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Abstract: Electrolysis stands as a pivotal method for environmentally sustainable hydrogen pro-
duction. However, the formation of gas bubbles during the electrolysis process poses significant
challenges by impeding the electrochemical reactions, diminishing cell efficiency, and dramatically
increasing energy consumption. Furthermore, the inherent difficulty in detecting these bubbles arises
from the non-transparency of the wall of electrolysis cells. Additionally, these gas bubbles induce
alterations in the conductivity of the electrolyte, leading to corresponding fluctuations in the magnetic
flux density outside of the electrolysis cell, which can be measured by externally placed magnetic
sensors. By solving the inverse problem of the Biot–Savart Law, we can estimate the conductivity
distribution as well as the void fraction within the cell. In this work, we study different approaches to
solve the inverse problem including Invertible Neural Networks (INNs) and Tikhonov regulariza-
tion. Our experiments demonstrate that INNs are much more robust to solving the inverse problem
than Tikhonov regularization when the level of noise in the magnetic flux density measurements is
not known or changes over space and time.

Keywords: machine learning; invertible neural networks; normalizing flows; water electrolysis;
Biot–Savart law; inverse problems; current tomography; random error diffusion

1. Introduction

The surging demand for clean energy has led to extensive research into electrolysis
as a viable method for greenhouse gas-free hydrogen production [1]. Harnessing excess
renewable energy from sources like wind and sunlight enables us to power electrolysis
that generates clean hydrogen gas. This hydrogen serves as a reliable energy reservoir,
particularly during periods of limited renewable energy availability, thereby addressing
the seasonal supply and demand gaps. Moreover, hydrogen exhibits benefits, including
extended storage capabilities, presenting a promising solution for reducing carbon foot-
prints [2]. Hydrogen also finds diverse applications, ranging from usage as cryogenic
liquid fuel and as a replacement for lithium batteries. However, the overall efficiency of
electrolysis faces limitations due to the formation of gas bubbles which block electrodes’
reaction sites and obstruct electric currents [3] as shown in Figure 1. Furthermore, the
growth and detachment of bubbles are intricately governed by a complex interplay of
forces, including buoyancy, hydrodynamic, and electrostatic forces [4–6]. Consequently,
detecting both bubble sizes and the location of possible maldistribution of the gas fraction,
along with the ability to control bubble formation is critical for ensuring the efficiency and
sustainability of hydrogen production through electrolysis.
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Figure 1. The illustration provides a visual representation of an electrolysis cell, elucidating the
notable occurrence of bubble formation concentrated specifically at the electrode reaction sites.

Detecting bubbles within electrolysis cells is a challenging problem, primarily due
to the non-transparency of the electrolyzer structures. A viable and non-invasive solution
involves utilizing externally positioned magnetic sensors to capture the bubble-induced
fluctuations. However, the availability of only low-resolution magnetic flux density mea-
surements outside the cell, coupled with the high-resolution current distribution inside
the cell, necessary to provide accurate bubble information, creates an ill-posed inverse
problem for precise bubble detection. To further add to the challenge, the measurement
errors originating from sensor noise amplify the difficulty associated with bubble detection.

Contactless Inductive Flow Tomography (CIFT), introduced by Stefani et al. [7], stands
as a pioneering method for reconstructing flow fields within conducting fluids, an ill-
posed linear inverse problem. This technique leverages Tikhonov regularization to estimate
the fluid motion from the measured flow-induced magnetic field under the influence of
an applied magnetic field. The data for this reconstruction are obtained from magnetic
sensors strategically positioned on the external walls of the fluid volume. However, the
reconstruction of the conductivity distribution is an ill-posed non-linear inverse problem
that does not induce current through an external magnetic field. Moreover, linear models,
such as Tikhonov regularization, demonstrate high sensitivity to noise, particularly when
there exists a significant disparity in the amplitude of noise between the data used for model
fitting and testing. Also, the limited number of available sensors compounds the difficulty
in achieving a satisfactory reconstruction of the high-dimensional current distribution.

Advanced Machine Learning (ML) techniques such as Deep Neural Networks (DNNs)
offer a data-driven approach for reconstructing the current distribution within an electroly-
sis cell. By leveraging external magnetic flux density measurements, these techniques are
capable of capturing relationships between the measured magnetic flux density and the
internal current distribution of the cell. A method known as Network Tikhonov (NETT) [8]
combines DNNs with Tikhonov regularization, where the regularization weightage param-
eter plays a crucial role in balancing data fidelity and regularization terms. However, the
choice of the weightage parameter is based on some heuristic assumptions [9].

Given the limitations of the conventional approaches, we explored the feasibility of
Invertible Neural Networks (INNs) to solve our ill-posed non-linear inverse problem. It
was recently shown by Ardizzone et al. [10] that INNs are a good candidate for solving such
tasks. INNs are marked by a bijective mapping and inherent invertibility between input
and output spaces, which present a pragmatic solution for addressing the complexities in
estimating the conductivity from relatively much lower resolution of magnetic flux density
measurements. Therefore, we studied its performance in comparison to the Tikhonov
regularization to estimate the binary conductivity distribution. The binary conductivity
represents the non-conducting void fraction as zeros, indicating the presence of bubbles. A
cluster of zeros can indicate either the existence of large bubbles or a cluster of small
bubbles, enabling us to estimate the void fraction. Our key contributions are:
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• We introduce a novel method that uses INNs to reconstruct the spatial distribution of
the void fraction from limited magnetic flux density measurements, thereby address-
ing the inverse problem of the Biot–Savart Equation in electrolysis.

• We show that INN is more accurate than the Tikhonov approach to reconstruct the
distribution of the void fraction when the amplitude of the noise in the magnetic
sensor measurements is not known or varies considerably in space and time.

• In scenarios where the number of sensors is further reduced, and the distance of the
sensor placement from the region where the conductivity needs to be reconstructed is
further increased, we show that our INN model is able to provide a good reconstruc-
tion of the void fraction distribution.

• We present a new evaluation metric named random error diffusion that computes the
likelihood that the predicted conductivity distribution resembles the ground truth.
Based on random error diffusion, we show that our INN-based approach is better
than the Tikhonov regularization.

In Section 2, we review the related work, Section 3 details our simulation setup
that mimics electrolysis, while Section 4 elaborates on our INN model and random error
diffusion metric. Section 5 presents experimental results, while Section 6 summarizes our
main contributions, and discusses the broader application of INNs in process tomography.

2. Related Work

This section presents an overview of the related works and is structured into four
sub-sections. Section 2.1 delves into the works that discuss the bubble formation as a signif-
icant obstacle to efficient hydrogen production. Section 2.2 explores methods that provide
analytical solutions for addressing the ill-posed inverse problem in process tomography,
including setups that deal with the Biot–Savart Law. Furthermore, Section 2.3 presents
a review of conventional deep learning approaches for solving inverse problems, while
Section 2.4 examines works that utilize INNs for tackling inverse problems.

