to deviations between the actual value and the mean value.
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Table 6. Results of the cement mill’s supervised learning models when the data are clustered.

Variable Model Type Number of
Estimators Max Depth Number of

Leaves
Hidden Layer

Sizes NRMSE

Mill Motor RF 50 10 - - 0.40

Mill Differential Pressure MLP - - - (5,) 0.21

Separator Motor XGBoost 50 3 - - 0.53

Mill Exit Temperature XGBoost 50 3 - - 0.37

Environmental Dust LGBM - 5 8 - 0.84

Blaine MLP - - - (5,) 0.68

Residue TTR - - - - 0.76

Mill Vibrations LGBM - 5 10 - 0.70

Table 7. Results of the cement kiln’s supervised learning models when the data are clustered.

Variable Model Type Number of Estimators Max Depth Number of Leaves NRMSE

Calculated NOx TTR - - - 0.99

Kiln Amps XGBoost 50 3 - 0.21

Preheater CO GBR 50 3 - 0.98

Observing Tables 5 and 7, the results imply that in the kiln, although there are two
different behaviors in the kiln feed and in the kiln amps, the model retraining brings no
improvement in NRMSE and, in all cases, marginally worsens it. For the case of the mill
(Tables 4 and 6), the results in some variables are improved and more specifically for
the non-manipulated variables mill differential pressure, environmental dust, Blaine, and
residue; however, the improvements in RNMSE are again marginal.

4.3. Cement Mill Optimization Results
4.3.1. Experimental Set Up and Optimization Strategies

In our particular scenario, four distinct optimization strategies are implemented to
enhance the mill’s performance. The initial approach incorporates all non-manipulated
variables, along with the mill’s feed, into the objective function using weighted grading.
The second optimization strategy solely utilizes the mill feed, along with the mill and
separator energy consumption. The objective of the second strategy is to achieve low power
operation in the mill without considering any other factors. The third optimization strategy
reflects the environmental impact of the mill production and the fourth strategy reflects the
production cost.

To ensure that the optimization results are applicable to the cement plant, the bounds
for both non-manipulated and manipulated variables are set to differ by a range of ten to
thirty (10–30) percent from the value of the variable in the last data point. If a manipulated
or non-manipulated variable is close to zero (0), it is constrained to the limits set in the
user interface, which are shown in Figure 12. The last recorded data points were on
13 December 2023 10:50:00 PM, 16 January 2024 16:55:00, 17 January 2024 09:57:30, and
17 January 2024 10:45:30 for the first, second, third, and fourth strategies, respectively. The
Figures 4 and 5 display the values of the manipulated variables for the last data point
of the second and third optimization strategies, respectively. The initial optimization
strategy assigns a weight of one (1) to the mill feed, which is the smallest, as the impact
of the mill feed on other optimization parameters is expected to be minimal. The second
optimization strategy involves assigning a weight of 103 based on the cement plant’s
suggestions that reducing energy consumption is connected to increasing mill feed. The
fourth strategy assigns a weight of 102. In this point, the current study differs from the
previous one [40] where the mill feed was the most important variable. The weight given to
these parameters is equal to 10 for the first strategy. The second as well as third strategies
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do not concern cement fineness. The fourth strategy gives higher weights on these factors
than the first strategy as the cement quality parameters affect product cost. The Blaine
index obtains weights equal to 103 and the residue index obtains weights equal to 102 in
the fourth strategy.

(a) Manipulated Variables (b) Non-manipulated Variables

Figure 12. The constraints, the process values (PV), the setting points (SP), and the range of constraints
(LL, HL) if a manipulated or non-manipulated variable is close to zero (0). The green colour arrow
means that the PV is increasing, the red colour arrow that it is decreasing and the yellow colour arrow
that it is stable.

