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Abstract: Most automated vehicles (AVs) are equipped with abundant sensors, which enable AVs
to improve ride comfort by sensing road elevation, such as speed bumps. This paper proposes a
method for estimating the road impulse features ahead of vehicles in urban environments with mi‑
croelectromechanical system (MEMS) light detection and ranging (LiDAR). The proposed method
deploys a real‑time estimation of the vehicle pose to solve the problem of sparse sampling of the
LiDAR. Considering the LiDAR error model, the proposed method builds the grid height measure‑
ment model by maximum likelihood estimation. Moreover, it incorporates height measurements
with the LiDAR error model by the Kalman filter and introduces motion uncertainty to form an ele‑
vation weight method by confidence eclipse. In addition, a gate strategy based on the Mahalanobis
distance is integrated to handle the sharp changes in elevation. The proposedmethod is tested in the
urban environment. The results demonstrate the effectiveness of our method.

Keywords: road impulse features; LiDAR error model; pose estimation; MEMS LiDAR

1. Introduction
Safety, reliability, comfort, and economy have become the key factors for the devel‑

opment of high‑quality automated vehicles (AVs). The main source of vertical input for
an AV is road unevenness [1]. The unevenness of the road surface directly affects the ride
comfort, smoothness, and operation stability. Due to the diversity of functional require‑
ments and the complexity of the driving environment, AVs often havemanyheterogeneous
sensors [2], such as light detection and ranging (LiDAR), camera, inertial measurement
unit, etc. The road impulse features, such as speed bumps in front of the vehicle, can be
sensed by relying on these powerful sensors. The semi‑active or active suspension of the
vehicle can be adjusted in advance before the vehicle reaches the target area. This funda‑
mentally solves the problem of time delay in traditional control methods and improves the
ride comfort of the car.

AVs require knowledge of the surroundings to safely and efficiently interact with the
environment. The LiDAR is one of the most popular sensors in the field of autonomous
driving due to its long range and high accuracy in 3D measurement. Existing approaches
were mainly developed for mechanical LiDAR sensors, which collect the surrounding in‑
formation by spinning a high‑frequency laser array [3]. However, due to its high cost and
weight, the mechanical LiDAR is difficult to implement on AVs as a mass production solu‑
tion. In the last few years, the solid‑state LiDAR has gained more interest due to its cost‑
effectiveness and lightweight. The microelectromechanical system (MEMS) solid‑state Li‑
DAR is a system that is built entirely on a silicon chip with no moving parts
involved [4]. Therefore, it has advantages in size and weight compared to the mechani‑
cal LiDAR. Moreover, the MEMS solid‑state LiDAR is resistant to vibrations by removing
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the rotatingmechanical structure, which enhances its reliability and durability [3]. To illus‑
trate the difference between the two LiDARs, we used Velodyne HDL‑64E and RoboSense
RS‑LiDAR‑M1, for example. The specifications can be found in Table 1.

Table 1. The difference between mechanical and MEMS solid‑state LiDAR.

Type Frequency FoV Horizontal
Resolution

Vertical
Resolution

Detection
Range Accuracy Weight

Velodyne HDL‑64E Mechanical 10 Hz 360◦ × 26.8◦ 0.08–0.35◦ 0.4◦ 0.5–100 m 2 cm 15.1 kg
RoboSense

RS‑LiDAR‑M1 MEMS Solid‑state 10 Hz 120◦ × 25◦ 0.2◦ 0.2◦ 0.7–200 m 2 cm 0.8 kg

Perceiving the road impulse information is a vital capacity for semi‑active or active
suspension preview control. This task is usually accomplished by building a map of the
road using acquired sensor data. Several mapping methods have been proposed to build
a dense map based on trajectory estimation, such as an occupancy grid map and elevation
map [5]. An elevation map replaces the binary information in the occupied grid map with
elevation so that it is widely applied in outdoor environments. Generally, a global eleva‑
tion map is built offline when the trajectory is estimated by simultaneous localization and
mapping (SLAM). However, in scenarios where no prior map is available, the trajectory
is estimated and corrected by SLAM online [6]. It means that we have to not only save
all sensor data but also overcome the sensitivity to environmental conditions. For suspen‑
sion preview control, we focused on the mapping accuracy of observed regions in front of
the AVs rather than global mapping accuracy. Moreover, this mapping method can bet‑
ter achieve real‑time map updates. Zhao et al. [7] and Wang et al. [8] deployed the local
mapping framework to extract the preview elevation of roads based on LiDAR, IMU, and
GPS, which achieved real‑time and accurate estimation to some extent. Although the afore‑
mentioned methods show a good performance, the relatively low vehicle speed allows
sufficient time for estimation. Therefore, we constructed a real‑time local road elevation
estimation. The main idea is to implement a local map through grid height based on the
sensor error model and motion uncertainty. The proposed method leverages lightweight
pose estimation and grid height models to reduce computational costs while considering
uncertainty in the map update to improve accuracy. Our contributions are summarized as
follows: (1) a real‑time estimation algorithm of the vehicle pose by a MEMS LiDAR with a
small FOV; (2) a grid height model based on the LiDAR error model to aggregate multiple
points within a grid; (3) by deriving error propagation to align the maps of consecutive
frames, lightweight local map updates are achieved; and (4) a gate strategy based on the
Mahalanobis distance to deal with the sharp changes in elevation.