2.1. Electrolysis for Clean Hydrogen: Notable Challenges

A recent study [11] discusses the challenge posed by the supply–demand mismatch in
renewable energy sources such as solar and wind power to achieve a stable and sustainable
energy grid. Another related work [12] explores the impact of fluctuations in energy pro-
duction due to weather conditions and variables like climate change, emphasizing periods
of excess energy or insufficient supply that can affect grid stability. Hydrogen production
through electrolysis emerges as a promising solution to this issue, utilizing excess renew-
able energy during periods of abundance to power the electrolysis process. This allows for
the generation and storage of hydrogen, which can then be converted back into electricity or
used directly in various applications when the renewable energy supply is low [13]. Serving
as an energy reservoir, hydrogen production through electrolysis effectively bridges the gap
between fluctuating renewable energy production and consistent demand. Additionally,
hydrogen’s versatility as a clean fuel makes it a valuable resource for transportation and
chemical industry, thereby reducing dependence on fossil fuels and mitigating environ-
mental impacts [13]. Consequently, hydrogen production through electrolysis represents a
key strategy for achieving a reliable and sustainable energy system [13].

However, the formation of bubbles poses a significant challenge in the process of
electrolysis. As an electrochemical reaction occurs at the electrodes, gas bubbles—typically
hydrogen and oxygen—are generated. These bubbles represent the desired product in many
electrolytic processes, but they can also impede the efficiency of the reaction [3,14]. The
accumulation of bubbles around the electrodes can obstruct the active sites, leading to
increased resistance within the electrolysis cell [3,14]. This resistance necessitates higher
energy input to sustain the desired current flow. Additionally, if left unmanaged, excessive
bubble formation can result in operational issues and reduced efficiency [3,14]. Therefore,
understanding and effectively managing bubble dynamics is crucial for optimizing the
performance of electrolysis and ensuring the economical production of hydrogen.
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Hence, bubble detection in electrolysis plays a critical role in optimizing the efficiency
of the process. However, it is a challenging endeavor due to the complex dynamics within
the electrolysis cell, and the non-transparent walls of the cell make direct visual observation
impractical [15,16]. Instead, researchers often resort to indirect methods, such as utilizing
magnetic sensors to detect the magnetic field disturbances caused by the movement of
bubbles. These sensors are strategically placed outside the cell to minimize interference and
provide reliable tracking of bubble behavior. Upon applying cell voltage to the electrolyzer,
an electric current starts to flow. Consequently, this current induces a magnetic field in the
vicinity of the electrolytic cell, governed by the Biot–Savart law. Therefore, such a setup may
help in designing a more precise and efficient electrolysis system, which should ultimately
contribute to advancements in clean and sustainable energy production.

2.2. Solving Inverse Problem of Biot–Savart Equation—Analytical Approaches

To the best of our knowledge, no prior research has addressed inverse problems within
an electrolysis cell setup. However, works such as [17,18] have focused on solving inverse
problems in the context of fuel cells. Wieser et al. [17] introduced a contactless magnetic loop
array for estimating current distribution within fuel cells, while [18] designed a magnetic
field analyzer with sensors associated with a ferromagnetic circuit that enhanced mag-
netic field variations, leading to a more precise analysis of the current distribution in fuel
cells. The work by Roth et al. [19] proposed to reconstruct a 2D current distribution using
Fourier analysis in order to better interpret the magnetometer signals that may be useful in
applications like in geophysical surveys. Similarly, [20] investigated the possibility of using
magneto–optic imaging to directly observe current distributions in thin superconducting
samples. Hauer et al. [21] presented magnetotomography, a non-invasive method to visual-
ize the fuel cell current distribution by measuring magnetic flux with a 3D magnetic sensor
and a four-axis positioning system. This method, enabled the precise calculation of current
flow within the cell since there was no feedback effect. In the application of plasma physics,
work such as [22] introduced Bayesian modeling for inferring the current distribution from
measurements of magnetic field and flux, where the plasma current is represented as a grid
of toroidal current-carrying solid beams with rectangular cross sections.

2.3. Solving Inverse Problems Using Deep Learning

With the advancement in machine learning algorithms, many deep learning ap-
proaches have been proposed to tackle inverse problems in medical imaging, including
computed tomography [8,23] and magnetic resonance imaging [24]. Works such as [23] pro-
posed a partially learned method by integrating prior information of the ill-posed inverse
problem of 2D tomography with a data-driven trainable neural network, while [25] ex-
plored deep image prior techniques in the context of ill-posed inverse problems. The work
by [24] advocates for Convolutional Neural Networks (CNNs) as the choice for solving the
inverse problem of medical image reconstruction and regularizing the network with a deep
learned noise prior. Whereas [8] suggests using a neural network named Network Tikhonov
(NETT) in conjunction with a Tikhonov regularizer to solve the inverse problem for medical
imaging. Similarly, iNETT [26] is another recent method that combines Tikhonov regu-
larization with neural networks, differing from [8] in that the non-stationarily iterated
Tikhonov method avoids exhaustive tuning of the regularization parameter. Reference [27]
developed a method for the fast convergence of neural networks used for solving inverse
problems in imaging by reducing latency in calculating gradients. To explore more related
works dealing with solving inverse problems in medical imaging or imaging in general via
deep neural networks, readers are referred to [28–32]. Recent works such as [33] highlight
that Deep Neural Networks (DNNs) trained to solve inverse problems are robust to noise
and adversarial perturbations. Nevertheless, we believe that fine-tuning the regularization
weightage when DNNs are trained with some regularization strategy is challenging, even
though methods such as [34] learn such regularization weights.
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Machine learning-based approaches have been proposed to solve ill-posed inverse
problems in Electrical Capacitance Tomography (ECT) [35,36], Electrical Impedance To-
mography (EIT) [37,38], Electrical Resistance Tomography (ERT) [39–41], positron emission
tomography [42], X-ray tomography [43,44], and novel applications such as electromag-
netic inverse scattering using microwaves [45,46], generally via CNNs. A work by [47]
explored the reason why CNNs are a good candidate for solving specific inverse prob-
lems, where they showed that the usage of convolution framelets represents the input
data by convolving local and global information, aiding in learning underlying features
in the data. Although CNNs show promise in solving inverse problems, their inherent
non-invertibility may undermine their reliability. Other works to solve inverse problems via
deep learning, especially adversarial networks [48–50] and LSTM-based autoencoder [51],
face challenges in ensuring stable training due to their high complexity, making them less
suitable for a wide variety of inverse problems.

Based on our survey on solving inverse problems via deep learning, we conclude
that while significant progress has been made in developing such data-driven models,
open questions persist regarding invertibility during training, scalability, and reliability of
these deep learning-based approaches in applications of process tomography. Therefore,
there is a need to explore novel network architectures and address challenges for the wider
practical deployment of such machine learning models in scientific domains.

2.4. Invertible Neural Networks (INNs)

INNs are a promising new category of deep learning architectures that are inherently
invertible in nature. Recently, Ardizzone et al. [10] showed the effectiveness of INNs for
solving the inverse problem of predicting the level of oxygenation in tissues from endo-
scopic images. Even though there have been recent attempts to use INNs as surrogate
models for solving inverse problems, such as [52] for inverse problems in physical systems
governed by Partial Differential Equations (PDEs), Ref. [53] for inverse problem in morphol-
ogy, Ref. [54] for inverse problem in medical imaging, or [55] for inverse design of optical
lenses. However, INNs remain largely unexplored in the field of solving inverse problems
in process tomography. INNs are popularly implemented based on Normalizing Flows
(NFlows) that are suitable generative models due to their invertible architectural design,
and accurate density estimation [56]. Additionally NFlows do not suffer from posterior
collapse, which is common in other generative models such as Variational Auto-Encoders
(VAEs) and Generative Adversarial Networks (GANs). NFlows were popularized by [57]
for density estimation. Since then, multiple novel NFlows have been proposed in the lit-
erature, such as RealNVP [58], Glow [59], FFJORD [60], NAF [61], SOS [62], Cubic Spline
Flows [63], and Neural Spline Flows [64]. Each of these prior works differs on the design of
the NFlows that includes the design of the coupling function.

