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Abstract: The attainment of a substantial aperture in the rotating synthetic aperture imaging system
involves the rotation of a slender rectangular primary mirror. This constitutes a pivotal avenue of
exploration in space telescope research. Due to the considerable aspect ratio of the primary mirror,
environmental disturbances can significantly impact its surface shape. Active optical technology
can rectify surface shape irregularities through the detection of wavefront information. The Phase
Diversity (PD) method utilizes images captured by the imaging system to compute wavefront
information. In this study, the PD method is applied to rotating synthetic and other rectangular
aperture imaging systems, employing Legendre polynomials to model the wavefront. The study
delved into the ramifications stemming from the aperture aspect ratio and aberration size.

Keywords: Legendre polynomial; phase diversity method; rectangular aperture imaging system;
space telescope; wavefront detection

1. Introduction

The size of the aperture plays a crucial role in determining the performance of space
telescopes. A larger-aperture system can capture high-resolution images of distant and faint
celestial objects. However, due to constraints in carrying capacity, the diameter of a space
telescope with a conventional monolithic primary is generally limited to 4 m. To address
this limitation, there have been developments in creating primary mirrors using new
materials and technologies that simulate large apertures, such as the membrane mirror [1,2],
segmented mirror [3,4], and rotating synthetic aperture (RSA) imaging systems [5].

The membrane mirror has a very low surface density and can be easily folded and
stored. There are two main types of membrane mirror: inflatable [6] and electrostatic [7].
Inflatable membrane mirrors have been used in radar bands, but due to the fluidity of
the gas, the surface shape is difficult to control and cannot be applied to optical bands.
Electrostatic thin film mirrors can achieve precise shape control, but their support and
control structures are so complex that it will take a long time before they are applied in
orbit. The segmented mirror is more advanced. It combines several smaller sub-mirrors
into an equivalent main mirror. However, this technology needs accurate adjustment of the
sub-mirror attitude, and the equivalent main mirror’s surface shape accuracy is inferior to
the traditional monolithic mirror. It is only suitable for the infrared band at present.

The RSA Telescope, backed by the U.S. government, Northrop Grumman, and Raytheon,
is being developed with the goal of achieving a 20-m equivalent diameter. Featuring a
narrow rectangular primary mirror, this monolithic mirror can be positioned vertically at
launch, maximizing the height of the launch section and surpassing the carrying limita-
tions. Throughout the imaging process, the primary mirror undergoes rotation around
the center. Through the fusion of images captured at various angles, a high-resolution
image is generated, utilizing the long side of the rectangular primary mirror as the equiva-
lent diameter. Harbin Institute of Technology carried out a comprehensive study on this
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technology using simulation and experiments [8–10], explained the imaging principle of
the RSA system, and analyzed the impact of factors such as the pupil aspect ratio and the
rotation of the primary mirror. Yagnyatinskiy [11] simulated the influence function of the
actuator in the rectangular deformable mirror and investigated the correction technology of
the rectangular mirror surface. However, no relevant research on the wavefront detection
technology of the rectangular aperture imaging system has been reported.

For the rotating pupil imaging system, the main sources of error during the imaging
process include the wavefront aberration induced by the primary mirror deformation, the
detector noise, and motion blur on the PSF caused by the rotation of the primary mirror.
After entering orbit, the large surface error of the primary mirror requires preliminary
detection and correction before rotating. During this process, the error caused by the
primary mirror rotation can be ignored.

The Marechal criterion states that an imaging system achieves the diffraction limit
when the Strehl ratio exceeds 0.8 [12]. At this point, the wavefront aberration of the system
should be below λ/14 (rms), and the surface error of the primary mirror should be below
λ/40 (rms). However, the rectangular mirror is prone to deformation in complex space
environments due to its large aspect ratio, and its surface error may exceed 1 µm (rms),
hindering the imaging in the visible light band. If the wavefront information can be
detected, the surface shape of the primary mirror can be corrected through active optical
technology, improving the image quality.

Shear interferometer, wavefront curvature sensor, pyramid sensor, Shack-Hartmann
wavefront sensor, and image-based wavefront sensing are common techniques for mea-
suring wavefront aberrations. Image-based wavefront sensing can estimate the wavefront
aberration at the exit pupil of an imaging system from the images captured by a detector
without adding extra equipment or introducing non-common path errors. This makes it
ideal for space telescopes that demand lightweight and reliable designs. Gerchberg and
Saxton [13] proposed the GS algorithm in 1972, which iteratively computes the phase from
an image. Based on this, Gonsalves introduced the phase diversity algorithm [14], which
recovers the distorted phase information using an objective function that incorporates
images from different defocus planes. Since then, the PD method has undergone compre-
hensive research by institutions such as the University of Central Florida [15], Lockheed
Martin Space Systems [16,17], and the Chinese Academy of Sciences [18–20], affirming its
practicality. This method has already found application in adjusting ground-based tele-
scopes and co-phase detection for segmented mirror telescopes. In this study, we propose
extending the application of the PD method to rectangular aperture imaging systems and
investigating the effects arising from the noise, aperture aspect ratio, and aberration size.

