
Citation: Sharma, A.; Balasubramanian,

V.; Kamruzzaman, J. A Temporal Deep

Q Learning for Optimal Load

Balancing in Software-Defined

Networks. Sensors 2024, 24, 1216.

https://doi.org/10.3390/s24041216

Academic Editors: Sara Rodriguez,

Iñaki Fernández Pérez and Ricardo S.

Alonso Rincón

Received: 25 January 2024

Revised: 9 February 2024

Accepted: 12 February 2024

Published: 14 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Temporal Deep Q Learning for Optimal Load Balancing in
Software-Defined Networks
Aakanksha Sharma 1,∗ , Venki Balasubramanian 2,∗ and Joarder Kamruzzaman 2

1 Melbourne Institute of Technology (MIT), Melbourne, VIC 3000, Australia
2 Institute of Innovation, Science and Sustainability, Federation University Australia,

Ballarat, VIC 3350, Australia; joarder.kamruzzaman@federation.edu.au
* Correspondence: aasharma@mit.edu.au (A.S.); v.balasubramanian@federation.edu.au (V.B.)

Abstract: With the rapid advancement of the Internet of Things (IoT), there is a global surge in network
traffic. Software-Defined Networks (SDNs) provide a holistic network perspective, facilitating
software-based traffic analysis, and are more suitable to handle dynamic loads than a traditional
network. The standard SDN architecture control plane has been designed for a single controller
or multiple distributed controllers; however, a logically centralized single controller faces severe
bottleneck issues. Most proposed solutions in the literature are based on the static deployment of
multiple controllers without the consideration of flow fluctuations and traffic bursts, which ultimately
leads to a lack of load balancing among controllers in real time, resulting in increased network
latency. Moreover, some methods addressing dynamic controller mapping in multi-controller SDNs
consider load fluctuation and latency but face controller placement problems. Earlier, we proposed
priority scheduling and congestion control algorithm (eSDN) and dynamic mapping of controllers
for dynamic SDN (dSDN) to address this issue. However, the future growth of IoT is unpredictable
and potentially exponential; to accommodate this futuristic trend, we need an intelligent solution to
handle the complexity of growing heterogeneous devices and minimize network latency. Therefore,
this paper continues our previous research and proposes temporal deep Q learning in the dSDN
controller. A Temporal Deep Q learning Network (tDQN) serves as a self-learning reinforcement-
based model. The agent in the tDQN learns to improve decision-making for switch-controller
mapping through a reward–punish scheme, maximizing the goal of reducing network latency during
the iterative learning process. Our approach—tDQN—effectively addresses dynamic flow mapping
and latency optimization without increasing the number of optimally placed controllers. A multi-
objective optimization problem for flow fluctuation is formulated to divert the traffic to the best-suited
controller dynamically. Extensive simulation results with varied network scenarios and traffic show
that the tDQN outperforms traditional networks, eSDNs, and dSDNs in terms of throughput, delay,
jitter, packet delivery ratio, and packet loss.

Keywords: SDN; flow fluctuation; deep temporal reinforcement learning; latency minimization;
packet delivery ratio

1. Introduction

The evolution of the Internet of Things [1], mobile edge computing [2], and big data [3]
has produced phenomenal growth in network traffic globally. It has resulted in equipment
deployment such as sensors, routers, and switches with more energy consumption. Better
infrastructure and traffic control methods are insufficient to ease the traffic load. Many
network infrastructures are hardware-based, integrating all the network management
functions into the hardware. This causes a delay in applying any new ideas and sometimes
the hardware structure needs to be re-designed to fit the new algorithms [3]. Dedicated
devices like traffic shapers, load balancers, and QoS mechanisms are deployed in networks
to prevent congestion. They regulate data flow, distribute traffic evenly, and prioritize

Sensors 2024, 24, 1216. https://doi.org/10.3390/s24041216 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9556-0638
https://orcid.org/0000-0001-6686-4424
https://orcid.org/0000-0002-3748-0277
https://doi.org/10.3390/s24041216
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041216?type=check_update&version=2

Sensors 2024, 24, 1216 2 of 20

critical applications, ensuring optimal performance and reliability. Often, these network
components, such as network controllers, are under-utilized [4,5], with the average utiliza-
tion being only 30–40%. In addition, this drops again by a factor of three or higher during
off-peak hours [4].

A great 3 has been focused on traditional networks, such as re-engineering and
dynamic adaptation [6,7]. Still, these networks’ lack of centralized control makes imple-
menting device management and protocol updates challenging. The best way to cope with
traditional network issues is to equip networks with intelligent functionality.

SDNs provide various technical benefits, particularly network traffic engineering [8],
due to SDNs’ separation of data and the control plane. The advancement in SDNs has
embedded intelligent functionality by learning the complexity of network operation. This
improves the network energy efficiency and application Quality of Service (QoS) [9,10].
Despite various SDN benefits, they still have some limitations, such as scalability, reliability,
and a single point of failure [11,12]. Many existing SDN load-balancing techniques rely
on static controller deployment, where controllers are pre-assigned to specific network
segments or devices. While this approach provides a straightforward setup, it lacks
adaptability to dynamic traffic fluctuations and may lead to imbalanced load distribution
among controllers. Multiple controllers [13–15] are required to recover from a single point
failure and to provide better network performance [16]. However, multiple controllers
face placement issues [17], leading to an imbalanced network load [18]. In the existing
literature, many researchers have considered load-balancing issues. Still, most existing
works consider the static controller deployment in SDNs, avoiding flow variations and
traffic bursts, ultimately leading to imbalanced load among controllers and increasing the
network latency, load, and overall cost.

Hence, an optimal solution is essential to handle the dynamic and large-scale traffic.
The solution should intelligently map the controllers to dynamically deal with the flow
fluctuation, which requires a solution to manage the network load on the fly and handle
the traffic flow fluctuation. Some advanced SDN load-balancing techniques have been pro-
posed for traffic management, including round-robin load balancing, traffic classification
with machine learning, applying unsupervised learning techniques in SDNs, and introduc-
ing congestion control methods based on reinforcement learning. These techniques aim to
optimize the load distribution by dynamically assigning network segments or devices to
controllers based on real-time traffic analysis. However, challenges may arise in efficiently
managing dynamic controller mappings and ensuring optimal load balancing without
introducing additional overhead.

Additionally, recent advancements in SDN load balancing involve integrating machine
learning techniques, specifically reinforcement learning and deep learning. This integration
optimizes controller decisions and enhances load distribution efficiency, benefiting from
computing technologies like the Tensor Processing Unit (TPU) and Graphics Processing
Unit (GPU). These approaches use intelligent algorithms to adapt to varying network
conditions and traffic patterns, offering the potential for improved load balancing and net-
work performance. However, managing the dynamic network traffic with flow fluctuation
remains a less explored area.