This paper is organized as follows: Section 2 reviews the related works on existing
LiDAR elevation estimation approaches. Section 3 describes the details of the proposed
real‑time local road elevation estimation method. Section 4 shows experimental results
and comparisons with existing works, followed by a conclusion in Section 5.

2. Related Work
A vehicle’s surroundings can be geometrically modeled by constructing representa‑

tions of the underlying terrain surface using range sensor data. These range sensors pro‑
duce sparse point cloud representations, which must then be converted into continuous or
piecewise structures to use [9]. Many methods have been proposed to describe the terrain
under the vehicle. The occupancy grid map [10] proposed by Elfes is the most common
one. The occupancy gridmap describes the environment as some regular grids of a specific
size. And the value of each grid represents the probability that the grid is occupied. The
above concept of a 2D occupancy grid map is intuitively extended to a 3D occupancy grid
map. Kudriashov et al. [11] proposed a method for constructing a 3D occupancy grid map
of unknown terrain by LiDAR. The construction of the 3D map and the pose estimation
of the system are carried out simultaneously using the extended Kalman filter and other
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probabilistic methods. Three‑dimensional occupancy grid maps provide abundant infor‑
mation and less ambiguity [12]. Another idea is to store information about 3D voxels in the
octree, such as OctoMap [13]. The voxel size is a design parameter that influences memory
usage, computation time, and, more importantly, the accuracy of the map. However, the
voxels are distributed discretely, and we lose information about details inside each voxel.
The space inside each cell is better represented in the normal distributions transform oc‑
cupancy map [14]. And it was successfully applied on a large scale [15] and for highly
dynamic environments [14]. Another 3D geometric description of the terrain is signed dis‑
tance fields (SDF) or truncated signed distance Fields (TSDF). These methods map the dis‑
tance to the nearest occupied cell rather than storing the entire volumetric representation
of the environment [16]. Canelhas et al. utilize SDF to represent the alignment error and
estimate the motion of the camera [17]. Sommer et al. [18] proposed gradient‑SDF to de‑
scribe 3D geometry that combines the advantages of implicit and explicit representations.
Grinvald et al. [19] extended the TSDF model using information about object categories.
Lang et al. [20] proposed a monocular SLAM system with direct TSDF mapping based on
a sparse voxelized recurrent network. The direct TSDF mapping achieves simultaneous
estimation of pose and map using features.

However, the 3D occupancy grid map will cause extremely high computational costs.
It fails to strike a balance between resolution and computation time, which makes the
method unavailable in real‑time scenarios. As a compromise, the 2.5D occupancy grid
map method has been proposed in recent years. Each of the grid values is redefined as the
height of the grid. Fankhauser et al. [21,22] proposed a 2.5D grid map‑building method
considering the uncertainty of robot motion. Souza et al. [23] described the occupancy‑
elevation grid mapping method, where each cell represents the probability, height, and
variance of occupancy. Zhou et al. [24] employed the preemptive RANSAC algorithm to
extract planes from the terrain height information within the voxel grid. It enables the es‑
timation of parameters such as height and depth in structured environments. Although
the above methods achieved real‑time mapping in some applications, highly accurate es‑
timation is essential to accomplish reliable suspension preview control. Several works
have introduced neural networks [25–30] to generate dense elevation maps. The neural
networks effectively eliminate the noises and generate rational features in the occluded re‑
gions, which enhances the robustness and accuracy of methods in different environments.
But, it is hard to implement real‑time suspension preview control.

3. Method
The framework of our proposed method is illustrated in Figure 1. The arrows in the

Figure 1 represent the data flow between different parts. In the feature extraction part, we
selected feature points that can describe all MEMS LiDAR points. This function reduces
the amount of data and speeds up processing. And in the pose estimation part, we uti‑
lized scan‑to‑map to estimate the vehicle pose. In addition, in the map construction part,
all MEMS LiDAR points are mapped to the corresponding grid. When multiple points
were projected into one grid, we applied the maximum‑likelihood estimation to fuse the
elevation at that grid. In the map update part, the consecutive frame data are accumulated
by pose estimation to deal with the problem of LiDAR sparse sampling points. And the
elevation map algorithm that incorporates range measurements with a sensor error model
by Kalman filter was used.