In summary, the section showcases the under-explored potential of INNs for address-
ing the inverse problem of the Biot–Savart Equation and other applications in the industrial
process tomography domain in general.

3. Simulation Setup

The simulation setup mimics generic features of a water electrolyzer in a simplified
model, as depicted in Figure 2 (top). In Section 3.1, we elaborate on the intricate design
details related to the simulation. Moving to Section 3.2, we provide information on essential
simulation parameters used for the experiment. Subsequently, in Section 3.3, we discuss
the mesh transformation step to obtain the fine-grained mesh of the conductivity maps,
which will be used as the input to the INN and other evaluated models. In Section 3.4, we
formulate the forward physical process of the simulation based on the Biot–Savart Equation
and finally, in Section 3.5, we give an overview of the data used to perform the experiments.
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Figure 2. The top figure shows the Proof-of-Concept (POC) model that contains a channel filled
with liquid GaInSn with Poly-Methyl Methacrylate (PMMA) cylinders normally distributed along
the x-axis and randomly distributed along the y-axis in the channel. The top figure also shows
the Cu electrodes with wire to apply electric current to the plate, and the magnetic sensors on
the bottom. The two bottom figures show examples of the binarized conductivity distribution of
liquid metal-containing region in the xyz cartesian plane. The dark pixels resemble low conductivity
meaning the presence of void fraction clusters.

3.1. Simulation Design

The goal of our simulation setup, depicted in Figure 2 (top), is to investigate the
feasibility of localizing and quantifying non-conducting bubbles by reconstructing the con-
ductivity distribution from the observed induced magnetic flux density in the surrounding
external region. To achieve this, the simulation setup simplifies the water electrolyzer to a
quasi-two-dimensional configuration. The setup is filled with liquid GaInSn as a substitute
for water to avoid electrochemical reactions and the generation of additional bubbles. To
represent non-conducting gas bubbles, Poly-Methyl Methacrylate (PMMA) cylinders with
varying radii and locations are placed throughout the liquid. Hence, the setup incorporates
materials with significant conductivity differences to simulate conducting water and low-
conducting bubbles. We selected the dimensionality of the simulation setup based on the
future experimental setup. The liquid channel’s configuration measures 16× 7× 0.5 cm.
The two Cu electrodes (each measuring 10× 7× 0.5 cm) facilitate the application of the
electric current. The anode and cathode connections to an external power supply are es-
tablished via wires, modeled with lengths of 50 cm and square cross-sections measuring
0.5 cm on each side.

3.2. Simulation Parameters

To compute training data, diverse geometrical setups featuring regions of varying con-
ductivity were compiled from a Java-class file in the finite element software COMSOL Multi-
physics V6.0 (COMSOL Inc., Burlington, VT, USA) [65]. This involves placing between 30 and
120 PMMA cylinders with radii ranging from 2 to 2.5 mm within the liquid metal. The cylinder
sizes are aligned with bubble agglomerates, and larger clusters are represented by merged
cylinders. Since no electrochemical reactions occur in the liquid metal after the application of
electric current, concentration-induced conductivity gradients are excluded. A low electrical
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conductivity of 5× 10−14 S/m is employed to simulate the void fraction at PMMA cylinder
positions [66]. For the Cu wires and electrodes, values of 5.8× 107 S/m are used, while the
liquid metal is assigned a conductivity of 3.3× 106 S/m [67]. A current density of 1 A/cm2 is
applied at the electrode surface interfacing with the liquid metal, which falls within the typical
range for alkaline and PEM electrolyzers. As the input current is conducted through the
smaller cross-section copper wire, this necessitates an application of 14 A/cm2, corresponding
to a total current of 3.5 A.

3.3. Mesh Transformation

To facilitate automated grid generation for various bubble distributions, the geometry
was discretized using finite tetrahedral elements, forming an unstructured mesh. Following
a study to ensure grid independence, the mesh underwent refinement in regions exhibiting
high current density gradients, notably at the interfaces between the wire and electrode, as
well as within the volume containing liquid GaInSn. For the liquid metal, the tetrahedral
element size of 0.1 mm was set as the minimum, while the maximum was established
at 5 mm. The computation of the current and the conductivity distribution for multiple
geometries necessitates meshes with varying cell counts. As the INN and other evaluated
models require fixed input array dimensions, the initial tetrahedral mesh is transformed
into a grid of hexahedrons with a constant number of elements. The current density
distribution within the structured mesh, consisting of one cell layer in height, can be treated
as two-dimensional, given the negligible influence of the z-component and variations in
the x and y components along the z-direction of the current. This grid comprises a total of
774 cells, with higher resolution allocated to the middle containing the liquid metal volume,
comprising 510 nearly cubic cells, each with dimensions of 4.71× 4.67× 5 mm. The current
density and electrical conductivity within each hexahedron are determined through inverse
distance-weighted interpolation [68] utilizing the 24 nearest tetrahedrons.

3.4. Solving Forward Process via Biot–Savart Equation

The current distribution j(r′) was simulated using COMSOL for each bubble distri-
bution, and the magnetic field B(r) exclusively at the positions of virtual sensors, was
determined by the Biot–Savart law given as,

B(r) =
µ0

4π

∫
V

j(r′)× (r− r′)

|r− r′|3
dV (1)

where µ0 is the permeability of free space, i.e., a vacuum, given as 4π × 107 N/A2, V is
the volume with dV as an infinitesimal volume element and B(r) ∈ R3 is the magnetic
flux density at point r with r′ as the integration variable and a location in V. Since only
one spatial component of B(r) will be measurable in the planned experimental validation
setup, we aim to reconstruct the conductivity distribution by using one spatial component
of B(r) that is most informative about the magnetic flux density. Therefore, we selected
the x-component of the magnetic flux density. The simulation of the current distribution
typically requires 2.5 min. Additionally, the mesh transformation, along with calculating
the magnetic field using Equation (1), requires around 3.5 min. Note that the inverse process
reconstruction with our INN model typically completes in less than 1 s.

3.5. Simulation Data

To measure the magnetic flux density B(r), we positioned an array of 10× 10 virtual
sensors, i.e., M = 100, at a distance d below the liquid GaInSn. In our future experimental
setup, only one spatial component of the magnetic flux density, i.e., the x-component is
measurable. Thus, the conductivity distribution σ(r′) and one spatial component of the mag-
netic flux density B(r) serve as the ground truth for every geometrical configuration. We
simulated the conductivity distribution for 10,000 different geometrical configurations
with a fixed applied current strength of 3.5 A. After transforming the tetrahedral mesh
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into a hexahedral mesh with fixed dimensions, the resulting conductivities were divided
by σGaInSn = 3.3× 10−6 S/m, yielding relative conductivities σrel between 0 and 1. Sub-
sequently, σrel were binarized by assigning values smaller than 0.25 as 0 and others as
1. Two examples of binary conductivity maps are shown in Figure 2 (bottom). We selected
only those conductivity points directly above the sensor positions. Hence, out of the orig-
inal 774 simulated conductivity data points, only 510 data points were chosen for each
simulated geometry. For each of the 10,000 configurations, the magnetic flux density was
calculated at a distance d = 5 and 25 mm for 50 and 100 sensor array (see Section 3.2).