This paper is organized as follows. Section 2 presents the theory of the PD method.
Section 3 introduces the Legendre polynomial and proposes its use for wavefront fitting of
rectangular pupil imaging systems. The influence of the secondary mirror obscuration on
its orthogonality is also analyzed. Section 4 investigates the effects of factors such as noise,
pupil aspect ratio, and aberration size through numerical simulation. Section 5 validates
the method using a 280 mm diameter telescope. Section 6 makes discussion.

2. Theory of the PD Method

The intensity distribution in the collected image i(x, y) can be expressed as [21]:

i(x, y) = o(x, y) ∗ PSF(x, y) (1)

The o(x, y) is the distribution function of the observation target. The PSF represents
the point spread function of the system in the imaging plane. The ∗ denotes convolution
operation. For large-aperture telescopes, the imaging field of view is small. Therefore, the
PSF can be assumed to be constant across the entire image plane.

If there is noise n(x, y):

i∗(x, y) = i(x, y) + n(x, y) (2)
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When examined in the frequency domain, Equation (2) can be described as:

I∗(u, v) = O(u, v) · OTF(u, v) + N(x, y) (3)

The I∗(u, v), O(u, v), OTF(u, v) and N(x, y) are the Fourier transform of the i(x, y),
o(x, y), PSF(x, y) and n(x, y). The PSF is related to the shape of the pupil and the phase
ϕ(x, y) of the wavefront. The ϕ(x, y) contains aberration information. It can be fitted into a
two-dimensional polynomial:

ϕ(x, y) =
n

∑
i=1

ai · Li(x, y) (4)

where Li is a set of two-dimensional orthogonal polynomial, and ai is the coefficients.
The image intensity distribution does not uniquely determine the system’s wave-

front aberration since multiple wavefront phase distributions can produce the same PSF.
Therefore, a single image cannot reveal the wavefront information of the imaging system.
However, this can be overcome using two images with a known phase difference (typically
the in-focus and defocus images), which allows the wavefront information of the system to
be retrieved. The relationship between the phases of in-focus image ϕ(x, y) and defocus
image ϕd(x, y) is:

ϕd(x, y) = ϕ(x, y) +△ϕ(x, y) (5)

If the phase difference △ϕ(x, y) can be described by the polynomial Li, the ϕ(x, y) will
be obtained through mathematical methods.

According to the maximum likelihood theory, an evaluation function E(a) is defined
to measure the similarity between the reconstructed image and the actual captured image:

E(a) = ∑
(u,v)∈A

|I∗(u, v)OTFd(u, v)− I∗d (u, v)OTF(u, v)|2

|OTF(u, v)|2 + |OTFd(u, v)|2 (6)

where I∗d (u, v) is the defocus image intensity distribution, and the OTFd(u, v) is the OTF of
the defocus image.

By employing optimization algorithms like genetic algorithms, a set of coefficients ai
can be found to minimize the value of the evaluation function. ai can express the phase
ϕ(x, y). Figure 1 shows the flow chart of the PD method.

Figure 1. Flow chart of the PD method.
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3. Wave Fitting Based on the Legendre Polynomial

Zernike polynomials exhibit orthogonality within the circular domain and are fre-
quently employed to model wavefront data in circular optical pupil imaging systems.
However, when dealing with a rectangular aperture characterized by substantial length
and width, the disparity in shapes between the inner/outer circle and the rectangle results
in the loss of orthogonality for Zernike polynomials. In such cases, it is advisable to opt for
square-domain orthogonal polynomials for fitting purposes.

Rectangular orthogonal polynomials, such as Legendre and Chebyshev polynomials,
can be used for wavefront fitting. And both have defocus terms that can describe the
artificial defocus amount accurately.

For a rectangular aperture with length a and width b, its normalized coordinates are
m = x/a and n = y/b, respectively. Table 1 lists the 0th–6th terms of the one-dimensional
Legendre polynomial [22].

Table 1. The 0th–6th terms of the one-dimensional Legendre polynomial.