The mill differential pressure, the environmental dust, and the mill exit temperature
are parameters added to this work. For the first optimization strategy, the weight to be
given is equal to 104, and it is desirable to be maximized. One main goal is the improvement
of the environmental footprint, so the environmental dust should be minimized. The weight
given is equal to 100 for the first optimization strategy and 105 for the third one. The mill
exit temperature should be maximized to save energy. The weight assigned to the variable
is equal to 103. The second optimization strategy does not include these parameters as it
wants to put all the emphasis on energy saving. The third optimization strategy assigns
high weight on environmental dust, equal to 105. Last but not least, the fourth optimization
strategy does not take into account these factors.

The power consumption of the mill and separator and the vibrations of the mill are
the most important variables in the optimization process for both optimization strategies.
For this reason, they are given weights of 106, 105, and 106, respectively, for the first
optimization strategy. The second optimization strategy assigns no weight to vibrations but
assigns a significantly high weight (106) to the energy consumption of the mill machine and
a high weight (105) to the energy consumption of the separator. The same weights for the
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power consumption factors are in both the third and fourth optimization strategies. Table 8
represents the weights of each factor and the main point of each optimization strategy. In
each bracket in the table next to the weights, we indicate whether it is desirable for that
variable to increase or decrease.

Table 8. Optimization strategies and weights of each factor in the cement mill.

Optimization
Strategy Main Target

Mill
Feed

Weight
Mill KW
Weight

Separator
Power
Weight

Vibrations
Weight

Mill DP
Weight

Environ.
Dust

Weight

Mill Exit
Temperature

Weight
Blaine
Weight

Residue
Weight

1st Combined
Optimal

1
(increase)

106

(decrease)
105

(decrease)
106

(decrease)
104

(increase)
102

(decrease)
103

(increase)
10

(Target)
10

(Target)

2nd Energy
Optimal

103

(increase)
106

(decrease)
105

(decrease) - - - - - -

3rd Environmental
Impact - 106

(decrease)
105

(decrease) - - 105

(decrease)
103

(increase) - -

4th Production
Cost

102

(increase)
106

(decrease)
105

(decrease) - - - - 103

(Target)
102

(Target)

The constraints of the manipulated variables were specified in the source code. The
input for the DE method includes the constraints of the manipulated variables. The source
code incorporates dynamic form and includes constraints on manipulated variables that
are within a range of 30% above and below the last data point.

4.3.2. Setting Parameters from the UI

Figure 13 demonstrates the user’s initial selection in the control panel. The optimiza-
tion applies to either the mill or the kiln. Of course, the user has the right to undo his
selection and return to this step.

Figure 13. The option between mill and kiln in the dashboard to determine the corresponding
objective function.

Figure 14 represents the user’s ability to specify the parameters that are included in
the objective function. If the user does not select any parameter, then the weight to be
given to it is set equal to zero (0). The user has the right to select the constraints of the
variable together with its monotony or a target value for this variable. In the case where the
constraints are chosen, he/she may not choose a target value and vice versa. Furthermore,
if the target variable is selected, the user cannot specify the monotony.
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Figure 14. Creation of Objective Function via the Dashboard.

• First Optimization Strategy

The mill feed value in the latest data point is 104.2245. This means that the range of
constraint is between 93.79 and 114.64. The first strategy being used in the current study
is similar to the approach used in a previous study [40]. In this strategy, target values
were set for the Blaine and residue indices, which are 4900 and 2.3, respectively, and their
tolerance was set to 100 and 0.5, respectively. Additionally, the most recent reading for
the mill differential pressure is 21.67, and the optimal value is expected to lie within the
range of 19.503 to 23.837. As for the environmental dust, the last recorded value is 6.14,
and the optimal value is anticipated to be between 5.53 and 6.76. The mill exit temperature
was recorded at 91.87, which is outside the optimal range of 82.68 to 101.06. Additionally,
the mill power consumption was 2079.82 KW, the separator power consumption was
94.421 KW, and the mill vibration was measured at 1.102364 mm/s. To optimize these
values, the following intervals need to be considered: [1871.84, 2287.81] for mill power
consumption, [84.97, 103.86] for separator power consumption, and [0.99, 1.21] for mill
vibration. Figure 15 represents the introduction of constraints, target-values, monotony, and
tolerance of non-manipulated or manipulated variables in the first optimization strategy.