4. Method

In this section, we provide details related to the INN model and present the developed
metrics to evaluate the performance of the model. The section is organized into four main
sub-sections. In Section 4.1, we delve into the architecture of the proposed INN framework
for addressing the inverse problem of the Biot–Savart Equation. Additionally, Section 4.2
provides a detailed discussion of the loss function employed for training the INN. Following
this, in Section 4.3, we elucidate our random error diffusion metric, which helps in assessing
the quality of the conductivity reconstruction. To evaluate the robustness of the INN for
reconstructing conductivity distribution when there is noise in sensor readings, Section 4.4
presents our algorithm for computing the per-pixel bias and deviation maps.

4.1. INN Architecture

Let us reformulate the conductivity distribution σ(r′) as variable x at discretized
locations and the strongest spatial component of induced magnetic flux density B(r) as
variable y at distinct locations below the liquid metal. The setup for training the INN, as
shown in Figure 3, closely follows Ardizzone et al. [10]. Given that the conductivity map x
is an N-dimensional vector such that x ∈ RN and the magnetic flux density measurements
y is M-dimensional such that y ∈ RM where N > M, the transformation x → y is non-
bijective and thus information loss occurs. We formulate an additional latent variable as
z ∈ RN−M such that for the INN shown in Figure 3, the dimensionality of [y, z] is equal to
the dimensionality of x. It is to be noted that the conductivity distribution x, the induced
magnetic flux density y and the latent dimension z do not represent the Cartesian xyz
coordinates of three-dimensional space of the simulation setup in Figure 2.

∈ ℝN

x

y

z
INNConductivity

Magnetic Flux
Density

Latent Space

y ∈ ℝM

z ∈ ℝN-M

x

Figure 3. An overview of our Invertible Neural Network (INN) architecture. The conductivity map x
is positioned on the left side of the network. The INN architecture contains k coupling blocks. On
the right side of the network are variables y and z, i.e., magnetic flux density and latent space,
respectively. The INN is trainable in both directions, as shown with the bi-directional arrows in the
figure.

The proposed INN model f is a series of k invertible mappings called coupling blocks
with f := f1, . . . , f j, . . . , fk that predicts x̂ = f (y, z; θ). The coupling blocks are learnable
neural networks, i.e., scaling s and translation t, such that these functions need not be invert-
ible and can be represented by any neural network [58]. The coupling block takes the input
and splits it into two parts, which are transformed by s and t networks alternatively. The
transformed parts are subsequently concatenated to produce the block’s output. The archi-
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tecture allows for easy recovery of the block’s input from its output in the inverse direction,
with minor architectural modifications ensuring invertibility. We follow [59] to perform
a learned invertible 1× 1 convolution after every coupling block to reverse the ordering
of the features, thereby ensuring each feature undergoes the transformation. Hence, the
function f is a bijective mapping between [y, z], and x, leading to its invertibility, which
help it to associate the conductivity x with unique pairs [y, z] of magnetic flux density y
and latent space z. We incorporate vector z to address the information loss in the forward
process, i.e., x→ y and to capture the variance in mapping the inverse process, i.e., y→ x.

4.2. INN Training and Testing Procedure

The algorithm for the training and testing of our proposed INN framework is shown
in Algorithm 1. Given that INN as an invertible function f , its optimization via training
explicitly calculates the inverse process, i.e., x̂ = f (y, z; θ) where θ are the INN parame-
ters. We define the density of the latent variable p(z) as the multivariate standard Gaussian
distribution. The desired posterior distribution p(x|y) can now be represented by the deter-
ministic function f that pushes the known Gaussian prior distribution p(z) to the x-space,
conditioned on y. Note that the forward mapping x → [y, z] through function f−1, and
the inverse mapping [y, z]→ x through function f , are both differentiable and efficiently
computable for posterior probabilities. Therefore, we approximate the conditional proba-
bility p(x|y) by the inverse process of our tractable INN model f (y, z; θ), which uses the
training data {(xi, yi)}

T
i=1 with T samples from the forward simulation, as discussed in

Section 3. Hence, the objective is to deduce the high-dimensional conductivity distribution
x, from a sparse set of magnetic flux density measurements y. Even though our INN can
be trained in both directions with losses Lx, Ly, and Lz for variables x, y, z, respectively,
as performed in [10], we are only interested in reconstructing the conductivity variable
x, i.e., the inverse process. Given the training batch size as W, the loss Lx minimizes the
reconstruction error between the ground truth and predictions during training as follows:

Lx(θ) =

(
1

W

W

∑
i = 1
|xi − f (yi, zi, θ)|2

) 1
2

with objective θ∗ = argmin
θ

Lx(θ) (2)

Algorithm 1: Training and testing scheme of the invertible neural network
Input: Training data Dtrain, Test data Dtest, Training epochs E, Learning rate η
Output: Trained INN model f

1 Initialize INN model f with network parameters θ randomly;
2 for epoch← 1 to E do
3 for batch W in Dtrain do
4 Calculate gradient of loss Lx(θ) using backpropagation;
5 Update parameters using gradient descent: θ ← θ − η∇θLx(x, f (y; z; θ));
6 end
7 end
8 for sample in Dtest do
9 Predict conductivity using trained model i.e., x̂sample = f (ysample; zsample; θ);

10 Compute evaluation results based on defined metrics;
11 end

4.3. Random Error Diffusion

The ground truth conductivity maps consist of binary values, xsample, while the predic-
tions are continuous-valued, x̂sample. Therefore, it is crucial to define an appropriate metric
to assess the performance of the model. In principle, image dithering approaches like Floyd–
Steinberg Dithering [69] can be adopted for converting the continuous-valued pixels to
binary pixels and then compare its similarity with the ground truth binary map. However,
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ref. [69] disperses quantization errors into neighboring pixels with pre-defined fractions
or a fixed dithering matrix, without adapting to the specific characteristics of the im-
age. Therefore, we developed a novel algorithm named Random Error Diffusion [70] (see
Algorithm 2) to assess the similarity between the continuous-valued conductivity predic-
tions and the binary-valued ground truth maps. The algorithm utilizes four randomly
sampled error fractions from the Dirichlet distribution to diffuse quantization errors in the
context of Floyd–Steinberg Dithering. The process is then repeated multiple times to create
an ensemble of binary conductivity maps, whose density is estimated. Subsequently, the
log-likelihood of the ground truth binary map is estimated with respect to the computed
density.