3.1. Vehicle Pose Estimate
3.1.1. Feature Extraction

The pose estimation is the bridge between consecutive frame measurements. There‑
fore, the proposed method develops feature extraction and matching rules based on the
characteristics of the MEMS solid‑state LiDAR. The resolution of the MEMS solid‑state
LiDAR is higher than the mechanical LiDAR. As mentioned above, RS‑LiDAR‑M1 scans
125 × 126 × 5 raw points in each frame, which is a heavy burden for the pose estimator.
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It is not only slow but also susceptible to noise to match the raw point clouds directly.
Therefore, we down‑sampled the raw point cloud through a voxel grid filter [31]. And we
further processed the point cloud data in the feature space. Inspired by LOAM [32], we
extracted features from the down‑sampled point cloud data to transform the point cloud
into features with obvious physical significance to improve the quality of registration. At
the same time, feature extraction achieves mapping from high‑dimensional space to low‑
dimensional space, making the matching speed meet real‑time requirements.
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Specifically, plane features and edge features were extracted from point clouds. And
we divided them according to the local smoothness. The local smoothness f is
described as

f =
1∣∣∣S ∣∣∣·∥PL
(k,i)∥

∥ ∑
j∈S ,j ̸=i

(
PL
(k,i) − PL

(k,j)

)
∥ (1)

where PL
(k,i) represents the coordinate of the point i in the kth frame in the LiDAR coor‑

dinate system. And PL
(k,j) represents the coordinate of the point j in the kth frame in the

LiDAR coordinate system. S represents the set of continuous points from the same row
in each frame of the LiDAR. And half of the points in S are on either side of PL

(k,i). In this
paper, we set the size of S to 10, namely |S| is 10. A larger local smoothness f means the
surrounding plane is curved, while a smaller local smoothness f means the surrounding
plane is smooth.

In practice, due to the staggered scanning channels of RS‑LiDAR‑M1, the data of the
five channels are processed separately. In addition, unlike the mechanical LiDAR, the RS
LiDAR‑M1 uses a spiral scanning trajectory for each channel. The scanning trajectory at
the edge of the channel has overlap and large curvature, which is marked with yellow
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ellipses in Figure 2. And it does not conform to the assumption of smooth changes in adja‑
cent points. Therefore, it is necessary to remove the spiral parts at the edge of the channel.
The comparison before and after removal is shown in Figure 2. We have adopted differ‑
ent colors for each channel, which makes it easy to observe the reduction of the overlap
between channels after removal.
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In addition, in response to the small horizontal field FOVof RSLiDAR‑M1, a reflection
intensity smoothness f I is defined to alleviate its impact on feature point selection. The f I
is described as

f I =
1
|S|

∣∣∣∣∣ ∑
j∈S ,j ̸=i

(
I(PL

(k,i))− I(PL
(k,j))

)∣∣∣∣∣ (2)

where I(PL
(k,i)) stands for the reflection intensity of point PL

(k,i), and I(PL
(k,j)) stand for the

reflection intensity of point PL
(k,j). For any LiDAR point P = [x, y, z] with a reflectivity of

RE, the reflection intensity is defined as I(PC) = RE√
x2+y2+z2

.

The points in each scan channel are sorted based on the f value. Then, we selected the
point with the maximum f value as the edge feature and the minimum f value as plane
feature. Each scan channel can provide a maximum of 1 edge feature and 2 plane features.
As shown in Figure 3, a–c are regarded as plane features, while e and f are regarded as
edge features. In practice, we set the plane feature threshold to be less than 0.2 and the
edge feature threshold to be greater than 0.5. A point i can be selected as an edge feature
or a plane feature only if its f value is larger or smaller than a threshold and the number
of selected points does not exceed the maximum.
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Furthermore, to indicate the impact of the limited FOV of the solid‑state LiDAR, we
introduced reflectivity as another evaluation metric. Generally speaking, objects of differ‑
ent materials have different reflectivity. If the reflectivity of a point is very different from
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the surrounding points, there is a high probability that this point is the edge of the two
materials. Therefore, we extended the concept of edge feature points, which regards such
points as edge feature points. As shown in Figure 3, due to the green part being another
material with different reflectivity, the point d is an edge feature point.

Considering the special measuring function of theMEMS solid‑state LiDAR, the point
cloud should be processed first. As is shown in Figure 4, the RS‑LiDAR‑M1 obtains data
through five channels simultaneously. In other words, 5 points are received at the same
time. There is a certain stagger in the vertical arrangement direction between the channel
and the channel. And the FOV of each channel is not exactly the same. Since each channel
is spiral scanning, there is a huge curvature at the edge of each channel, which causes a
problem in feature extraction. Hence, we eliminated these edge points to increase the pose
estimation accuracy. In addition, the LiDAR points that meet the following conditions also
need to be eliminated:
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Points that are on the boundary of occluded regions, such as point g in Figure 3. If
the LiDAR moves a little to another place, these points are unobservable.

Points on local plane surfaces that are roughly parallel to the laser beams, such as
point h in Figure 3. These points change dramatically with tiny movements of the LiDAR,
which is unreliable.

Pointswith strange intensity. The intensity describes the strength of the received laser
signal. Both too high and too low usually lead to weak confidence and accuracy.