In our prior research work [19], we initially developed reference models for mild, mod-
erate, and heavy network traffic using a standard SDN in traditional networks, followed by
proposing and implementing an eSDN [19], which has better QoS than standard SDNs due
to the priority scheduling and congestion control algorithms. However, the deployment
of controllers in an eSDN is static, which fails to accommodate the growing devices by
adjusting their loads in real time. Consequently, it leads to a lack of load balancing among
the controllers. To address this limitation, we proposed and implemented a dSDN [19]
aiming to sustain the network load with the dynamic flow fluctuation in heterogeneous IoT
devices. The dynamic controller mapping in a dSDN enhances the overall network QoS,
particularly in a heavy traffic network that emulates the futuristic network. The simulation
of the dSDN showed that better performance was observed due to its dynamic controller’s

Sensors 2024, 24, 1216 3 of 20

mapping approach for heavy traffic. However, considering the unpredictable and expo-
nential growth of IoT, we expanded the dSDN approach by integrating an agent-based
learning technique to align with this futuristic trend.

Thus, this paper introduces an agent-based temporal deep Q learning technique. The
temporal Deep Q learning Network (tDQN) functions as a self-learning reinforcement-
based model. Notably, this marks the inaugural application of temporal deep Q learning to
alleviate the load imbalance with flow fluctuation in the SDN to enhance the QoS. It aims
to improve the network latency and Packet Delivery Ratio (PDR) and, thereby, the QoS of
applications. Our work in this paper makes the following contributions:

• A multi-objective optimization problem for flow fluctuation is formulated to dynam-
ically divert the traffic to the best-suited controller by proposing a temporal deep
Q-learning algorithm in the dSDN;

• We propose a temporal deep Q-learning algorithm in the dSDN environment;
• We demonstrate the tDQN’s high level of success in complex decision-making during

traffic bursts, which can maintain an optimized balance among the controllers.

Section 2 presents the related work. The problem formulation is outlined in Section 3.
Section 4 proposes the temporal deep Q learning approach. Section 5 provides the implementa-
tion of the tDQN and the simulation results. This is followed case study in Section 6 and the
conclusion in Section 7.

2. Related Works

In recent years, increased efforts have been invested in centralized flow control meth-
ods based on SDNs [20,21]. The centralized methods for flow management using a network
operating system named NOX are presented in [22,23]. These methods manipulate the
switches according to the management decisions. If the incoming packet at a switch
matches a flow entry, the switch applies the related actions. A round-robin load-balancing
method that uses a circular queue to decide where to send the request of each incoming
client is proposed in [24]. It responds to DNS requests with a list of IP addresses. However,
these approaches fail to handle real-time traffic fluctuation.

Moreover, centralized re-routing decisions are essential in most mechanisms, but the
cost involved in re-routing affects their decision-making efficiency negatively. For instance,
the study in [25] is based on load shifting for a data center network when the flow is at
its peak. However, this shifting method is not suitable for centralized networks. Another
study [26] proposed a capacitated K center approach to identify the minimum number
of controllers needed and their position. Still, it is unable to deal with dynamic traffic
variation. A comprehensive review of several optimized controller placement problem
algorithms in SDNs is addressed in [27], which raised many research challenges, such as
unbalanced network load and computing the optimal number of controllers needed in
the network.

To address these aforementioned challenges, SDN-based technologies must be applied
for network load balancing, traffic forwarding, and better bandwidth utilization [28].
However, the current centralized SDNs cannot handle the IoT dynamic requirements. As
a result, available resources are under-utilized in centralized SDNs due to the lack of a
dynamic rule-placement approach. Thus, an efficient approach is needed as billions more
devices will be connected in the future, generating data exponentially [29]. Therefore,
network management is essential to manage the massive collection of information and
devices to process the generated data efficiently. The overall network performance depends
on resource utilization [30]; thus, under- or over-utilizing network components degrades
the network performance and minimizes the network utility. So, suitable technologies are
required to control the network traffic flows for load balancing and latency minimization.

Therefore, addressing these challenges is imperative to improve the network’s scala-
bility and robustness. To balance the network load, better architectures must be designed
to enhance the network scalability without overloading the controllers. The main aim is to
reduce the central component load without reducing the load balance efficiency. In relation

Sensors 2024, 24, 1216 4 of 20

to the identified issue, the authors in [31] state that several mechanisms can address the
challenge of balancing network load. For instance, one approach involves changing the
default controller of a switch by directing all requests from the switch to a new controller,
or alternatively, associating each switch with more than one controller. Thus, enabling the
switch to send some requests to one controller and rest data to another controller leads
to flow distribution; still, this mechanism cannot cope with heavy traffic with flow varia-
tion. For a large-scale network, an effective load-balancing algorithm might be required to
increase the flexibility of the network.

In many instances, Deep Reinforcement Learning (DRL) has yielded impactful results,
demonstrating outstanding performance in various applications, such as natural language
processing and games [32]. Beyond this, many businesses have begun using deep learning to
enhance their services and products. A machine learning technique based on DRL is well-
suited to achieving favorable outcomes. It can explore the vast solution space, adapt to rapid
fluctuations in the data flow, and undergo algorithmic learning from feedback [33–35]. The
study [36] introduced a mathematical model to calculate the number of controllers required in
the network and their connection with switches. However, this approach is time-consuming,
rendering it ineffective for large-scale networks.

In another study [37], a cluster controller is proposed to facilitate the movement of
switches, enhancing network throughput but at the cost of increased controller response
time. Based on the dynamic migration of switches using swarm optimization, a different
approach is presented in [38], resulting in elevated costs, and often the network remains
unstable. An alternative strategy, outlined in [31], considers network load. When any
controller becomes overloaded, it randomly selects another load to shift its load but does
not consider the scenario where another controller may become overloaded after the
migration. The authors in [39] proposed a mechanism utilizing reinforcement learning to
balance the network load, but this method proved ineffective in achieving load balance.

The extensive literature on reinforcement learning can be classified as controller
optimization and switch migration methods to overcome the issues of unbalanced network
load. The controller optimization optimizes the number of controllers needed and the
location to place them in the network. At the same time, switch migration methods manage
the network load by migrating the load from one controller to another controller. In
summary, the existing research only found better solutions for static load balancing and
targets only one or two issues related to SDN controllers. No solution in the literature
satisfies the network performance, load balancing, latency minimization, and dynamic
flow fluctuations. In response to this gap, our novel temporal Deep Q-Network (tDQN)
is introduced into the dynamic SDN (dSDN) environment, aiming to improve network
Quality of Service (QoS) significantly.