• Second Optimization Strategy

At the last data point we used for the second strategy, the energy consumption from
the mill was 72.54 KW and the energy consumption from the separator with 38.81 KW. The
mill feed was equal to 101.2 tons. The intervals within which the optimum values are found
are [65.268, 79.794], [34.932, 42.695], [81.8, 101.2] for the variables energy consumption
from the mill, energy consumption from the separator, and energy consumption from the
separator and mill feed, respectively, and as shown in Figure 16. The weights to be assigned
to these variables are shown in Table 8.

• Third Optimization Strategy

In the third optimization strategy, the values of the non-manipulated variables were as
follows: environmental dust equal to 13.55, mill vibration equal to 1.64, energy consumption
in the mill equal to 1927.85, energy consumption in the separator equal to 157.66, differential
pressure equal to 21.7, and exit temperature in the mill equal to 81.5. The boundaries of the
constraints within which the optimum value is found are 10% above and below the current
value, as in Figure 17. The weights assigned to the variables were shown in Table 8.
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Figure 15. Creation of Objective Function of the 1st Optimization Strategy via the Dashboard.

Figure 16. Creation of Objective Function of the 2nd Optimization Strategy via the Dashboard.
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Figure 17. Creation of Objective Function of the 3rd Optimization Strategy via the Dashboard.

• Fourth Optimization Strategy

This is the second strategy that utilizes the cement fineness indices Blaine and residue,
in addition to the first one. In this approach, the target values are specified, along with a
tolerance for deviation from these values, as is depicted in Figure 18. The final data point
taken into account is the same as the one considered in the third optimization strategy.

Figure 18. Creation of Objective Function of the 4th Optimization Strategy via the Dashboard.

Finally, the user selects the parameters of the DE optimization method, as is repre-
sented in Figure 19. These parameters are important in the efficiency of the method. More
specifically, the population size determines the initial population, while the number of
iterations is the upper limit of steps of the algorithm.

Figure 19. Determination of the DE optimization matrix parameters via the Control Panel.
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4.3.3. Cement Mill Results

• First Optimization Strategy

The evaluation of the optimization is carried out by comparing two variables. The first
quantity is the value of the objective function, as obtained by applying the DE method, and
the second is the calculation of the objective function by giving the values of the parameters
equal to the values at the last data point. If the DE achieves a lower value compared to
the last data point, then we have an acceptable recommendation of optimal operation, as
in Figure 20.

Figure 20. Recommendations of manipulated variables in the first optimization strategy to reach
optimal operation in the cement mill.

Six (6) trials of the DE function were conducted at different times. In all cases, the
value of the function from DE is less than the value of the function from the active data
point. The actual result of the optimization is the percentage change in the active value
of the function relative to the value from DE. In our example, the value of the objective
function improves the process by approximately 75%. as is drawn in Figure 21.

An important issue in the optimization process is the proximity of the proposed
values to the effective values so that the system can transition to them without crashing.
In Figure 22, it can be seen that the feed of the mill is far from the recommended value.
Although in the rest of the cases, the mill will operate without any problems, the possible
sudden changes are an issue that must be taken care of by the user.
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Figure 21. Distribution of recommendations of manipulated variables in the first optimization
strategy to reach optimal operation in the cement mill.

Figure 22. Comparison between actual and recommended values of parameters in the first optimiza-
tion strategy.

The system can retain past recommendations and demonstrate them to the user, as in
Figure 23. In this way, it is possible to judge indirectly whether the behavior of the system
has changed. In addition, the user can determine the time range of the data that will be
utilized during the process.