3.1.2. Pose Estimation
Pose estimation is the task of estimating the pose of the current moment relative to

the previous moment based on historical scans. Estimation methods include scan‑to‑scan
match and scan‑to‑map match [33]. A scan‑to‑scan match only relies on the point cloud
data of the previous frame, which obtains a lower computational cost. However, the ac‑
curacy of this method is inevitably lower due to less information. Therefore, we imple‑
mented a scan‑to‑map match, which improves accuracy without excessive computational
cost consumption.

In order to achieve a balance between performance and efficiency, we introduced a
sliding window method to build the local map Mk = {Pk−1, Pk−2, · · · , Pk−n}, where n is
the number of frames to build the local map. More specifically, the local map is divided
into the edge map and the plane map. And the map in every time step is built by the K‑D
tree [34] to increase search efficiency.

As mentioned above, matching on raw point clouds is less efficient and sensitive to
noise. Thus, we leveragedmatching edge points and plane points in feature space. To find
the nearest edge point from the local map, the edge point pe was projected to the local map
by the following transformation:

p̂e = Tk · pe (3)

where Tk is the LiDAR pose in the kth frame and needs to be determined by the pose
estimation.

In our work, we found five nearest points in the local edge map of each pe, which is
shown in Figure 5a. The arrow represents the corresponding relationship. To ensure that
the five points are in a straight line such as P1–P5 located on blue dashed line in Figure 5a,
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we computed the mean µ and covariance matrix Σ formed by those five points. If the
maximumeigenvalue of thematrixΣ ismore than three times larger than the second largest
eigenvalue, we believe that those five points are on a straight line. Then, the edge‑to‑edge
residual is computed as the following:

re2c =
|(pe − p5)× (pe − p1)|

p5 − p1
(4)
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Similar to the edge residual, for each plane point pp,we searched for the five nearest
points in the local plane map such as P1–P5 located on green plane in Figure 5b, which is
shown in Figure 5b. To ensure that five points are in the same plane, we also computed
themean µ and covariancematrix Σ formed by those five points. If the smallest eigenvalue
of the matrix Σ is more than three times smaller than the second smallest eigenvalue, we
believe that those five points are in the same plane. Then, the plane‑to‑plane residual is
computed as the following:

rp2p =
(pp − p1)

T((p3 − p5)× (p3 − p1))

|(p3 − p5)× (p3 − p1)|
(5)

Finally, the vehicle pose is estimated by minimizing the edge‑to‑edge residual and
plane‑to‑plane residual:

argmin
Tk

∑ re2c + ∑ rp2p (6)

3.2. Road Elevation Map Update by Microelectromechanical System Light Detection and
Ranging Measurement

Stable and accurate road elevation estimation plays a crucial role in suspension pre‑
view control. This section constructs a vehicle‑centric local elevation map. Firstly, an
isotropic model is deployed to represent LiDAR error, where the parameters are obtained
through experiments. Then, themaximum‑likelihood estimation is used to aggregate mea‑
surements in the same grid. Secondly, considering the impact of motion uncertainty in
map updates, the error propagation of pose estimation is derived. At the same time, the
gate strategy based on the Mahalanobis distance is adopted to filter the measurements
falling into the grid. And the map is updated using a one‑dimensional Kalman filter. Fi‑
nally, the elevation of each grid is weighted using a confidence ellipse as output for road
elevation estimation.

3.2.1. Grid Height Modeling Based on Light Detection and Ranging Error Model
(1) Noise Characterization of the LiDAR

The noise characteristics directly affect the accuracy of the elevation map. The beam
model is a commonly used approximationmodel for LiDAR.However, the complexmodel
results in low efficiency of point cloud data processing. It is difficult to ensure the real‑
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time requirements of elevation map construction. In reference to [35], the LiDAR error
model can be represented as an anisotropic model, as shown in Figure 6. The anisotropic

error model is parametrized with a vector representing the beam direction
→
b , supporting

the standard deviation on depth σd. The standard deviation of the beam σr is supported

implicitly by any vector perpendicular to
→
b . The impact of sunlight, reflection, and large

intensity range are ignored. Then, the parameters σr and σd are defined as follows:

σr =
0.6d + 1.48

1000
(7)

σd = 0.012 (8)
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In addition, the error model is further simplified as an isotropic representation with
only one standard deviation σm and is defined as follows:

σm = max{σr, σd} (9)

(2) Definition of Grid Height

There are multiple point clouds that fall into one grid, and it is necessary to form a
unified description of the grid height through certain processing to improve computational
efficiency. Aftermodeling the aforementioned LiDAR errormodel, eachmeasurement can
be described as a Gaussian distribution. Therefore, this section uses maximum likelihood
estimation to obtain a unified description of the Gaussian distribution of grid height.