3. Problem Formulation

The overall SDN-based network can be seen as a directed graph G = (ci, si, Li) where
ci denotes a set of controllers, si denotes the set of associated switches, and Li denotes
the link between the controller and switches. The switch is used to minimize the average
latency of the network and ensure the QoS. The whole latency of a single flow can be
expressed as Lc,s

w in the following equation:

Lc,s
w = tsl + tcl + tRTT (1)

where tsl is the latency of the switch, tcl is the latency of the controller, and tRTT is the
round-trip time.

Switch latency, tsl , is the sum of the delay experienced by the flow in the queue, ts
q,

and the flow processing time, ts
p. Overall, tsl can be expressed as:

tsl = ts
q + ts

p (2)

Sensors 2024, 24, 1216 5 of 20

Similarly, tcl can be expressed as the sum of the time that the controller packets spend
in the queue, tc

q, and the controller flow processing time tc
p:

tcl = tc
q + tc

p (3)

The single-trip time is denoted as tSTT
cs and is the amount of time it takes for a request

to be sent from the controller to the switch. Thus, the round-trip time tRTT is the sum of the
time a request takes to be sent from the controller to the switch, tSTT

cs , and from switch to
the controller, tSTT

sc . Therefore, tRTT can be written as follows:

tRTT = tSTT
sc + tSTT

cs (4)

The single-trip time from the controller to the switch and the switch to the con-
troller can be estimated using the distance of tracking packet routes (Dsc) and signaling
speed (Co).

Considering this, the single-trip time from the switch to the controller tSTT
sc can be

expressed as follows:

tSTT
sc =

Dsc

Co
(5)

As the value of Co is constant and comparable with the speed of light, the only
possibility for enhancing the single-trip time is through Dsc.

Similarly, the single-trip time from the controller to the switch tSTT
cs can be expressed

as follows:
tSTT
cs =

Dcs

Co
(6)

We can only make improvements in route tracing. Combining Equations (4)–(6), the
total round-trip time can be rewritten as follows:

tRTT =
Dsc

Co
+

Dcs

Co
(7)

Therefore, from Equation (1), we can calculate the overall delay experience in the
network of N controllers in the following equation:

LN =
N

∑
i=1

Lc,s
wi (8)

where Lw is the latency of a single flow, Lc,s
wi is the total number of links established between

the controller and switches, and i varies from 1 to N , where N is the total controllers and
LN represents the total latency.

Then, the average latency of the network can be calculated:

Lavg =
1
N

LN (9)

Our problem can then be formulated as a switch-to-controller assignment and a
network dynamic route adaptation problem. While assigning a switch to the controller, the
selection should be dynamic and consider the following key points: (i) present load on the
switch; (ii) load on the corresponding controller; and (iii) round-trip time depending on the
packet tracing path.

The complete state table St can be summarized as the state of the switch along with its
corresponding controller. The state Si can interact with the controller Cj. Moreover, it can
be denoted as follows:

St = (SiCj, SxCy, ShCh) (10)

where i, j, x, y ⊂ P, and i, j, x, y ≤ h,

Sensors 2024, 24, 1216 6 of 20

– P represents the network;
– h is the maximum state and controller combinations.

The controller selection, deployment, and switch-controller mapping depend on the
actions taken by a software agent placed on switch nodes. The agent acts based on the
current state. Therefore, we can summarize that switch actions are combinations of agent
actions happening at a single switch node. Each switch has a number of possibilities to
redirect the inflow, denoted as Fp; thus, every flow can reach the Fp number of switch nodes.

Assuming a switch node is denoted by Swi, K represents the combination of possible
actions that a switch can have. Thus, the action of each agent, Asi, can be written as follows:

Asi = (S1
wi, S2

wi, . . . , SK
wi) (11)

where

SK
wi =

{
1, if Swiϵ Cj

0, otherwise
(12)

Therefore, combined action space, Ac, can be presented with all actions taken at a
network as:

Ac =
{

As1, As2, As3, . . . , AsK
}

(13)

where K ⊂ Fp

Considering this, the controller’s load cannot exceed its maximum limit. An agent’s
action in tDQN is rewarded if its current action favors the overall goal of minimizing
network latency in exploring an optimized solution from the possible combinations in the
action space. The reward can be defined as a metric of the mean latency of the network
as follows:

rl = ˘(Lavg) (14)

where Lavg is defined in Equation (9). The lower the latency, the higher the agent’s reward,
and vice versa.

As mentioned above, during the iterative learning process, an agent learns how to
make a better decision for switch-controller mapping through a reward–punish scheme to
maximize the decision goal by reducing network latency. The details of tDQN are described
in the following section.

4. Temporal Deep Q-Learning (tDQN)

The tDQN model is based on the principles of reinforcement learning and deep Q-
learning. The model dynamically diverts traffic to the best-suited controller based on a
multi-objective optimization problem for flow fluctuation. It is an unsupervised learning
strategy that can adapt the data without a special mark in the most common datasets and
can rapidly be adopted in high fluctuation data with its general feedback mechanism.

The NetSim simulation framework is configured to assess the efficiency of the tDQN
model when compared to traditional networks, eSDNs, and dSDNs. Our earlier re-
search [19] presented the simulation setup, and the tDQN is integrated into the dSDN
controller within the same configuration. The setup involves creating network scenarios
with varying traffic loads, including mild, moderate, and heavy network traffic conditions.
Parameters such as throughput, delay, jitter, packet delivery ratio, and packet loss are mea-
sured and compared across different network setups. The simulations involve emulating
dynamic traffic fluctuations and evaluating the tDQN model’s ability to maintain an opti-
mized balance among the controllers. The most critical factors influencing the performance
of the Temporal Deep Q Learning Network (tDQN) in different network environments are
as follows:

Sensors 2024, 24, 1216 7 of 20

• The Q-learning is fundamental to the tDQN, influencing its ability to learn and adapt
to diverse network scenarios;

• The reward–punishment scheme enables the tDQN to dynamically optimize switch-
controller mapping, allowing it to adapt to various network sizes, topologies, and
traffic patterns;

• The scalability of the tDQN ensures its effectiveness across different network sizes;
• The tDQN’s adaptability to different network types (traditional networks, SDNs, eSDNs,

and dSDNs) is vital.

The block diagram for the tDQN is shown in Figure 1. Initially, the data are collected
from the network and then pre-processed, followed by training with Long Short-Term
Memory (LSTM) and the tDQN. Thereafter, the trained model is tested with test data.
Then, the prediction results are sent to the switch for real-time processing. Below is the
step-by-step packet tracing process in the tDQN; Table 1 shows the various notations and
variables, and Figure 2 shows the flowchart of packet tracing in the tDQN.

Figure 1. Block diagram of tDQN.

Table 1. Notations and variables for tDQN.