Figure 23. Comparison between actual and recommended values of parameters in the mill in the first
optimization strategy.
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• Second Optimization Strategy

As we can observe from Figures 24–27, it is ensured that the mill can switch to the opti-
mized state as the proposed values are at most thirty percent (30%) higher or lower than the
current values. The user can observe the distribution of recommendations and comparisons
between the current and recommended values. In our case, the transition to the optimized
mode is possible. In essence, the optimization process finds a local optimum where the
transition of the cement mill to this cement mode can be made almost immediately.

Figure 24. Recommendations of manipulated variables in the second optimization strategy to reach
optimal operation in the cement mill.

Figure 25. Distribution of recommendations of manipulated variables in the second optimization
strategy to reach optimal operation in the cement mill.
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Figure 26. Comparison between actual and recommended values of parameters in the second
optimization strategy.

Figure 27. Comparison between actual and recommended values of parameters in the mill in the
second optimization strategy.

• Third Optimization Strategy

Based on the data presented in Figures 28–31, it appears that the transition to the
optimized mode was smooth. There was no sudden or abrupt change in the current value
and the proposed value of the manipulated variables. In this context, “abrupt change” refers
to a percentage difference of more than thirty percent between the current and proposed
value. Additionally, the smallest improvement in the current value of the subjective function
was observed in this experiment, which was an improvement of only twenty-seven percent.
This was the smallest improvement compared to all the other experiments conducted in
the mill.
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Figure 28. Recommendations of manipulated variables in third optimization strategy to reach optimal
operation in the cement mill.

Figure 29. Distribution of recommendations of manipulated variables in third optimization strategy
to reach optimal operation in the cement mill.

Figure 30. Comparison between actual and recommended values of parameters in third
optimization strategy.
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Figure 31. Comparison between actual and recommended values of parameters in the mill in third
optimization strategy.

• Fourth Optimization Strategy

In Figures 32–35, it is observed that the system suggests feasible values for the covari-
ates. In this case, the production cost is reduced.

Figure 32. Recommendations of manipulated variables in fourth optimization strategy to reach
optimal operation in the cement mill.
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Figure 33. Recommendations of manipulated variables in fourth optimization strategy to reach
optimal operation in the cement mill.

Figure 34. Comparison between actual and recommended values of parameters in fourth
optimization strategy.

Figure 35. Comparison between actual and recommended values of parameters in the mill in fourth
optimization strategy.

4.3.4. The Fourth Optimization Strategy with a User-Defined Model

Following the fourth optimization strategy, a ML model was developed by configuring
the training parameters according to the user’s recommendations instead of relying on a
parameter optimization library such as Python’s GridSearchCV. After selecting the non-
manipulated variable to be predicted, the features are chosen that are important to predict
that variable (Figure 36a,b).
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(a) Selection of the predicted variable. (b) Manual feature selection.

(c) Assessment of the time interval of the training data. (d) Selection of the AI model.

(e) Selection of the AI model’s parameters.

Figure 36. The process of creating an AI model by the user.

The selection of the mill motor’s energy consumption prediction was based on its high
weight of 106 in all experiments. Subsequently, the time frame for the training data and the
training algorithm is determined, specifically linear regression, as depicted in Figure 36c,d.

The ratio between the training and reduction data is determined based on Figure 36e
once the method’s parameters have been selected. Following its training in the backend,
this model takes on the active role of predicting the mill’s energy consumption.

The observation made in Figures 37 and 38 indicates that the objective function of
DE does not improve but rather worsens in relation to the active value of the objective
function. This fact is attributed to its classification as an active prediction model in energy
consumption, unlike a random model that has not been verified for optimal performance
(i.e., the lowest NRMSE). In certain cases, users can determine the active prediction model
by connecting specific independent variables to the dependent variable.