The grid height in the map coordinate system M is defined as a Gaussian distribution
N
(

p, σ2
p

)
. And the LiDARmeasurements are also approximated as Gaussian distribution

N
(

pi, σ2
pi

)
by the error model. When many different measurements pi with known vari‑

ances σ2
pi
fall into the grid, each grid of the elevation map is updated by multiple LiDAR

measurements. The maximum‑likelihood estimation [36] is adopted in this paper to calcu‑
late the grid height.

The probability density function of a Gaussian distribution with mean p and variance
σ2

pi
is described as the following:

fi

(
pi

∣∣∣p, σ2
pi

)
=

1√
2πσ2

pi

exp

(
− (pi − p)2

2σ2
pi

)
(10)

The likelihood function L(p) is calculated from the product of the probability density
function of all n measurements. The equation is as follows:

L(p) =
n

∏
i=1

1√
2πσ2

pi

exp

(
− (pi − p)2

2σ2
pi

)
(11)
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To determine themaximum of the likelihood function, the derivative of the likelihood
function is taken, and its derivative is set to zero. Taking the logarithm of the likelihood
function simplifies the calculation process, and the result remains the same.

∂

∂p
log L(p) =

n

∑
i=1

pi − p
σ2

pi

(12)

Let Equation (13) be equal to 0. Then, solving this equation results in the following:

p =
n

∑
i=1

pi
σ2

pi

/
n

∑
i=1

1
σ2

pi

(13)

σ2
p =

1
n

n

∑
i=1

(pi − p)2 (14)

3.2.2. Map Update from Grid Height
(1) Coordinate Systems

As shown in Figure 7, there are four coordinate frames in this paper: the vehicle co‑
ordinate system V, the LiDAR coordinate system L, the map coordinate system M, and
the internal coordinate system I. The vehicle coordinate system V is fixed to the vehicle
centroid (the orange dot in the vehicle). And the LiDAR coordinate system L is fixed to
the LiDAR centroid. There exists a known transformation TLV between the LiDAR coordi‑
nate system and the vehicle coordinate system V. With this known transformation, we can
convert the LiDAR measurements to the vehicle coordinate system. The map coordinate
system M is defined in relation to the vehicle coordinate system V with transformation
TVM. The internal system is fixed to the environment. And it is used as a reference for
other coordinate systems. The orange arrow indicates the forward direction of the vehicle.
The orange dashed lines describe the LiDAR range measurement for point p.
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(2) Elevation Map Update Based on Motion Uncertainty

Map update mainly consists of two parts. One part is to use the grid height modeled
in the previous section to achieve elevation map construction through one‑dimensional
Kalman filtering. The other part is to derive the error propagation of pose estimation in
map update.

The Kalman filter is implemented to achieve elevation map estimation
(

ĥ, σ2
h

)
from

the grid height measurement
(

p, σ2
p

)
. When the LiDAR scans a point p, it needs to be

mapped to themap coordinate system. As shown in Figure 7, a single measurement, given
as the range LrLPi

in the LiDAR frame, can be transformed into the correspondingmeasure‑
ment pi with

pi = projz(Φ−1
LM(LrLPi )−M rLM) (15)
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where projz = [0 0 1] maps the three‑dimensional measurement to the scalar
measurement pi.

However, the grid height is established in the map coordinate system, while the Li‑
DAR noise model is established in the LiDAR coordinate system. Therefore, it is necessary
to calculate the error propagation introduced by coordinate system conversion. The error
propagation for the variance σ2

pi
is given as

σ2
Pi
= JLΣL JT

L + JΦΣΦIL JT
Φ (16)

where JL and JΦ represent the Jacobians for the LiDARmeasurement and the sensor frame
rotation, respectively. JL and JΦ are described as

JL =
∂p

∂LrLP
= projzC(ΦLM)T (17)

JΦ =
∂p

∂ΦLM
= projzC(ΦLM)T

Lr×LP (18)

where C(·) is used to describe the mapping to the corresponding rotation matrix. The
superscript × represents the skew‑symmetric matrix of the corresponding vector.

Moreover, ΣΦIL represents the rotation covariance matrix of the LiDAR. According to
the relationship defined by the coordinate system, the z‑axis of the elevation map coordi‑
nate system and the inertial coordinate system are always aligned. And the LiDAR coor‑
dinate system and elevation map coordinate system are fixedly connected to the vehicle
body. Therefore, the measurement uncertainty of the z‑axis rotation in ΣΦIL is zero. ΣΦIL
only includes uncertainty in pitch and roll. ΣL is the covariance matrix of the LiDAR error
model. According to the isotropic error model defined above, the equation is as follows:

ΣL =

σ2
m 0 0
0 σ2

m 0
0 0 σ2

m

 (19)

In this paper, we only selected the grid height measurement
(

p, σ2
p

)
as the state. Due

to the irregular changes in the height direction, the one‑dimensional Kalman filter only
includes the update part.