Notations Description

Pi Packet ID
Pt Packet type

Cpt Controlled packet type
Si Source address
Di Destination address
Ra Remote hop address
Sn Sequence number and queue ID
Ack Destination acknowledgment
Vi Maximum prediction probability
s Current state of the environment
st Current state at time step t
s
′ Successive states of the current state s

a Action taken by an agent
at Action taken by an agent at state st
a
′ Successive action taken by the agent at state s

Q, θ Action-value network with weights θ
Q−, θ− Target action-value network with weight θ−

D Replay buffer
B Size of each mini-batch
yi Target value for each mini-batch
γ Discounted factor
ϵ Epsilon

Sensors 2024, 24, 1216 8 of 20

Figure 2. Flowchart of packet tracing in tDQN.

Sensors 2024, 24, 1216 9 of 20

4.1. Data Collection and Encoding

Figure 2 shows that the process begins by collecting the input variables from the
given dataset and applying the Pandas operation [40]. Pandas is a powerful and popular
open-source package in Python. It is most widely used for data science, data analysis,
and machine learning tasks. It was used to perform data pre-processing. The dataset was
selected from the packet tracing files. After visualizing and analyzing the data, it was
necessary only to consider the values that impact the target variables. Then, a few functions
were performed, such as adding categorical features and filling up the dataset’s missing
values. This part was completed by saving the processed data. With this, the pre-processing
was complete, and our data were saved as input to the LSTM model.

4.2. Data Pre-Processing

This step entails splitting the collected pre-processed data for training and testing
purposes. The training data were approximately 80%, while the testing data were 20%.

4.3. Pre-Training with the LSTM

In the tDQN, an agent is placed in the SDN controller, which trains itself using an
LSTM model. It is framed with the stack of LSTM layers arranged sequentially: the first
layer is the input layer consisting of 64 units; the second layer consists of hidden layers,
such as the Conv1D layer, which include 64 filters with kernel_size 4 to obtain the tensor
output layers, the Flatten layer, which converts the data into a 1D array, and the Dense
layer, which feeds all the output from the previous layer to all its neurons. The Dense layer
contains two units with a SoftMax activation function. If all the parameters are trained,
the model weights for the hidden layer are saved; if not, it is trained again until all the
parameters are trained. The last layer is the output layer, which is reached after the training
model. We built a tDQN and initialized the parameters by utilizing the weights from the
pre-trained model, and a linear layer was added that converts the LSTM output to Q-value.

4.4. Training with Q-Learning

Q-Learning is used to train an agent. It trains the agent to learn the mapping from
states to actions directly. In Q-learning, a function for the State and Action is defined,
representing the maximum discounted future reward when we perform an action in a
state and continue optimally from that point. In this case, the Q Function can rate two
possible actions that are successful or collided. The agent picks the action with the highest
Q-value. Q-values are the action values used in Q-learning to improve the agent’s learning
behavior iteratively. A packet tracing sample and an action are selected randomly during
the training process. The rewards are obtained based on the executed action defined in (14),
and the total output reward is achieved.

4.5. Testing

The LSTM can efficiently determine the packet tracing and represent the essential
features and its self-learning process. This takes place layer after layer, while the sparse
constraints limit the parameter space, which prevents over-fitting. As we added a linear
layer that converts the LSTM output to Q-values, the tDQN works dynamically. Once
the agent is trained, it can be placed on the controller side and is ready to be used in
real-time switches.

4.6. Algorithmic Pseudo-Code for tDQN

The pseudo-code outlining our proposed approach is presented in Table 2. The
iterative process commences from time step t = 1 and continues until the terminal time step
or indefinitely. At the start of each iteration, the state st is obtained from the environment,
as depicted in line 1 of the table. Subsequently, the agent selects action at from the action
space based on the state st using the epsilon-greedy approach, outlined in lines 3 to 8.
The epsilon-greedy algorithm aids the agent in deciding whether to explore or exploit.

Sensors 2024, 24, 1216 10 of 20

The fundamental concept involves obtaining a Uniform Probability Distribution P on the
interval (0, 1) and a designated epsilon value ϵ.

Table 2. Algorithmic Pseudo-code for tDQN.

1 for each time step t do
2 Receiving state st from the environment
3 Randomly choosing a number p from (0;1) with Uniform Distribution
4 if p ≤ ϵ then
5 Choosing at randomly from A with Uniform Distribution
6 else
7 at = argmaxa Q(s, a, θ)
8 end if
9 Observe the transition (St, at, rt+1, st+1)
10 Save the transition to the Replay buffer D
11 Sample mini-batch with size B from the Replay Buffer
12 for each transition γ = (s, a, r

′
, s

′
) in the mini-batch do

13 Compute the target value: yr = r
′
+ γ * max a′ Q−(s

′
, a

′
, θ−)

14 end for
15 Compute the loss: Loss = 1

B ∑
γ
(Q(s, a, θ)− yr)2

16 Make a gradient descent step using δLoss
δθ

17 After M steps, or t mod M = = 0, we reset the weights of the network by Q− = Q
18 end for

In each iteration, a number p is selected from this distribution. Line 4 compares p and
ϵ, and if p is less than ϵ, the action will be randomly chosen from the action space using a
Uniform Distribution. Otherwise, in line 7, the action at with the highest estimated reward,
denoted argmaxa Q(s, a, θ), will be assigned to the agent. The argmax function identifies the
argument that yields the maximum value from a target function. Line 9 executes the action
taken by an agent to the environment and observes the reward rt and the next state st+1,
referred to as the Sampling Phase. Subsequently, the agent stores the collected transition
(St, at, rt+1, st+1) in the experience replay memory buffer D, as indicated in lines 9 and 10.

Then, line 11 will sample the random mini-batch of N transitions from D. Following
this, the Learn Phase begins; for each individual transition γ = (s, a, r

′
, s

′
) in the mini-batch,

we calculate the target value yr = r
′
+ γ * max a′ Q−(s

′
, a

′
, θ−). Then, we compute the Loss

function to update the action-value network Q using the Gradient Descent algorithm, as
detailed in lines 12–16. Gradient descent is used for training machine learning models and
neural networks. In line 17, after each M step, we reset the action-value network Q˘ = Q to
avoid target re-computation.

5. Implementation of tDQN and Simulation Results

The tDQN agent was deployed in the dSDN environment to execute intelligent routing,
and its performance was evaluated. Several comparisons were conducted for three network
scenarios: mild, moderate, and heavy. Initially, the results of the tDQN were compared with
the previously proposed dSDN [19] to analyze the network performance. Subsequently,
a comparison was made between the tDQN, traditional network, and eSDN. The final
comparison encompassed all approaches—traditional networks, SDNs, eSDNs, dSDNs,
and tDQNs.