Figure 37. Comparison of the active value of the objective function and the function determined by
the DE when the active AI model was created by the user.
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Figure 38. Comparison between actual and recommended values of parameters in the mill in fourth
optimization strategy.

4.4. Cement Kiln Optimization Results
4.4.1. Experimental Set Up and Optimization Strategies

The kiln is optimized based on both three manipulated variables and three non-
manipulated variables predicted by the models. The objective function considers the two
types of variables, along with their respective weights. Any fluctuation in the variables that
are part of the objective function will be within thirty percent (30%) of its last data value.
Specifically, the maximum and minimum values will be thirty percent (30%) greater and
less than the last data value, respectively.

There are three optimization strategies for this project. The first strategy considers all
variables, both manipulated and non-manipulated. However, it does not prioritize any
specific objective, such as reducing energy consumption or environmental impact. The
weights of each variable in this strategy are shown in Table 1. The second strategy takes
into account the cost of the product and the KPI, which includes kiln amps, total feed, and
solid fuel. In this strategy, aside from total feed, all other variables are reduced. The third
strategy focuses on environmental impact. The manipulated variables calculated NOx, kiln
amps, Preheater CO, and solid fuel must all be reduced. The weights of each variable in
each strategy are also shown in Table 9.

Table 9. Optimization Strategies and weight of each factor in cement kiln.

Optimization
Strategy Main Target Calculated NOx Kiln Amps Preheater CO Total Feed Preheater O2 Solid Fuel Feed

1st Combined
Optimal 106 (decrease) 104 (decrease) 103 (decrease) 10 (increase) 103 (decrease) 10 (decrease)

2nd Production Cost - 104 (decrease) - 10 (increase) - 103 (decrease)

3rd Environmental
Impact 103 (decrease) 104 (decrease) 104 (decrease) - - 103 (decrease)

4.4.2. Setting Parameters from the UI

• First Optimization Strategy

The total feed is given a weight equal to 10 and must be within the limits of the interval
[174.285, 323.673]. It is also the only variable that is maximized. The variable PreheaterO2
shall be within the interval [0.606, 1.126]. It is minimized and obtains a weight of 10. Finally,
the solid fuel variable is restricted to the interval [3.963, 7.359], has a weight equal to 10,
and is minimized.
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The calculated NOx variable is minimized and given a weight of 1000. It falls within
the range of 0.0000756 and 0.0001404. The kiln amps variable, on the other hand, is also
minimized and has a weight of 10,000. It is constrained to be in the range of 83.8 and 155.6.
Finally, Preheater CO is minimized with a weight of 1000. It is within the range of 0.0255
and 0.04748. These variables are not manipulated and are bounded within their respective
ranges. Figure 39 represents the user interface in that case.

Figure 39. Creation of Objective Function of the 1st Optimization Strategy via the Dashboard.

• Second Optimization Strategy

In the optimization process, the last data point used is shown in Figure 6. At this
point, the total feed is 229.9054, the solid fuel feed is 5.9962, and the Preheater O2 feed
is 0.9258. The kiln amps are 119.7, the Preheater CO is 0.05208, and the Calculated NOx
is 0.00010855. As mentioned earlier, the optimum value is approximately thirty percent
(30%) of the current data value. Based on this assumption, the total feed will be within the
range of [160.93, 298.87], the solid fuel feed within [4.1972, 7.7948], Preheater O2 within
[0.6488, 1.2028], calculated NOx within [756 × 10−4, 1404 × 10−3], Preheater CO within
[0.0364, 0.0676], and kiln amps within [83.8, 155.6].

The second optimization strategy aims to reduce the production cost of the final
product. It involves selecting the conditions that will be included in the final KPI and
determined by the UI. This strategy includes kiln amps, total feed, and solid fuel feed,
with the weights shown in Table 9. However, the user can set the weights and monotony
according to their discretion. The user interface where the constraints and weights of the
objective function are given is shown in Figure 40.