K(k) = σ2−
h (k)HT

(
Hσ2−

h (k)HT + σ2
p(k)

)−1
(20)

ĥ(k) = ĥ−(k) + K(k)
(

p(k)− Hĥ−(k)
)

(21)

σ2
h (k) = (I − K(k)H)σ2−

h (k) (22)

where ĥ−(k) and σ2−
h (k) represent the priori estimation of the elevation map and its error

covariance at time step k, respectively. ĥ(k− 1) and σ2
h (k− 1) represent the state estimation

of the elevation map and its error covariance at time step k, respectively. p(k) is the grid
height measurement at time step k. And σ2

p(k) is themeasurement noise covariance at time
step k. K(k) is theKalman gain at time step k. H(k) is themeasurementmatrix at time step k.
I represents the identitymatrix. H represents themeasurementmatrix, which is an identity
matrix. Consequently, the one‑dimensional Kalman filter is rewritten as the following:

ĥ(k) =
σ2

p(k)ĥ−(k) + σ2−
h (k)p(k)

σ2
p(k) + σ2−

h (k)
(23)

σ2
h (k) =

σ2−
h (k)σ2

p(k)

σ2−
h (k) + σ2

p(k)
(24)
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Due to the assumption that the inertial coordinate system is stationary and the eleva‑
tion map coordinate system is fixed to the vehicle body, it is necessary to align the map in
consecutive frames by pose estimation. As shown in Figure 8, for time k, the map coordi‑
nate system (blue coordinate system) is associated with the vehicle coordinate system (red
coordinate system) through mapping

(
rṼk Mk

, ΦṼk Mk

)
. At time k = 2, the estimation r̂M2P of

point P in the map coordinate system M2 can be represented by the estimation r̂M1P of the
map coordinate system M1 at time k = 1 (orange dashed line), i.e., the following:

r̂M2P = −rṼ2 M2
− r̂Ṽ1Ṽ2

+ rṼ1 M1
+ r̂M1P (25)
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Rewrite Equation (24) using the reference coordinate system M2 as

M2
rM2P = −rṼ2 M2

− Φ−1
Ṽ2 M2

(Ṽ2
r̂Ṽ1Ṽ2

) + Φ̂−1
M1 M2

(M1 rṼ1 M1
+M1 r̂M1P) (26)

By using Equation (25), any estimation in M1 can be mapped to M2. And assuming
rMk P ∼ N

(
r̂Mk P, ΣP,k

)
, the propagation of covariance from k = 1 to k = 2 can be written

as follows:
ΣP,2 = JPΣP,1 JT

P + JrΣr JT
r + JΦΣΦ JT

Φ (27)

where ΣP,1 is the covariance matrix at k = 1. The covariance matrices Σr and ΣΦ represent
the motion uncertainty of the vehicle reference coordinate systems Ṽ1 to Ṽ2. They are both
modeled by Gaussian distribution, rṼ1Ṽ2

∼ N
(

r̂Ṽ1Ṽ2
, Σr

)
and ΦṼ1Ṽ2

∼ N
(

Φ̂Ṽ1Ṽ2
, ΣΦ

)
.

Moreover, the Jacobian matrix corresponding to the three parts is as follows:

JP =
∂M2 r̂M2P

∂M1 r̂M1P
= C(Φ̂M1 M2)

T
= I (28)

Jr =
∂M2 r̂M2P

∂Ṽ2
r̂Ṽ1Ṽ2

= −C(Φ̂Ṽ2 M2
)

T (29)

JΦ =
∂M2 r̂M2P

∂Φ̂Ṽ1Ṽ2

= −(M1 rṼ1 M1
+M1 r̂M1P)

×C(Φ̂Ṽ1 M1
)

T (30)

(3) Elevation Weighted Method Based on Confidence Eclipse

Motion uncertainty not only affects elevation but also accumulates errors in the xy
direction. When calculating the height of a grid, the neighboring grids covered by motion
uncertainty also have an impact on it. Therefore, this section uses the confidence ellipse
method to search a certain range based on covariance to weigh the elevation value of the
grid. Only the grid within the area where the wheel trajectory passes through is height‑
weighted,which canfilter the elevationwhile ensuring real‑timeperformance. We adopted
a 95% confidence ellipse to extract grid elevation, including the acquisition of axis vectors
and the calculation of fusion weights.
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Themajor andminor axis of the confidence ellipsewith a 95%confidence are 2
√

5.991λ1
and 2

√
5.991λ2, respectively, where λ1 and λ2 are the maximum eigenvalue and minimum eigen‑

value of the covariance matrix. If the x‑axis and y‑axis data have a correlation, then the major and
minor axes of the confidence ellipse are not aligned with the coordinate axis. And the angle between
them can be determined by the eigenvectors corresponding to the eigenvalues. The angle between
the major axis and the x‑axis is calculated with the following:

γ = arctan
(

υ1
υx

)
(31)

where υ1 represents the eigenvector corresponding to the maximum eigenvalue of the covariance
matrix, namely, the eigenvector of the major axis. υx represents the unit vector of the x‑axis.