5.1. Comparison of dSDN and tDQN

The results obtained from the dSDN and tDQN are elucidated through graphs to
facilitate a more comprehensive analysis. The outcomes are succinctly summarized for
mild, moderate, and heavy networks in Tables 3–5, respectively.

Sensors 2024, 24, 1216 11 of 20

Table 3. Simulation results for mild network traffic.

Network Type Throughput (Gbps) Delay (µs) Jitter (µs)

dSDN 0.100 41.45 8.79

tDQN 0.100 41.45 8.79

Table 4. Simulation results for moderate network traffic.

Network Type Throughput (Gbps) Delay (µs) Jitter (µs)

dSDN 0.094 117.91 21.89

tDQN 0.108 109.81 20.47

Table 5. Simulation results for heavy network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

dSDN 0.059 36.08 0.68

tDQN 0.070 2.12 0.11

5.1.1. Mild Network Traffic

Table 3 reveals that there was no substantial change observed when implementing
the tDQN in mild network traffic. The results are noted as throughput in Gbps, delay, and
jitter in µs for mild network traffic. As this network experiences the least congestion, the
efficient performance of the proposed approaches of the eSDN and dSDN is demonstrated.
Figure 3 visually presents the results.

Figure 3. Simulation results for mild network traffic.

5.1.2. Moderate Network Traffic

Table 4 summarizes the results for moderate network traffic. The network perfor-
mance was enhanced using the tDQN. However, as shown in Figure 4, this network was
significantly enhanced with the dSDN by increasing network throughput, and reducing
delay and jitter. Still, there was a slight increase in network throughput, and a reduction in
delay and jitter. The results demonstrate that the proposed tDQN approach provides only
marginal enhancements to the Quality of Service (QoS) in this moderate network scenario.

Figure 4. Simulation results for moderate network traffic.

Sensors 2024, 24, 1216 12 of 20

5.1.3. Heavy Network Traffic

Table 5 provides a summary of the results for heavy network traffic, where the pro-
posed tDQN approach stood out as the most effective. The results are noted as throughput
in Gbps, delay, and jitter in ms for heavy network traffic. In highly congested network
traffic, characterized by increased packet loss, network delay, and jitter, the tDQN demon-
strated its capability to enhance the network Quality of Service (QoS). This makes the
tDQN particularly suitable for addressing the challenges posed by a growing number of
heterogeneous devices in such crowded network environments.

Tables 3–5 can be compared to precisely analyze the improvements achieved by inte-
grating the tDQN into the dSDN. Notably, no throughput improvement was observed for
mild network traffic. However, for moderate and heavy networks, there was a substantial
14.13% and 20.29% throughput enhancement, respectively.

No significant impact on delay was observed in the case of mild network traffic.
However, there was a notable 6.87% reduction in delay for moderate network traffic.
The most significant reduction was observed in heavy network traffic, where the tDQN
demonstrated an impressive 94.13% decrease in delay.

No significant impact on jitter was observed in the case of mild network traffic. How-
ever, a notable 6.50% reduction in jitter was observed for moderate network traffic. The
most substantial reduction was noted for heavy network traffic, where the dSDN achieved
an impressive 83.49% reduction in network delay.

The aforementioned results show that the tDQN proved to be highly beneficial in
heavily crowded networks (Figure 5).

Figure 5. Simulation results for heavy network traffic.

5.2. Comparison of Traditional Network, eSDN, and tDQN

In this sub-section, the overall simulation results are compared for traditional networks,
eSDNs, and tDQNs to analyze the improvement in network QoS. Compared to traditional
network management techniques, the tDQN approach offers several advantages. Firstly, the
tDQN approach is software-based, making it easier to implement new ideas and protocols
without requiring a re-design of the hardware structure. Secondly, the tDQN approach
provides centralized control, making it easier to manage devices and implement protocol
updates. Thirdly, the tDQN approach utilizes a reinforcement-based model that can adapt
to dynamic network traffic and traffic fluctuations, making it more effective in handling
real-world network scenarios.

To compare the overall packet delivery ratio and packet loss, we only included the
results from the eSDN and tDQN because traditional networks have prolonged packet
transmission delays and suffer heavily from QoS degradation.

Tables 6 and 7 show the overall comparison of traditional networks with the eSDN and
the eSDN with the tDQN. The most significant enhancements were evident in moderate and
heavy networks. Moreover, these improvements contributed to an overall enhancement in
network Quality of Service (QoS), characterized by reductions in delay, jitter, and packet
loss. Additionally, there was an observed increase in network throughput and improved
packet delivery.

Sensors 2024, 24, 1216 13 of 20

Table 6. Results—Traditional network versus eSDN.

Traditional/eSDN Throughput Increase
(eSDN %)

Delay Reduction
(eSDN %)

Jitter Reduction
(eSDN %)

Mild 16.77% 40.11% 33.08%

Moderate 20.46% 99.86% 89.16%

Heavy 7.89% 5.26% 76.54%

Table 7. Results—eSDN versus tDQN.

eSDN/tDQN Throughput Increase
(tDQN %)

Delay Reduction
(tDQN %)

Jitter Reduction
(tDQN %)

Mild 0.16% 29.49% 19.08%

Moderate 14.26% 7.50% 7.19%

Heavy 36.69% 99.05% 91.40%

Figures 6–11 present the plots showing the overall throughput, delay and jitter, packet
delivery ratio, packet loss, and average load with an increase in the connected devices for
all the networks.

Figure 6. Overall throughput.

Figure 7. Overall delay.

Sensors 2024, 24, 1216 14 of 20

Figure 8. Overall jitter.

Figure 9. Packet delivery ratio.

Figure 10. Packet loss.

In Figure 6, the increase in throughput is demonstrated using the tDQN in compar-
ison to traditional networks and the eSDN. Moreover, Figure 7 indicates that delay was
minimized most effectively with the tDQN, and Figure 8 underscores that jitter reached
its minimum using the tDQN. Furthermore, Figure 9 compares the eSDN and tDQN to
demonstrate the improvement in the packet delivery ratio using the tDQN. Figure 10
displays the packet loss percentage.

Sensors 2024, 24, 1216 15 of 20

Figure 11. Average load.

On the other hand, Figure 11 illustrates the average load as the number of connected
devices increased in the traditional network, eSDN, and tDQN. In both the traditional
network and eSDN, the load distribution remained static, unable to adapt to dynamic traffic
fluctuations. Consequently, this resulted in an elevation in the average network load. As
the load experienced fluctuations, the static distribution led to an imbalance in the average
load, compromising Quality of Service (QoS) standards. In contrast, the tDQN exhibited a
lesser spike in the average network load, demonstrating its ability to maintain QoS despite
varying network conditions.

The following sub-section compares all the approaches (the traditional network, SDN,
eSDN, dSDN, and tDQN).