• Third Optimization Strategy

The third strategy for optimization considers the data point from the second strategy.
This strategy pertains to enhancing the environmental impact of the kiln. In this respect,
it is essential that the dynamic objective function includes variables with environmental
implications. These are calculated NOx, Preheater CO, solid fuel feed and kiln amps. The
weights given to the variables are shown in Table 9. Energy consumption, particularly kiln
amps, plays a crucial role in this strategy, as well as in previous and future strategies. The
configuration of the parameters from the user interface is shown in Figure 41.
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Figure 40. Creation of Objective Function of the 2nd Optimization Strategy via the Dashboard.

Figure 41. Creation of Objective Function of the 3rd Optimization Strategy via the Dashboard.

In the kiln, the operator makes the corresponding settings to the dashboard in the mill
shown in Figures 13, 14 and 19.

4.4.3. Cement Kiln Results

• First Optimization Strategy

Proposed optimal values in the first optimization strategy are shown in Figure 42. The
objective function does not improve in relation to the last value from the last data point, as
observed in Figure 43. What the objective function achieves, however, is to set the variables
within the predefined intervals or constraints.
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Figure 42. Proposed optimal values for the manipulated variables to attain optimal operation in the
cement kiln in the first optimization strategy.

Figure 43. The quantitative difference between the active value of the objective function and the
value explained by the DE in the first optimization strategy.

The system’s recommendations to the user are recorded in the dashboard as shown in
Figure 44. The application user can refer to earlier system recommendations where another
objective function was probably involved in the optimization.
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Figure 44. The distribution of system’s recommendations in kiln in the first optimization strategy.

Observing Figure 45, it can be concluded that the recommendations optimize the
system. For example, the total feed is increased relative to the current value. The user has
to decide if it is feasible to switch to this production point. The same is observed for the
Preheater O2 variable, where the active value is higher than the recommended value.

Figure 45. Comparison between actual and recommended values of parameters in the kiln in the first
optimization strategy.

• Second Optimization Strategy

In this case, we have a very small improvement in the objective function from DE
compared to the current value from the last data point, as illustrated in Figure 46. It can be
seen that the models need to be retrained with new data. A limitation of this work is the
lack of a retraining system. The programmer, in case he sees different behavior, resorts to
the k-means algorithm in order to resort to the background of the application to retrain the
AI models.
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Figure 46. The quantitative difference between the active value of the objective function and the
value explained by the DE in the second optimization strategy.

Observing Figures 40 and 47–49, the variables total feed and solid fuel feed are within
the constraints set by the user. These recommendations are acceptable since, in addition
to optimizing the KPI, they ensure that the transition of the kiln to this mode of operation
is possible.

Figure 47. Proposed optimal values for the manipulated variables to attain optimal operation in the
cement kiln in the second optimization strategy.
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Figure 48. The distribution of system recommendations in the kiln in the second optimization
strategy.

Figure 49. Comparison between actual and recommended values of parameters in the kiln in the
second optimization strategy.

• Third Optimization Strategy

As in the second optimization strategy, in the third strategy concerning the environ-
mental footprint, the improvement from the DE, as can be observed in Figure 50, relative to
the current value of the objective function resulting from replacing the values of the last
data point, is infinitesimal. The greatest likelihood of this phenomenon occurring is the
need to retrain the AI models.

By examining Figures 41 and 51–53, it can be determined that the variable solid fuel
feed adheres to the user-defined constraints. These recommendations are acceptable since,
in addition to optimizing the KPI, the operator ensures that the transition of the kiln to this
mode of operation is possible.
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Figure 50. The quantitative difference between the active value of the objective function and the
value explained by the DE in the third optimization strategy.

Figure 51. Proposed optimal values for the manipulated variables to attain optimal operation in the
cement kiln in the third optimization strategy.

Figure 52. The distribution of system recommendations in the kiln in the third optimization strategy.
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Figure 53. Comparison between actual and recommended values of parameters in the kiln in the
third optimization strategy.