Algorithm 2: Random error diffusion
Input: Error fractions uj, Ensemble count n, Kernel Bandwidths h, x̂sample, xsample
Output: Log-Likelihood score log(ĝh(xsample))

1 for i = 1 to n do
2 Sample a vector of four random error fractions u1, . . . , u4 from the Dirichlet

distribution uj ∈ (0, 1) and ∑4
j=1 uj = 1;

3 Apply Floyd-Steinberg Dithering on x̂sample given vector u to obtain x̂i
bin;

4 Store x̂i
bin in the ensemble array x̂n

bin;
5 end
6 Optimize bandwidth h using Grid Search and Kernel Density Estimation on x̂n

bin;
7 Perform Kernel Density Estimation on x̂n

bin with optimal bandwidth h;
8 Calculate the log-density log(ĝh(xsample)) to estimate the likelihood of xsample;
9 return Log-Likelihood score log(ĝh(xsample));

Algorithm

To initiate the algorithm, four random error fractions, denoted as u1, . . . , u4, are sam-
pled from the Dirichlet distribution. Each fraction is a real number within the interval (0, 1),
and their sum is constrained to equal 1. Subsequently, these random error fractions are
utilized to diffuse the quantization error to the neighboring pixels in order to obtain the
binary conductivity map. This process is repeated n times for resampling the four error
fractions, which is used to produce an ensemble of n binary conductivity maps x̂n

bin, for
each continuous valued conductivity prediction x̂sample. We subsequently perform Kernel
Density Estimation (KDE) on the ensembles x̂n

bin for each conductivity prediction x̂sample
to obtain the density estimate ĝh, parameterized by the kernel bandwidth h. Finally, the
log-likelihood log(ĝh(xsample)) of the ground truth binary map xsample is computed from
the density estimate ĝh.

4.4. Bias and Deviation

To comprehensively analyze the robustness of the INN and other evaluated models
for reconstructing the conductivity distribution amid sensor noise, we introduce two
additional evaluation metrics, namely the Bias and Deviation maps. The motivation behind
formulating these metrics lies in the observation that the reconstructed conductivity from
different evaluated models, as shown in Figure 4, do not reveal the model’s true robustness
to noise. Therefore, a noise vector δsample ∈ RM was sampled γ times from the uniform
distribution in a pre-defined range. Subsequently, this sampled noise vector δsample was
added to the magnetic flux density measurements from the validation set ysample. The
models studied in this work were then utilized along with the noisy magnetic flux density
(ysample + δsample) to reconstruct γ conductivity maps, x̂sample.

Bias: Our first metric, denoted as Bias, is computed by first taking the per-pixel average
of the γ conductivity maps. Then, the conductivity map predicted from the evaluated model
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when the sensor readings had no addition of noise is then subtracted from the averaged
conductivity map. This results in the computation of the bias map given as:

Bias(p, q) =
{ 1

γ

γ

∑
i=1

x̂i
sample(p, q)

}
−x̂0

sample(p, q) (3)

where Bias(p, q) is the bias at pixel (p, q), γ is the number of iterations, x̂i
sample(p, q) is

the predicted conductivity at pixel (p, q) in the i-th iteration, x̂0
sample(p, q) is the predicted

conductivity at pixel (p, q) when no noise is added in ysample. Thus, the bias map visualizes
the model’s tendency to deviate from accurate predictions under different noise conditions.
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Figure 4. Visual comparison of the quality of the reconstruction of the conductivity distribution
xsample from example ground truths of the validation set on the evaluated models. We used the
simulation configuration of d = 5 mm with M = 100 sensors.

Deviation: We utilized the γ conductivity maps to compute per-pixel standard deviation
values, resulting in the deviation map formulated as follows:

Deviation(p, q) =

√√√√ 1
γ

γ

∑
i=1

(x̂i
sample(p, q)− x̄sample(p, q))2 (4)

where Deviation(p, q) is the deviation at pixel (p, q), and x̄sample(p, q) is the average pre-
dicted conductivity at pixel (p, q) across all γ iterations. Hence, the per-pixel deviation map
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estimates the variability in the model’s conductivity predictions across multiple instances of
sensor noise. It also elucidates the model’s sensitivity to noise in sensor readings. Together,
the bias and deviation maps offer an effective way to analyze the specific strengths and
weaknesses of a model to solve the inverse problem, enabling a deeper understanding of
the model’s behavior under realistic noisy conditions.

Peak Signal-to-Noise Ratio (PSNR)

In our future experimental setup, a uniformly distributed noise may be present in
the sensor readings. Our previous study [71] showed that, generally, up to ±10 nT noise
is observed in similar settings. Therefore, we introduced uniform noise δsample within the
range of ±1 nT, 3 nT, 5 nT, 10 nT, 50 nT, 100 nT, 500 nT, and 1 µT. We also evaluated
our models on higher noise levels in order to analyze its robustness under atypical sensor
anomalies. These noise levels were sampled γ times and was added to the validation set
of magnetic flux density measurements, as discussed in Section 4.4. The distance of the
sensors from the liquid metal was fixed at d = 25 mm with M = 50 sensors. To quantify
the amount of noise δsample added to the magnetic flux density measurements ysample of the
validation set, we computed the Peak Signal-to-Noise Ratio (PSNR), expressed in decibels
(dB). PSNR measures the logarithmic ratio between the maximum power of the noise-free
magnetic flux density measurement, ysample and the mean of the squared noise δsample as:

PSNR = 20 · log10(Max(ysample))− 10 · log10(Mean(δ2
sample)) (5)

The PSNR metric quantifies the relationship between the maximum possible signal
power and the power of the noise in the signal. A higher PSNR value in this context implies
better signal quality, indicating a reduced level of noise or distortion in the magnetic sensor
readings. Table 1 presents the average PSNR scores obtained from samples within the
validation set of magnetic sensor data. Notably, the noise level up to ±50 nT already results
in a low PSNR score. Therefore, the insights from Table 1 prompt further study to visually
and quantitatively assess the robustness of the INN model relative to other approaches
when reconstructing the conductivity distribution under low PSNR settings.

Table 1. Average peak signal-to-noise ratio for the validation set of the ground truth magnetic flux
density data. The distance of the sensors from the liquid metal is d = 25 mm with M = 50 sensors.

Noise 1 nT 3 nT 5 nT 10 nT 50 nT 100 nT 500 nT 1 µT

PSNR (dB) 56.46 46.93 42.51 36.48 22.50 16.49 2.48 −3.52

5. Experiments and Results

In this section, we discuss our experimental setup and the obtained results. In
Section 5.1, we explain the standardization of the training and test data. Section 5.2 details
the meta-parameters defined for training the INN. Finally, we report qualitative results in
Section 5.4 and quantitative results in Section 5.5.

5.1. Data Standardization

To create distinct training and validation sets, we shuffled the simulated geometries
and allocated 80% of the 10,000 geometries for training and 20% for validation. Additionally,
we conducted data standardization to facilitate the model’s learning process and enhance
convergence efficiency. Standardizing the data ensures that all features share a similar
scale, promoting faster convergence, numerical stability, and generalizability. Given the
distinct units of measurement for magnetic flux density and conductivity distribution,
standardization becomes particularly essential in our case. We specifically employ Z-score
normalization as our standardization method, transforming the simulation data to have
a per-feature mean value of 0 and a standard deviation of 1. We perform the standard-
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ization procedure separately for the magnetic flux density data and binary conductivity
distribution.

5.2. INN Hyperparameters

The INN model underwent training on four NVIDIA A100 GPUs, utilizing Python
3.8.6 and PyTorch 1.9.0. We fixed the training meta-parameters such as the batch size at
100, optimizer as Adam with a learning rate of 1× 10−4, the exponential decay rate for the
first and second moment as 0.8 and 0.9, respectively, epsilon score at 1× 10−6, and weight
decay at 2× 10−5. Concerning the INN architecture, we maintained three fully connected
layers in s and t networks for each coupling block. Each layer has 128 neurons and tanh
activation function after the first and second layers, whereas there is no activation function
in the output layer of the s and t networks. We studied the effect of the number of coupling
blocks for validation loss convergence in Section 5.5.1.