5.3. Overall Comparison of Traditional Network, SDN, eSDN, dSDN, and tDQN

The overall results for the traditional network, SDN, eSDN, dSDN, and tDQN in terms
of throughput, delay, and jitter are detailed in Table 8 for mild network traffic, Table 9 for
moderate network traffic, and Table 10 for heavy network traffic.

Table 8. Simulation results for mild network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.086 0.10 0.02

SDN 0.086 0.07 0.01

eSDN 0.100 0.06 0.01

dSDN 0.100 0.04 0.01

tDQN 0.100 0.04 0.01

Table 9. Simulation results for moderate network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.078 84.25 0.20

SDN 0.087 68.25 0.15

eSDN 0.094 0.12 0.02

dSDN 0.094 0.12 0.02

tDQN 0.108 0.11 0.02

Sensors 2024, 24, 1216 16 of 20

Table 10. Simulation results for heavy network traffic.

Network Type Throughput (Gbps) Delay (ms) Jitter (ms)

Traditional 0.048 235.32 5.56

SDN 0.048 230.95 4.31

eSDN 0.051 222.95 1.31

dSDN 0.059 36.08 0.68

tDQN 0.070 2.12 0.11

5.3.1. Mild Network Traffic

In Tables 8–10, the delay and jitter are considered in milliseconds, while throughput
is measured in Gbps. Table 8 illustrates the significant improvements in throughput,
delay, and jitter with the implementation of the tDQN, surpassing the traditional SDN and
eSDN networks.

Particularly in the least crowded network scenario, the network performance of the
tDQN closely aligned with that of the dSDN. The traditional networks and SDN manifested
minimum throughput, while the eSDN, dSDN, and tDQN had relatively high throughput.
The throughput varied from 0.086 Gbps in the traditional networks and SDN, increasing to
0.100 Gbps for the eSDN, dSDN, and tDQN.

Regarding delay, the traditional networks exhibited the highest delay, gradually
decreasing for the dSDN and tDQN. The delay in the traditional network was 0.10 ms,
which reduced to 0.07 ms in the SDN, further diminishing to 0.06 ms with the eSDN.
Notably, the dSDN and tDQN achieved the same low delay of 0.04 ms.

Similarly, jitter was maximum in the traditional networks and least in the dSDN and
tDQN. It reduced from 0.02 ms for the traditional networks to 0.01 ms for the tDQN.

In summary, the tDQN outperformed both the traditional and eSDN networks, demon-
strating better network performance. In comparison to the dSDN, the tDQN did not show
a significant improvement in network QoS for the least crowded network scenario, as
the dSDN already achieved substantial enhancements. However, there was a notable
improvement in the packet delivery ratio and packet loss when comparing the eSDN and
tDQN. The packet delivery ratio with the eSDN stood at 92.58%, increasing significantly
to 98.20% with the tDQN. Furthermore, the findings illustrate a significant improvement
in the overall quality of service, with packet loss decreasing from 7.41% with the eSDN to
only 1.79% using the tDQN.

5.3.2. Moderate Network Traffic

For the moderate network type, the tDQN outperformed the traditional network, SDN,
eSDN, and dSDN. Table 9 presents the throughput, delay, and jitter for all the network
types (traditional, SDN, eSDN, dSDN, and tDQN). The traditional network exhibited
significant delays and jitter, which were reduced by applying the SDN and eSDN. A further
enhancement in the network performance was observed using the dSDN and tDQN.

The throughput varied from 0.078 Gbps in the traditional networks to 0.108 Gbps
in the tDQN. The highest throughput was observed with the tDQN, being enhanced by
approximately 14.13% as compared with the dSDN. The delay was highest in the traditional
networks at 84.25 ms, which reduced to 68.25 ms for the SDN. The most substantial
reduction in delay was noted in the dSDN, and it further decreased to 0.11 ms in the tDQN.
The delay was reduced by approximately 6.87% in the tDQN compared to the dSDN.

Similarly, jitter was maximum in the traditional networks and least in the tDQN,
varying from 0.20 ms in the traditional networks to 0.02 ms in the tDQN. The tDQN jitter
was reduced by approximately 6.50% compared to the dSDN. Hence, the tDQN performed
better than the traditional network, SDN, eSDN, or dSDN. The packet loss using the tDQN
was 2.99%, which is significantly lower than the 10.91% observed in the eSDN. Moreover,
the packet delivery ratio using the eSDN was 89.08%, increasing to 97.01% with the tDQN,

Sensors 2024, 24, 1216 17 of 20

indicating a notable improvement in the network performance by raising the ratio of
successfully delivered packets.

5.3.3. Heavy Network Traffic

The tDQN increased the network performance by reducing delay and jitter for the
heaviest network traffic. As indicated in Table 10, the minimum throughput was noted for
the traditional networks and SDN, whereas the eSDN, dSDN, and tDQN had a relatively
high throughput. The throughput varied from 0.048 Gbps in the traditional networks to
0.070 Gbps in the tDQN.

The delay was highest in traditional networks and minimum in the tDQN. The delay
in the traditional network was 235.32 ms, which reduced to 2.12 ms in the tDQN. Similarly,
jitter was maximum in the traditional networks and least in the tDQN. It varied from
5.56 ms in the traditional networks to 0.11 ms in the tDQN. A comparison between tDQN
and dSDN revealed that the tDQN achieved a 20.29% throughput increase, while delay
and jitter were almost eliminated, reducing by 94.13% and 83.49%, respectively, compared
to the dSDN. Therefore, the tDQN was able to maintain a high QoS as delay and jitter were
significantly reduced despite heavy traffic in the network, whereas the traditional network,
SDN, eSDN, and dSDN fell significantly short in this respect.

Ultimately, the tDQN can handle the increasing load on the server. The packet delivery
ratio in tDQN was 95.31%, whereas it reached only 87.30% using the eSDN. The packet loss
with eSDN was 12.69%; however, it was 4.6% using the tDQN.

Moreover, the tDQN was demonstrated to be a scalable and adaptable solution, as
indicated by its reinforcement learning framework, which enables the agent to learn and
adapt to different network scenarios. This paper highlights the performance of the tDQN
across different network types under varying traffic conditions, such as mild, moderate, and
heavy network traffic. The results demonstrate the effectiveness of the tDQN in improving
network Quality of Service (QoS) and throughput across these diverse scenarios. The
adaptability of the tDQN in real-world network environments is evident in its capability to
minimize network latency, optimize packet delivery ratio, and reduce packet loss. These
performance metrics play a critical role in various network applications.

6. Case Study

The increasing number of IoT devices in a large-scale network can cause network
congestion, resource under-utilization, and latency issues. To address these challenges,
we propose the implementation of agent-based temporal deep Q learning approach in a
dynamic Software-Defined Network (dSDN) environment to optimize load balancing and
improve network performance.