For a grid, assuming its confidence ellipse covers n adjacent grids, theweight of the surrounding
grid i to that grid is ωi, which is defined as the following:

ωi =

(
CDFx(ax +

b
2
)− CDFx(ax −

b
2
)

)
·
(

CDFy(ay +
b
2
)− CDFy(ay −

b
2
)

)
(32)

where ax and ay represent the distance from grid i to the updating grid in the x and y directions,
respectively. CDFx and CDFy represent the Gaussian cumulative distribution function in the x and
y directions, respectively.

Finally, the fusion elevation of the grid is calculated after obtaining the weights of all adjacent
grids within the confidence ellipse with the following formulas:

ĥ =

n
∑

i=1
ωi ĥi

n
∑

i=1
ωi

(33)

σ2
h =

n
∑

i=1
ωi(σ

2
h,i + ĥ2

i )

n
∑

i=1
ωi

− ĥ2 (34)

(4) The Gate Strategy Based on Mahalanobis Distance

Since there is no clear kinematics relationship for height change, the map cannot realize the
sudden change in height immediately when encountering an object whose height direction changes
sharply. Therefore, this section proposed a gate strategy to help the map respond quickly.

The gate based on the Mahalanobis distance is defined as the following:

Mahalanobis(k) =
(

p(k)− ĥ(k − 1)
)T
(

σ2
h (k − 1) + σ2

p(k)
2

)−1(
p(k)− ĥ(k − 1)

)
(35)

If the Mahalanobis distance is less than gate size c, it is considered that the measurement falls
into the gate, and there is no sharp change in elevation. When encountering objects with sharp
increases or decreases in height, such as walls and stone piers, we selected the larger of the measure‑
ment and estimated it as output. Based on the above constraints, the gate strategy is described as
follows:

ĥ(k) =


p(k) p(k) > ĥ(k − 1) and Mahalanobis(k) > c

ĥ(k − 1) p(k) < ĥ(k − 1) and Mahalanobis(k) > c
σ2

h (k−1)p(k)+σ2
p(k)ĥ(k−1)

σ2
h (k−1)+σ2

p(k)
else

(36)

σ2
ĥ (k) =


σ2

p(k) p(k) > ĥ(k − 1) and Mahalanobis(k) > c
σ2

h (k − 1) p(k) < ĥ(k − 1) and Mahalanobis(k) > c
1

1
σ2

h (k−1)
+ 1

σ2
p (k)

else
(37)

4. Experiment Evaluation
The sport utility vehicle demonstrator equipped with a MEMS solid‑state LiDAR and a

GPS/IMU is shown in Figure 9. The sensor parameters are listed in Table 2. The MEMS solid‑state
LiDAR is installed in the middle bottom of the front of the vehicle, and the GPS/IMU is installed
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in the center of the rear axle in the trunk. The proposed road elevation estimation algorithm is exe‑
cuted on an IPC ADVANTECH MIC‑770 with an Intel i7‑9700E CPU at 2.6 GHz, 16 GB RAM, and
Ubuntu 18.04 OS. And it is implemented as a C++ library with an interface to the Robot Operating
System (ROS) [37]. For efficient data handling and operations, the software builds upon the grid
map library [38]. Furthermore, we evaluated our proposed method from height accuracy and time
efficiency in the real‑world experiment.
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Table 2. The detail parameters of the sensors.

Sensor Parameters

RoboSense RS‑LiDAR‑M1

Type: MEMS Solid‑state
Frequency: 10 Hz
FoV: 120◦ × 25◦

Horizontal
Resolution: 0.2◦

Vertical
Resolution: 0.2◦
Weight: 0.8 kg

Detection Range: 0.7–200 m
Accuracy: 2 cm

CHC CGI‑220
Frequency: 100 Hz

Position accuracy: 1 cm + 1 ppm (RTK)
Pose accuracy: 0.1◦ (baseline ≥ 2 m)

4.1. Accuracy Analysis
The primary indicator of themapping algorithm is accuracy since road unevenness is important

for ride comfort, which is strongly related to suspension preview control. The evaluation scenario
is shown in Figure 10. The car is driven at a speed of 36 km/h. And we put a cuboid with the
size of 0.6 × 0.4 × 0.05 m3 in the scenario. To evaluate the accuracy, the ground truth is divided
into two parts. One is the cuboid part, which uses its own size parameters as the ground truth.
Another one is the road part, which uses the Hi‑Target D8Pro GNSS receiver to survey the road
as the ground truth with a position accuracy of 5 mm + 0.5 ppm. The visualization of the road
elevationmap is shown in Figure 11. In Figure 11, the color of the grid represents the height. And red
indicates higher elevation values and green indicates lower elevation values. We manually picked
the cuboid from the built map and compared the height with the ground truth, i.e., 0.05 m, to obtain
the elevation accuracy. Then, four grid sizes of 0.05, 0.10, 0.15, and 0.20 m are set to evaluate the
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accuracy with respect to the resolution. Additionally, the Octomap is employed as a comparison,
and the results are shown in Table 3. The error of the cuboid height of the proposed method is no
more than 5 mm when the resolution is 0.05 m. This error has almost no impact on a tire wheel due
to its characteristics [39]. As a comparison, the elevation accuracy is affected by the resolution using
Octomap due to the 3D discretization.
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Table 3. The mapping accuracy comparison.