5. Discussion

The cement industry is presently one of the most energy-intensive sectors. In addition,
cement is an important material in the construction sector. It is essential to combine with
the maintenance of the quality of cement expressed by the Blaine and residue indices,
the reduction of energy consumption, and the devaluation of the environmental footprint
of the plants. The cement production has many parameters that are either calculated by
deterministic functions or measured by special sensors. Furthermore, during production,
there are either manipulated variables that can be defined by the cement plant user, non-
manipulated variables, or uncontrolled variables. The non-manipulated variables play an
important role in the optimization of the production, and the uncontrollable variables are
obtaining values within a predefined range. The non-manipulated variables of either the
mill or the kiln depend linearly or non-linearly on both the manipulated variables and
the uncontrollable variables. The relationships between these parameters are difficult to
determine, so feature selection methods are used to find the most relevant parameters. ML
models are then trained to incorporate the correlation between each dependent variable
and independent variables.

The current study concerns a cement industry in Greece that has several plants. Each
cement plant has different stresses, and the maintenance works of each machine change the
data distribution of each parameter. For the above reasons, it is imperative to retrain the AI
models if the production conditions change. However, many times, the data distribution
changes as the production conditions are dynamic, e.g., there are parameters such as
internal or external temperature. In this work, the expert is concerned with the data
distribution, and if a sharp concept shift is observed, the data are clustered into groups
and retrained. The overall NRMSE resulting from all clusters is the final measure. With
the data provided by the factory, no improvement in the results of the cement mill models
was observed. In addition, no improvement was observed in any of the predicted variables
of the kiln. The optimization of the production parameters in the cement mill and the
cement kiln was derived from a dynamic objective function in which the expert operator
can assign monotony or value-weighting to each manipulated or non-manipulated variable.
According to the optimization strategies that came from the operators of the cement plant,
the objective function is improved compared with the value that obtains the objective
function if the values of the variables came from the last database entry.

A major limitation of the work is the lack of many different advanced clustering tech-
niques other than k-means to which we could compare their performance. This limitation
could be extended to the case of the AI subsystem, where the introduction of more ML
or DL methods would ensure the robustness of the prediction models. Another major
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limitation is the absence of an autonomous agent that calculates the concept drift of data. If
the calculations exceed a threshold, it would trigger the retraining process. The triggering
of the retraining of the AI models currently relies upon user’s experience by assessing the
distribution drift of the data. However, this approach can potentially lead to delays in the
activation of retraining and may result in errors on the part of the user. It is important to
note that there can be a limitation when it comes to converting the current operating values
of a mill or kiln to the proposed values obtained from the IDMS. This conversion cannot be
done abruptly, and it is the responsibility of the system user to handle this issue.

6. Conclusions

In cement production, there are two primary units in the plant: the mill and the kiln.
The plant variables are divided into manipulated and non-manipulated. In this work,
the optimization method was combined with feature selection algorithms, AI methods,
and behavioral data separation. The AI models provide non-manipulated variables that
are dependent on either manipulated or non-controlled variables. In the context of a
cement plant in Greece, the AI models were trained to identify the best model for each
non-manipulated variable based on the NRMSE metric. During the initial training, only
a few variables showed NRMSE below 0.5 for their models. These variables were energy
consumption, differential pressure, exit temperature in the mill, and amperes in the kiln.
The kiln feed data demonstrated two distinct behaviors, which allowed for the creation of
weighted models. However, it was observed that the NRNSE either did not improve or
improved slightly. The best-performing model with the best set of parameters was chosen
among MLP, GB, LGBM, XGBoost, KNN, linear regression, TTR and CatGBoostRegressor.