This case study focuses on a smart city scenario that involves the deployment of
various IoT devices, such as sensors, actuators, and cameras, across different locations
within the city. These devices generate a massive amount of data that need to be transmitted,
processed, and analyzed in real time to support various smart city applications, including
traffic management.

To address these challenges, we propose the implementation of a temporal deep Q
learning approach in the SDN controller to optimize load balancing in the network. The
temporal deep Q learning algorithm enables the controller to dynamically adjust the routing
of traffic flows based on real-time network conditions.

The implementation steps include data collection, training the tDQN model, dynamic
traffic routing, and a performance evaluation. By implementing the agent-based tDQN
model in the dSDN controller, traffic flows can be dynamically routed to minimize latency
and maximize quality of service. The performance of the optimized load-balancing solution
can be evaluated in terms of latency reduction, throughput improvement, and enhancement
in the packet delivery ratio.

Sensors 2024, 24, 1216 18 of 20

7. Conclusions and Future Work

The demand for IoT devices is increasing, and the load on the controller’s side will
become quite high in the near future. Accordingly, we propose a temporal deep Q-learning
approach as a multi-objective optimization problem solver for flow fluctuation. Through
the deployment of an intelligent agent trained to make judicious routing decisions, our
proposed method, the tDQN, emerges as a robust solution. The results prove that the tDQN
outperforms the traditional SDN, eSDN, and dSDN approaches. Notably, the tDQN stands
out by effectively balancing controller loads amidst flow fluctuations, thereby enhancing
the network Quality of Service (QoS). This improvement is evidenced through a reduction
in latency and a notable enhancement in the packet delivery ratio.

Our proposed tDQN was tested for standard applications such as Email, HTTP, FTP,
and video and voice streaming. However, the current network traffic situations do not only
depend on these applications. In the future, most critical applications, such as healthcare,
will be based on Blockchain technologies. Thus, future studies will test our algorithm for
Blockchain applications. Also, training a deep Q-learning network can be computationally
expensive, particularly if the network architecture is large or the training dataset is extensive.
This may affect the time it takes to train the model before it becomes operational. Our
future work will focus on extending this approach and testing it on various applications.

Author Contributions: Conceptualization, A.S., V.B. and J.K.; methodology, A.S., V.B. and J.K.; soft-
ware, A.S.; validation, A.S., V.B. and J.K.; formal analysis, A.S., V.B. and J.K.; investigation V.B. and
J.K.; resources, A.S.; data curation, A.S.; writing—original draft preparation, A.S.; writing—review
and editing, V.B. and J.K.; visualization, A.S., V.B. and J.K.; supervision V.B. and J.K.; project adminis-
tration, V.B. and J.K.; funding acquisition, V.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was generated in NetSim by configuring various networks.

Acknowledgments: The document was proofread by external services to make it grammar free.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hosen, A.S.; Singh, S.; Sharma, P.K.; Rahman, M.S.; Ra, I.H.; Cho, G.H.; Puthal, D. A QoS-aware data collection protocol for LLNs

in fog-enabled Internet of Things. IEEE Trans. Netw. Serv. Manag. 2019, 17, 430–444. [CrossRef]
2. Cao, X.; Wang, F.; Xu, J.; Zhang, R.; Cui, S. Joint computation and communication cooperation for energy-efficient mobile edge

computing. IEEE Internet Things J. 2018, 6, 4188–4200. [CrossRef]
3. Dai, H.N.; Wong, R.C.W.; Wang, H.; Zheng, Z.; Vasilakos, A.V. Big data analytics for large-scale wireless networks: Challenges

and opportunities. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [CrossRef]
4. Fisher, W.; Suchara, M.; Rexford, J. Greening Backbone Networks: Reducing Energy Consumption by Shutting Off Cables in

Bundled Links. In First ACM SIGCOMM Workshop on Green Networking, in Green Networking ’10. Association for Computing
Machinery: New York, NY, USA , 2010; pp. 29–34. https://doi.10.1145/1851290.1851297. [CrossRef]

5. Mahadevan, P.; Sharma, P.; Banerjee, S.; Ranganathan, P. A Power Benchmarking Framework For Network Devices. In
Proceedings of the NETWORKING 2009: 8th International IFIP-TC 6 Networking Conference, Aachen, Germany, 11–15 May 2009;
Springer: Berlin/Heidelberg, Germany, 2009, pp. 795–808.

6. Maaloul, R.; Chaari, L.; Cousin, B. Energy saving in carrier-grade networks: A survey. Comput. Stand. Interfaces 2018, 55, 8–26.
[CrossRef]

7. Bolla, R.; Bruschi, R.; Davoli, F.; Cucchietti, F. Energy efficiency in the future internet: A survey of existing approaches and trends
in energy-aware fixed network infrastructures. IEEE Commun. Surv. Tutor. 2010, 13, 223–244. [CrossRef]

8. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu, M.; et al. B4: Experience
with a globally-deployed software defined WAN. Acm Sigcomm Comput. Commun. Rev. 2013, 43, 3–14. [CrossRef]

9. Rojas, E.; Doriguzzi-Corin, R.; Tamurejo, S.; Beato, A.; Schwabe, A.; Phemius, K.; Guerrero, C. Are we ready to drive software-
defined networks? A comprehensive survey on management tools and techniques. ACM Comput. Surv.s (CSUR) 2018, 51, 1–35.
[CrossRef]

http://doi.org/10.1109/TNSM.2019.2946428
http://dx.doi.org/10.1109/JIOT.2018.2875246
http://dx.doi.org/10.1145/3337065
http://dx.doi.org/10.1145/1851290.1851297
http://dx.doi.org/10.1016/j.csi.2017.04.001
http://dx.doi.org/10.1109/SURV.2011.071410.00073
http://dx.doi.org/10.1145/2534169.2486019
http://dx.doi.org/10.1145/3165290

Sensors 2024, 24, 1216 19 of 20

10. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A survey of machine learning techniques applied to software defined
networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 21, 393–430. [CrossRef]

11. Wang, G.; Zhao, Y.; Huang, J.; Wang, W. The controller placement problem in software defined networking: A survey. IEEE Netw.
2017, 31, 21–27. [CrossRef]

12. Chen, M.; Ding, K.; Hao, J.; Hu, C.; Xie, G.; Xing, C.; Chen, B. LCMSC: A lightweight collaborative mechanism for SDN controllers.
Comput. Netw. 2017, 121, 65–75. [CrossRef]

13. Koponen, T.; Casado, M.; Gude, N.; Stribling, J.; Poutievski, L.; Zhu, M.; Ramanathan, R.; Iwata, Y.; Inoue, H.; Hama, T.; et al.
Onix: A Distributed Control Platform For Large-Scale Production networks. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), Vancouver, BC, Canada, 4–6 October 2010.