Resolution (m) 0.01 0.2 0.05 0.10

Ours (cm) 0.48 0.64 0.83 0.97
Octomap (cm) 1.25 2.24 3.59 4.16
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4.2. Time Efficiency
Time efficiency is another important indicator of the mapping algorithm supporting online

control. When the system cannot achieve real‑time performance, elevation maps can be sparse and
do not sufficiently feed enough information to the controller. We first evaluated the computation
time of the elevation map on IPC. Then, we compared the time with other comparative methods to
show the evolution in a large‑scale environment.

To evaluate the computation time, we ran both methods in the above evaluation scenario and
recorded the frame rate. In the proposed method, the map size is 15 × 9 m2 with 0.05 m resolution.
Consequently, our approach achieves almost 25 Hz on IPC and Octomap only 8 Hz. Like most
voxel representations, integration of measurements by raycasting and nonrigid transformations is
computationally expensive to perform. Therefore, the time required for map generation of Octomap
lagged significantly behind that for sensor data acquisition (10 Hz).

Moreover, scalability is also an important metric of time efficiency. To validate the scalability,
we compared the running time of the elevation map building of the proposed model with the size
of 15 × 9 m2, 20 × 12 m2, and the resolution of 0.10 m and 0.20 m. As shown in Figure 12, when
the size of the elevation map becomes larger, more cells are allocated for map building, resulting in
more computation time. Considering that the cells in the map 20 × 12 m2 with 0.10 m resolution
have seven times more grids than those with 15× 9 m2 with 0.20 m resolution, the computation time
only grows less than one point seven times. In addition, even if the mapping environment becomes
larger and larger, the proposed algorithm still has good scalability, which is important for real‑time
suspension control.
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4.3. Pose Estimation Performance
In the suspension preview control, it is only necessary to extract the elevation from the local

map, which has a low requirement for global consistency. However, the generation process of the
local map still needs to introduce the vehicle pose. This paper compares our pose estimation algo‑
rithm with the open‑source algorithm LeGO‑LOAM in the urban outdoor scenario that is shown in
Figure 13a. The trajectory of the car is the red line in Figure 13a. The car was driven at a speed of
36 km/h. In order to obtain a good GPS signal, the experiment is carried out on an unobstructed
road; thus, the feature points may be sparse. In addition, the test is conducted in sunny weather.
Moreover, there are some snows on the road that may affect the LiDAR.

The comparison results are shown in Figure 13b, where the trajectories of ground truth, LeGO‑
LOAM, and our method are plotted in blue, red, and green, respectively. The RTK signal is utilized
to represent the ground truth. The proposed method can accurately estimate the trajectory in the
urban outdoor scenario. The LeGO‑LOAM algorithm can also correctly estimate the vehicle pose
when running straight, but the trajectory has a large error during turning. Figure 13c,d are the point
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clouds aligned by the pose estimated using our proposed algorithm and LeGO‑LOAM. It can be
shown that the algorithm proposed in this paper has a high consistency, while the LeGO‑LOAM
algorithm has a poor effect due to the low accuracy of vehicle rotation estimation.
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5. Conclusions
The traditional method of utilizing suspension sensors makes it hard to handle the irregular

road impulses that occur ahead of vehicles in urban environments, which seriously affects ride com‑
fort. Therefore, we have presented a road impulse estimation method in an urban environment with
a MEMS LiDAR that addresses the problem of road sensing for suspension preview control. The
main novelty of the proposed method is estimating the elevation in the local coordinate so that the
process of incorporating the newmeasurements into the elevationmap is only affected by the noise of
the range sensor and the accuracy of the pose estimation. Themethod includes four key components.
First, in order to solve the problem of sparse sampling points of the LiDAR, the proposed algorithm
deploys a real‑time estimation of the vehicle’s 3D pose. Second, taking the sensor error model of Li‑
DAR into account, the proposed algorithm builds the grid height measurement model to aggregate
multiple points falling into one grid. Third, it constructs local elevation maps using the Kalman fil‑
ter and introduces motion uncertainty to accomplish accurate elevation map updates. Lastly, a gate
strategy based on the Mahalanobis distance is integrated to deal with the sharp changes in elevation.
The proposed method is tested in a real outdoor environment. Finally, the accuracy and efficiency
of the proposed method are validated in a real‑world experiment, demonstrating its feasibility for
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road sensing. In the future, it will entail further considering the impact of dynamic objects in the sce‑
nario on elevation estimation. Our subsequent work will leverage deep learning for dynamic object
detection. Then, they will be separated from the elevation map to overcome any adverse effects of
dynamic objects.
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