5.3. Evaluated Methods

We implemented two distinct coupling block architectures, drawing inspiration from
RealNVP [58] and Glow [59] as the backbone of our INN model. Each of these INN
models was trained with the loss function described in Equation (2). We also trained the
Glow-based INN model with the Mean Squared Error (MSE) as the objective function
such that Lx(θ) = 1

W ∑W
i = 1|xi − f (yi, zi, θ)|2. The purpose was to assess its performance

in terms of reconstructing the conductivity distribution. In addition, we explored three
alternative approaches to address the inverse problem at hand, Tikhonov, Elastic Net, and
Convolutional Neural Network (CNN). The models Tikhonov and Elastic Net hinge on
fitting a linear model regulated by a penalty term. The Tikhonov approach applies an
L2-Norm penalty on the parameters of the linear model for regularization, while Elastic
Net regularization employs a combination of L1-Norm and L2-Norm penalties on the
model parameters. The weights of the regularization term for the Tikhonov and Elastic
Net approaches were determined through cross-validation on the training set. To further
diversify our evaluation, we introduced a CNN model designed for reconstructing the
conductivity distribution. The loss function for the CNN was formulated similarly to
Equation (2). For training the CNN model, we transformed the 100 sensor input data into
a 10× 10 dimensional input, while the 510 conductivity points were transformed into a
34× 15 output 2D map. Further architectural details of the developed CNN model are
provided in Table 2. In this paper, we will refer to the six models as INN–Glow, INN–
RealNVP, INN–Glow (MSE), Tikhonov, Elastic Net, and CNN as needed.

5.4. Qualitative Results

In this section, we present a comprehensive visual comparison of the reconstructed
conductivity distribution from several evaluated models. We also report the results of the
parameter studies, and discuss the bias and deviation maps obtained from the INN–Glow
and Tikhonov model under noisy sensor measurements.

5.4.1. Prediction of the Conductivity Maps: A Comparative Study

In Figure 4, we present the results of predicted conductivity maps by the INN–Glow,
INN–RealNVP, Tikhonov, Elastic Net, and the CNN models. These predictions are based
on the sensor configuration with d = 5 mm and M = 100 sensors. It can be observed
that both INN–Glow and INN–RealNVP models provides a good approximation of the
ground truth conductivity map. The reconstructions reveal pertinent details regarding the
locations of non-conducting PMMA cylinder-induced void fraction. The visual outcomes of
Tikhonov and Elastic Net regularization exhibit similarities to those of the INN models. In
contrast, the CNN model yields a smoother prediction owing to the convolution operation
inherent in its architecture. However, the CNN model wrongly predicts the presence of
void fraction in regions characterized by high conductivity, as visible in the results of
Sample 1. We believe that this occurs due to CNN’s inherent emphasis on learning the local
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patterns in the image. However, for our specific inverse problem, understanding the global
relationship between the bubble distribution and conducting liquid using a fully connected
network-based INN acts as a more suitable choice. Furthermore, CNNs are inherently
tailored for image processing, while INNs are data agnostic and adaptable to diverse data
types. Importantly, INNs are invertible in its design, a property that CNNs lack.

Table 2. Architecture of the developed Convolutional Neural Network (CNN) for the simulation
configuration of M = 100 sensors and the sensor distance of d = 5 mm from the liquid metal.

Layer Type Number of Filters Feature Size Kernel Size Strides

Image Input Layer 10 × 10 × 1

1st convolution layer 32 10 × 10 × 32 [3, 3] [1, 1]

ReLU Layer

2nd convolution layer 64 10 × 10 × 64 [3, 3] [1, 1]

ReLU Layer

3rd convolution layer 128 5 × 5 × 128 [4, 4] [2, 2]

ReLU Layer

4th convolution layer 128 5 × 5 × 128 [3, 3] [1, 1]

ReLU Layer

5th convolution layer 64 5 × 5 × 64 [3, 3] [1, 1]

Nearest Neighbor Upsampling 10 × 10 × 64

6th convolution layer 32 10 × 10 × 32 [3, 3] [1, 1]

Nearest Neighbor Upsampling 20 × 20 × 32

7th convolution layer 1 20 × 20 × 1 [3, 3] [1, 1]

Nearest Neighbor Interpolation 34 × 15 × 1

5.4.2. Effect of the Sensor Distance and Number of Sensors

We explored the impact of varying the distance of sensors from the liquid metal, d,
and the number of sensors, M on the quality of the conductivity reconstruction using our
INN–Glow model. In this experiment, we trained three separate instances of the INN–Glow
model using simulation data, which is based on varying the distance d and number of
sensors M. The first setup is defined with (d = 5 mm; M = 100), the second setup with
(d = 25 mm; M = 100), and the third setup as (d = 25 mm; M = 50). Figure 5 present the
results obtained from the three example ground truths within the validation set. It shows
that the region containing the void fraction is smoother as the distance of the sensors from
the liquid metal is increased and the number of sensors is decreased. This outcome can be
attributed to the increased difficulty for the model to solve the inverse problem with a lower
number of sensors and a greater distance of the sensors from the liquid metal. Nevertheless,
the model is effective in reconstructing the arrangement of PMMA cylinder-induced void
fraction, also for the third setup with M = 50 and d = 25 mm.

5.4.3. Robustness to Noise: INN vs. Tikhonov without Noisy Training Data

Based on the method in Section 4.4, we present the results for the reconstruction
of the conductivity distribution, bias, and deviation maps after incorporating noise into
the validation set of magnetic flux density data. The results are reported after fixing the
parameter γ = 100 for the INN–Glow model. We also report the results obtained after
utilizing the Tikhonov model under the same experimental setup. Note that the training
data did not contain noise in the sensor readings.

Conductivity Maps: In Figure 6, the left column shows the INN–Glow model’s robust-
ness in reconstructing the conductivity distribution, even with the presence of uniform
noise δsample up to ±100 nT in the magnetic flux density data. In contrast, the first column
of Figure 7 conveys a noteworthy decline in Tikhonov’s performance to reconstruct con-
ductivity distribution, evident even with ±3 nT noise in the sensor data. This discrepancy
results from the Tikhonov model’s inherent linearity, making it highly susceptible to noise
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perturbations. In contrast, the INN–Glow, with its inherent non-linearity is resilient to noise,
resulting in visually superior performance compared to Tikhonov.
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Figure 5. Comparison of the reconstruction quality of the conductivity distribution for the Invertible
Neural Network (INN)–Glow model after varying the simulation parameters, such as distance from
the liquid metal d and the number of sensors M.

Bias and Deviation Maps: The middle column in Figures 6 and 7 illustrates bias maps for
INN–Glow and Tikhonov, respectively. The results show that the Tikhonov model has a high
bias, indicating a higher instability in its conductivity predictions when exposed to varying
noise within the same noise value range. In contrast, the INN–Glow model exhibits minimal
bias and has a high level of robustness for reconstructing conductivity maps with the
presence of noise up to±100 nT in the sensor readings. The right column in Figures 6 and 7
shows the deviation maps for INN–Glow and Tikhonov, respectively. The per-pixel standard
deviation of the conductivity maps obtained from the Tikhonov model (see color bars of
the deviation maps) linearly increases from noise level ±1 nT to ±1 µT. On the contrary,
the INN–Glow model shows resilience with consistently low per-pixel deviation, that only
rises after sensor readings are perturbed with the ±100 nT noise level. These results convey
that Tikhonov model, due to its linearity, is markedly more susceptible to noise than the
INN–Glow model.