14. Tootoonchian, A.; Ganjali, Y. Hyperflow: A Distributed Control Plane For Openflow. In Proceedings of the 2010 Internet Network
Management Conference On Research On Enterprise Networking, San Jose, CA, USA, 27 April 2010; Volume 3, pp. 10–5555.

15. Curtis, A.R.; Mogul, J.C.; Tourrilhes, J.; Yalagandula, P.; Sharma, P.; Banerjee, S. DevoFlow: Scaling Flow Management for High-
Performance Networks. In Proceedings of the ACM SIGCOMM 2011 Conference, Toronto, ON, Canada, 15–19 August 2011; pp. 254–265.

16. Muthanna, A.; Ateya, A.A.; Makolkina, M.; Vybornova, A.; Markova, E.; Gogol, A.; Koucheryavy, A. SDN Multi-Controller
Networks with Load Balanced. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems,
New York, NY, USA, 26–27 June 2018; pp. 1–6.

17. Cheng, T.Y.; Wang, M.; Jia, X. QoS-Guaranteed Controller Placement in SDN. In Proceedings of the 2015 IEEE Global Communi-
cations Conference (GLOBECOM), Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–6.

18. Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.; Kompella, R. Towards an elastic distributed SDN controller. ACM Sigcomm
Comput. Commun. Rev. 2013, 43, 7–12. [CrossRef]

19. Sharma, A.; Balasubramanian, V.; Kamruzzaman, J. A Novel Dynamic Software-Defined Networking Approach to Neutralize
Traffic Burst. Computers 2023, 12, 131. [CrossRef]

20. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

21. Yan, J.; Zhang, H.; Shuai, Q.; Liu, B.; Guo, X. HiQoS: An SDN-based multipath QoS solution. China Commun. 2015, 12, 123–133.
[CrossRef]

22. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX: Towards an operating system for networks.
ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110. [CrossRef]

23. Gupta, R.; Gupta, R. ABC of Internet of Things: Advancements, Benefits, Challenges, Enablers And Facilities of IoT. In
Proceedings of the 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India, 18–19 March 2016;
pp. 1–5.

24. Kaur, S.; Kumar, K.; Singh, J.; Ghumman, N.S. Round-robin Based Load Balancing in Software Defined Networking. In
Proceedings of the 2015 2nd International Conference On Computing For Sustainable Global Development (INDIACom),
New Delhi, India, 11–13 March 2015; pp. 2136–2139.

25. Hong, C.Y.; Kandula, S.; Mahajan, R.; Zhang, M.; Gill, V.; Nanduri, M.; Wattenhofer, R. Achieving High Utilization with Software-Driven
WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 12–16 August 2013; pp. 15–26.

26. Yao, G.; Bi, J.; Li, Y.; Guo, L. On the capacitated controller placement problem in software defined networks. IEEE Commun. Lett.
2014, 18, 1339–1342. [CrossRef]

27. Yoon, S.K.; Khalib, Z.; Yaakob, N.; Amir, A. Controller placement algorithms in software defined network-a review of trends and
challenges. In Proceedings of the MATEC Web of Conferences, Sibiu, Romania, 7–9 June 2017; EDP Sciences: Lez Ily, France, 2017;
Volume 140, p. 01014.

28. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119.
[CrossRef]

29. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.
Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

30. Oteafy, S.M.; Hassanein, H.S. Towards a Global IoT: Resource Re-utilization in WSNs. In Proceedings of the 2012 International
Conference On Computing, Networking And Communications (ICNC), Maui, HI, USA, 30 January–2 February 2012; pp. 617–622.

31. Neghabi, A.A.; Navimipour, N.J.; Hosseinzadeh, M.; Rezaee, A. Load balancing mechanisms in the software defined networks:
A systematic and comprehensive review of the literature. IEEE Access 2018, 6, 14159–14178. [CrossRef]

32. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
33. Li, X.; Djukic, P.; Zhang, H. Zoning for Hierarchical Network Optimization in Software Defined Networks. In Proceedings of the

2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–8.
34. He, M.; Basta, A.; Blenk, A.; Kellerer, W. Modeling Flow Setup Time for Controller Placement in Sdn: Evaluation for Dynamic Flows.

In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7.
35. Yao, L.; Hong, P.; Zhang, W.; Li, J.; Ni, D. Controller Placement and Flow Based Dynamic Management Problem towards SDN.

In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015;
pp. 363–368.

36. Sallahi, A.; St-Hilaire, M. Optimal model for the controller placement problem in software defined networks. IEEE Commun. Lett.
2014, 19, 30–33. [CrossRef]

http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1109/MNET.2017.1600182
http://dx.doi.org/10.1016/j.comnet.2017.04.029
http://dx.doi.org/10.1145/2534169.2491193
http://dx.doi.org/10.3390/computers12070131
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/CC.2015.7112035
http://dx.doi.org/10.1145/1384609.1384625
http://dx.doi.org/10.1109/LCOMM.2014.2332341
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/ACCESS.2018.2805842
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/LCOMM.2014.2371014

Sensors 2024, 24, 1216 20 of 20

37. Liang, C.; Kawashima, R.; Matsuo, H. Scalable and Crash-Tolerant Load Balancing Based on Switch Migration for Multiple Open
Flow Controllers. In Proceedings of the 2014 Second International Symposium on Computing and Networking, Shizuoka, Japan,
10–12 December 2014; pp. 171–177.

38. Li, J.; Hu, X.; Zhang, M. Research on Dynamic Switch Migration Strategy Based on Fmopso. In Proceedings of the 2018
IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,
12–14 October 2018; pp. 913–917.

39. Li, Z.; Zhou, X.; Gao, J.; Qin, Y. SDN Controller Load Balancing Based on Reinforcement Learning. In Proceedings of the 2018
IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018;
pp. 1120–1126.

40. McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython; O’Reilly Media, Inc.: Sebastopol, CA,
USA, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Problem Formulation
	Temporal Deep Q-Learning (tDQN)
	Data Collection and Encoding
	Data Pre-Processing
	Pre-Training with the LSTM
	Training with Q-Learning
	Testing
	Algorithmic Pseudo-Code for tDQN

	Implementation of tDQN and Simulation Results
	Comparison of dSDN and tDQN
	Mild Network Traffic
	Moderate Network Traffic
	Heavy Network Traffic

	Comparison of Traditional Network, eSDN, and tDQN
	Overall Comparison of Traditional Network, SDN, eSDN, dSDN, and tDQN
	Mild Network Traffic
	Moderate Network Traffic
	Heavy Network Traffic

	Case Study
	Conclusions and Future Work
	References