The non-linear relationships between the manipulated and non-manipulated variables
were represented by incorporating the models into the DE optimization function. The
important features of the database for each trained model were derived from feature
selection algorithms, more specifically, RFECV and SFS. Often, the selection of important
features for an AI model does not align with the knowledge that cement engineers have
about the relationships between dependent and independent variables. To address this,
the proposed system allows users to manually define the AI model. The objective function
had a linear form and contained all the non-manipulated variables of the cement plant.
Various factors can impact the environmental footprint of the manufacturing process,
e.g., environmental dust in the mill and Calculated NOx in the kiln. In addition, energy
consumption can be influenced, e.g., by mill motor energy consumption and kiln amps,
while production costs may be affected, e.g., by external temperature in the mill and kiln
fuel supply. Moreover, the quality of the product can be influenced by the Blaine and
residue indices present in the mill.

A major innovation was the definition of the objective function by the user, where
each selection from the dashboard created an additional term in a linear form function.
The non-linear relationships of the functions were expressed by the AI models. More
specifically, a dynamic system was created to fulfill the factory management’s desire for
optimizing different parameters. This system allows the user to determine the weight,
constraints, target values, or monotony of each variable depending on their requirements.
To avoid abrupt transitions in operation that would lead to the malfunction of the machines,
the constraints of the non-manipulated variables were specified to be within ten percent
(10%) to thirty percent (30%) from the active variable. The system disables variables that
are not of interest to the user, so they receive zero weight when not selected. This creates
a dynamic objective function that can be adapted to different optimization strategies, for
example, reducing energy consumption. Depending on the optimization strategy used, the
value of the objective function is converted into a KPI every time. The system evaluates
the optimized value of the objective function by conducting experiments according to the
designated strategies and only considers it permissible if it meets the required criteria.
In most cases, the final results depicted in the dashboard showed that the value of the
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objective function decreases with the application of DE concerning the active value of the
objective function from the last data point in both the mill and the kiln of the cement plant.

However, the manual model for energy consumption in the mill and the kiln mod-
els, which have an NRMSE close to one (1), have led to unacceptable optimization and
marginally acceptable optimization, respectively. This sentence implies that the main focus
of future work will be on data behavior and how to handle it. Instead of relying on the
user’s intuition, which can lead to delays and poor estimation, an autonomous agent will
be embedded in the system to signal when retraining of the models is required due to
data drift. Furthermore, in a future extension of the work, more ML or deep learning (DL)
models will be incorporated in order to allow the choice between different combinations of
models and parameters to lead to models with NRMSE close to zero (0).
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BPNN Back propagation neural network
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C-TAEA Constrained–targeted adaptive evolutionary algorithm
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DP Differential pressure
DT Decision tree



Sensors 2024, 24, 1225 48 of 51

ERP Enterprise resource planning
FIS Fuzzy inference system
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HL High limit
HRSO Heat recovery system optimization
IDMs Intelligent decision making system
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IS Information system
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LGBM Light gradient boosting regressor
LL Low limit
MPCC Magnesium phosphate cementitious composites
MDPI Multidisciplinary Digital Publishing Institute
ML Machine learning
MLP Multi-layer perceptron regressor
MOBAS Multi-objective beetle antennae search
MQTT Message queuing telemetry transport
NOx Nitric oxides
NRMSE Normalized root mean squared error
PC Principal components
PCMs Phase change materials
PLC Programmable logic controller
PM Precalciner model
PSD Particle size distribution
PSO-BP-ANN Back propagation artificial neural network
PV Process value
REST API RESTful application programming interface
RFECV Recursive feature elimination with cross-validation
PM Particulate matter
PSOA Particle swarm optimization algorithm
RMCM Raw material carbonate method
SAAS Software as a Service
SCN Stochastic configuration networks
SFS Sequential forward selection
SiO2 Silicon dioxide
SP Set point
SSA Hammersley-based salp swarm algorithm
SVM Support vector machine
TOPSIS Technique for order of preference by similarity
TTR Transformed target regressor
UI User interface
XGBoost Extreme gradient boosting regressor
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