5.4.4. Robustness to Noise: INN vs. Tikhonov with Noisy Training Data

In this section, we compare the results obtained from INN–Glow and Tikhonov models
after the noise levels of ±3 nT and ±50 nT were added to the sensor measurements
during training. The parameter γ is set at 100, and we show the reconstructed conductivity
distribution, bias, and deviation maps at varying level of noise during testing.

Conductivity Maps: The left column of Figures 8 and 9 shows the reconstruction of the
conductivity maps obtained from the INN–Glow model trained with ±3 nT and ±50 nT
noise in the training data, respectively. Additionally, the left column of Figures 10 and 11
shows the reconstruction of the conductivity maps for the Tikhonov model at ±3 nT
and ±50 nT noise in the training data, respectively. It is evident that for ±3 nT noise in
training data, the INN–Glow model exhibit robustness to predict the void fraction up to
±50 nT noise in the validation example, while the Tikhonov model precisely reconstructs
conductivity up to ±10 nT noise in the validation example. However with ±50 nT noise in
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the training data, the reconstruction of the conductivity distribution from both the Tikhonov
and INN–Glow model are robust until ±100 nT noise in the validation example.
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Figure 6. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the INN–
Glow model at different noise levels with d = 25 mm, M = 50 sensors, and γ = 100. The INN–Glow
model is trained with magnetic flux density measurements that have no noise in the sensor readings.
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Figure 7. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the Tikhonov
model at different noise levels with d = 25 mm, M = 50 sensors, and γ = 100. The Tikhonov model
is fitted with magnetic flux density measurements that have no noise in the sensor readings.
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Figure 8. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the INN–
Glow model at different noise levels with d = 25 mm, M = 50 sensors, and γ = 100. The INN–Glow
model is trained with magnetic flux density measurements that have ±3 nT uniformly distributed
noise in the sensor readings.
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Figure 9. Reconstruction of the conductivity maps (left column) and the corresponding bias (middle
column) and deviation maps (right column) obtained from the Invertible Neural Network (INN)–
Glow model at different noise levels with d = 25 mm, M = 50 sensors, and γ = 100. The INN–Glow
model is trained with magnetic flux density measurements that have ±50 nT uniformly distributed
noise in the sensor readings.
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Figure 10. Reconstruction of the conductivity maps (left column) and the corresponding bias (middle
column) and deviation maps (right column) obtained from the Tikhonov model at different noise
levels with d = 25 mm, M = 50 sensors, and γ = 100. The Tikhonov model is fitted with magnetic
flux density measurements that have ±3 nT uniformly distributed noise in the sensor readings.
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Figure 11. Reconstruction of the conductivity maps (left column) and the corresponding bias (middle
column) and deviation maps (right column) obtained from the Tikhonov model at different noise
levels with d = 25 mm, M = 50 sensors, and γ = 100. The Tikhonov model is fitted with magnetic
flux density measurements with ±50 nT uniformly distributed noise in the sensor readings.



Sensors 2024, 24, 1213 22 of 29

Bias and Deviation Maps: The middle and right columns of Figures 8 and 9 show the
bias and deviation maps obtained from the INN–Glow model at ±3 nT and ±50 nT noise
in the training data, respectively, while the middle and right columns in Figures 10 and 11
display the bias and deviation maps for the Tikhonov model. The results for ±50 nT noise
in the training data reveals that until±100 nT noise in the validation example, the Tikhonov
model has lower bias and deviation than the INN–Glow model. With the presence of similar
noise levels in both training and validation data, a linear model like Tikhonov typically
has a low bias while models like INN–Glow can produce higher bias due to their inherent
non-linearity. However, both the INN–Glow and Tikhonov models exhibit high bias and
deviation at ±500 nT and ±1 µT noise levels in the validation example.

5.4.5. Robustness to Noise: Summary

To summarize, the results from Sections 5.4.3 and 5.4.4 show that the INN–Glow
model performs better than the Tikhonov model if trained without noise and tested with
noise in sensor measurements. This finding holds for a large range of noise levels. However,
if the noise level is known during model training, the Tikhonov model performs as good as
our INN model for reconstructing conductivity maps with lower bias and deviation for the
reconstruction. Therefore, for the future experimental setups, if the noise level is not known
or if the noise is varying based on the properties of the sensor measurements or further
external influences, we can perform INN–Glow training without incorporating noise and
then utilize the trained INN–Glow model to precisely reconstruct the conductivity maps in
the presence of noise in sensor readings, even if the noise level changes significantly.

5.4.6. Effect of Number of Uniform Noise Samples

We conducted a parameter study to analyze the significance of the number of uniform
noise samples γ on the bias and deviation computation for reconstructing the conductivity
maps. For this experiment, we fixed the noise level of±100 nT, and the results are presented
in Figure 12, for γ at 10, 100, and 1000 samples. It is apparent that γ has a pronounced
effect on the Tikhonov model, reducing bias more significantly compared to the INN–Glow
model when γ is higher. Furthermore, there is less effect of varying γ on the deviation maps
for both models. The results affirm that an increase in the γ value tends to reduce bias, but
fixing a very high value of γ may result in substantial computational requirements.

5.4.7. Random Sampling from Latent Space

We analyzed the influence of random sampling from the normally distributed latent
space zsample on the INN model’s robustness for reconstructing the conductivity distribu-
tion. We sampled the latent space zsample multiple times, and alongside the magnetic flux
density measurements ysample, we passed [zsample, ysample] to the INN–Glow model for the
reconstruction of the conductivity distribution. This sampling procedure was repeated
100 times, and we computed bias and deviation maps following the similar protocol es-
tablished in previous experiments. The results, illustrated in Figure 13 for the example
validation ground truth, show that random sampling from the latent space zsample causes
minimal bias and deviation on the quality of the reconstruction of the conductivity dis-
tribution. This observation is evident in the three examples of the predicted conductivity
distributions as shown in Figure 13d–f from three different latent zsample vectors and low
bias and deviation scores as shown in Figure 13b,c, respectively.
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Figure 12. The figure shows the bias and deviation maps for Invertible Neural Network (INN)–Glow
and Tikhonov models after varying the parameter γ. The results are for the validation ground truth
example in Figure 6. We used the noise range ±100 nT in the sensor data, and no noise was added
during the training.
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Figure 13. The figure shows the results after random sampling from the latent space zsample of the
INN–Glow model. The bottom row shows examples of the reconstructed conductivity distribution
after varying zsample. The model is trained with the magnetic flux density measurements consisting of
no noise in training and validation data and simulation parameters are d = 5 mm, M = 100 sensors.

5.5. Quantitative Results

In this section, we provide quantitative results for a thorough evaluation of the pro-
posed models for solving the inverse problem. We discuss key performance metrics, such
as the random error diffusion, average bias, and average deviation scores, to assess each of
the evaluated model’s qualities of the reconstructing conductivity distribution.

5.5.1. Effect of Number of Coupling Blocks on Validation Loss

Figure 14 illustrates the impact of the number of coupling blocks k of the INN–Glow
model on the convergence of validation loss. We stop the model training when the val-
idation loss begins to increase. The loss curves reveal that a single coupling block leads
to underfitting, while a higher number of blocks may result in overfitting without the



Sensors 2024, 24, 1213 24 of 29

stoppage of the training iterations. Figure 14a–c show that the configuration d = 25 mm
and M = 100 has higher validation loss compared to the setup with d = 5 mm and
M = 100 due to reduced information in magnetic flux density measurements with a greater
sensor distance from the liquid metal. Additionally, the configuration with d = 25 mm
and M = 50 sensors further degrades information, leading to much higher loss while
solving the inverse problem. Despite the inferior loss convergence, Figure 5 demonstrated
the INN–Glow model’s ability to learn the location of void fraction for the configuration
with d = 25 mm and M = 50 sensors. Notably, increasing the number of coupling blocks
beyond k = 3 does not substantially reduce validation loss, as the loss scores at the last
epoch before the training stoppage as shown in Figure 14d reveals.

a) d = 5 mm, M = 100 sensors b) d = 25 mm, M = 100 sensors

c) d = 25 mm, M = 50 sensors d) Loss values after training ends

(

(

(

(

Figure 14. The validation loss curves of multiple instances of the Invertible Neural Network (INN)–
Glow models with varying numbers of coupling blocks, denoted as k, and under varying values of
the parameters d and M.

5.5.2. Random Error Diffusion

We compared the results obtained from the random error diffusion metric presented in
Section 4.3 for the six different models to solve the inverse problem. The results in Figure 15
show the log-likelihood distribution of all the 2000 validation ground truth samples for
varying counts of binary ensembles n. It can be seen that the log-likelihood scores are
centered near zero irrespective of the model, and the ensemble count n. This outcome can
also be verified by the averaged log-likelihood scores in Table 3. Figure 15 and Table 3
show that for both n = 100 and 1000, the INN–Glow and INN–RealNVP models perform
better than the linear models, i.e., Tikhonov and Elastic Net as well as INN-Glow (MSE)
as they achieve higher average log-likelihoods. However, the CNN model has a higher
log-likelihood score than all other evaluated models. Due to the convolution operation,
the CNN model predicts blurred images. The blurring obscures fine details and feature
edges and makes the image appear more uniform and less detailed, similar to a binary
map. Hence, random error diffusion estimates higher likelihoods that these blurred images
are being sampled from the density of binary ensembles.
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Figure 15. The figure shows the distribution of log-likelihood scores for all the validation ground
truth conductivity samples with respect to the probability distribution of binary ensemble maps
via random error diffusion. The left and right figures are for ensemble counts of 100 and 1000,
respectively.

Table 3. Averaged log-likelihood scores based on random error diffusion from the validation ground
truth samples. The simulation parameters are fixed at d = 5 mm and M = 100 sensors.

Model INN-Glow INN-Glow (MSE) INN-RealNVP Tikhonov Elastic Net CNN

n = 100 −662.64 −1658.68 −910.38 −1907.59 −1291.45 −258.37

n = 1000 −2000.93 −5199.36 −1040.56 −2241.14 −3042.36 −975.01

5.5.3. Bias and Deviation

Table 4 presents the quantitative results related to bias and deviation maps for the INN–
Glow and Tikhonov models. To compute the deviation score, we took the average of the
deviation maps across all the 2000 validation samples for different noise levels. Additionally,
for computing both bias (min) and bias (max), we determine the minimum and maximum
bias scores from all 2000 validation bias maps. The results in Table 4 indicate that the
INN–Glow model consistently exhibits much lower deviation and bias scores compared to
the Tikhonov model. This underscores the INN–Glow model’s stability and robustness in
reconstructing conductivity maps in the presence of noise in sensor readings during testing,
when there is no noise during training. Conversely, the Tikhonov model is less reliable,
especially when subjected to noise beyond ±10 nT in sensor readings.

Table 4. Average bias and deviation scores with respect to validation ground truth at d = 25 mm,
M = 50 sensors, and γ = 100 for different noise levels. The models being used are INN–Glow and
Tikhonov, and during training, the data does not contain any noise in the sensor readings.

Metric Model 1 nT 3 nT 5 nT 10 nT 50 nT 100 nT 500 nT 1 µT

Deviation
INN-Glow 0.015 0.016 0.016 0.018 0.043 0.073 1.648 3.144

Tikhonov 0.069 0.206 0.344 0.687 3.437 6.869 34.337 68.679

Bias (min)
INN-Glow −0.160 −0.160 −0.160 −0.161 −0.173 −0.233 −3.778 −9.937

Tikhonov −0.09 −0.315 −0.483 −1.185 −5.050 −10.157 −57.615 −107.509

Bias (max)
INN-Glow 0.227 0.227 0.227 0.227 0.229 0.273 5.280 10.670

Tikhonov 0.099 0.290 0.485 1.272 5.123 10.093 53.572 101.363

5.5.4. Number of Uniform Noise Samples

Table 5 displays the average deviation and bias scores for varying values of γ. The
results indicate that a higher number of noise samplings lead to reduced bias, but a minimal
change in the deviation scores, which is consistent with our findings in Figure 12. Notably,
the Tikhonov model shows a significant reduction in bias scores, suggesting its sensitivity
to the choice of γ. Similarly, the INN–Glow model’s sensitivity to γ is evident, although the
impact is less pronounced given its already low bias scores. Given the results in Table 5,
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we fixed γ = 100 for our experiments as this value provides a good balance between the
computational requirements and the model’s performance.

Table 5. Average bias and deviation scores with respect to all the validation ground truth geometries
at d = 25 mm, M = 50 sensors, noise level fixed at ±100 nT, and varying γ. The results are from the
INN–Glow model, and the training data are without the presence of noise in the sensor readings.

Metric Model γ = 10 γ = 100 γ = 1000

Deviation
INN-Glow 0.070 0.073 0.073

Tikhonov 6.93 6.87 6.92

Bias (min)
INN-Glow −0.897 −0.233 −0.183

Tikhonov −33.274 −10.157 −3.027

Bias (max) INN-Glow 0.856 0.273 0.316

Tikhonov 28.074 10.093 2.949

6. Conclusions

In this study, we introduced Invertible Neural Networks (INNs) for the reconstruction
of conductivity distribution from external magnetic field measurements under simulation
conditions similar to those encountered in a water electrolyzer. Our results highlight the
robustness of the INN model, showcasing its ability to learn conductivity distributions
in the face of the inherently ill-posed nature of the problem and the presence of noise in
magnetic flux density measurements. In contrast, linear models like Tikhonov exhibit high
susceptibility to noise, due to which the reconstructions from such models are unreliable
beyond a certain noise level in sensor readings of the test data, especially when the model
is fitted with sensor data containing no noise. The extensive evaluation, involving bias,
deviation, and random error diffusion metrics, underscore the superior performance of the
INN model in approximating ground truth conductivity maps compared to the Tikhonov
model. Additionally, our findings suggest that INNs can efficiently reconstruct conductivity
maps even with a limited number of sensors, positioned at distances exceeding 20 mm from
the conducting plate. Our INN model’s real-time prediction capabilities have practical ap-
plications, especially in estimating the void fraction distributions within actual electrolysis
cells. This positions INNs as a promising model for localizing and estimating bubble void
fraction locations in current-conducting liquids. In the future, we will focus on evaluating
INNs for bubble and void fraction detection within experimental electrolysis setups and
also test the findings from this work in other inverse problems of applied physics.
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