Term Expression Aberration

0 1 Piston
1

√
3m Tilt

2 (
√

5/2)(3m2 − 1) Defocus
3 (

√
7/2)(5m3 − 3m)

4 (3/8)(35m4 − 30m2 + 3)
5 (

√
11/8)(63m5 − 70m3 + 15m)

6 (
√

13/16)(231m6 − 315m4 + 105m2 − 5)

The orthogonal characteristic of a one-dimensional Legendre polynomial can be for-
mulated as: ∫ 1

−1
Pi(m, n)Pj(m, n)dm = 2δi,j (7)

The two-dimensional Legendre polynomial Li(m, n) is obtained by multiplying the
one-dimensional Legendre polynomial Pxi(m) and Pyj(n) in the x and y directions:

Li,j(m, n) = Pxi(m) · Pyj(n) (8)

The square domain exhibits the orthogonal characteristic of the two-dimensional
Legendre polynomial: ∫ 1

−1

∫ 1

−1
Li(m, n)Lj(m, n)dmdn = 4δi,j (9)

Table 2 lists the 1st–10th terms of the two-dimensional Legendre polynomial, and
Figure 2 plots the 1st–10th terms.

Table 2. The 1st–10th terms of the two-dimensional Legendre polynomial.

Term Expression Aberration

1 1 Piston
2 PX1PY0 X-tilt
3 PX0PY1 Y-tilt
4 PX2PY0 X-defocus
5 PX1PY1
6 PX0PY2 Y-defocus
7 PX3PY0
8 PX2PY1
9 PX1PY2
10 PX0PY3



Sensors 2024, 24, 1191 5 of 13

Figure 2. 1st–10th terms of the two-dimensional Legendre polynomial. The colors in the graph
indicate the values of the polynomial function at each point. Red means positive and blue means
negative, and the brighter the color, the larger the absolute value.

Table 3 lists the 0–6 order terms of the unnormalized one-dimensional Chebyshev
polynomial [23]. It can be seen that the Chebyshev polynomial has a similar form to the
Legendre polynomial, except for the coefficients. This implies that the Legendre polynomial
and the Chebyshev polynomial have the same order for the same number of terms, and
their wavefront fitting ability should be comparable. However, the orthogonality of the
Chebyshev polynomials is more complex, and they can be written as Equation (10) on the
interval [−1,1]: ∫ 1

−1

Ci(m)Cj(m)
√

1 − x2
dm =

{ 1
2 πδi,j i ̸= 0 or j ̸= 0

π i = j = 0
(10)

where Ci(m) denotes the i–th term of the one-dimensional Chebyshev polynomial. The
orthogonality of Chebyshev polynomials requires a weight function

√
1 − x2 that depends

on x, whereas the weight function of Legendre polynomials is constant. This suggests that
the Legendre polynomial is more convenient for fitting the wavefront information when
the aspect ratio of the rectangular pupil varies frequently.

Table 3. The 0th–6th terms of the unnormalized one-dimensional Chebyshev polynomial.

Term Expression Aberration

0 1 Piston
1 m Tilt
2 2m2 − 1 Defocus
3 4m3 − 3m
4 8m4 − 8m2 + 1
5 16m5 − 20m3 + 5m
6 32m6 − 48m4 + 18m2 − 1
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4. Numerical Simulation
4.1. Simulation Imaging

The imaging system has an F-number of 10, a 20 m aperture, a CCD size of 4.4 µm,
and operates in the 645.32 nm wavelength range. Specifically, to explore the impact of the
aspect ratio of the rectangular pupil, simulation imaging was conducted under varying
aperture aspect ratios (P = 1, 2, 4, and 8).

The PSF indicates the ability of an imaging system to focus the energy of a point light
source, and its shape reflects the image degradation. For a circular aperture imaging system
with high image quality, the PSF is typically a bright spot with high energy concentration.
For a rectangular pupil imaging system with a high aspect ratio, the PSF has strong
directionality, leading to different resolutions of the image in different directions. Figure 3
displays the simulated images and their PSFs for different aspect ratios. The extended
dimension of the aperture was fixed along the x-axis, while the shorter dimension changed
along the y-axis according to the aspect ratio. As the aspect ratio increased, the PSF’s span
along the y-axis expanded, and the resolution along the y-axis diminished gradually. To
preserve enough features, the aspect ratio should be regulated.

Figure 3. Simulation images and their PSFs with different aspect ratio. PSF values increase with
red intensity.

The primary mirror’s surface deformation is mainly caused by low-frequency er-
ror [24]. Usually, only the first three orders of aberrations are taken into account. They can
be fully expressed by the first 10 terms of the Legendre polynomial. Hence, the wavefront
aberration was generated by the 4th–10th terms of the Legendre polynomial (excluding
piston and tilt, which do not affect the mirror surface shape). The aberration size ranged
from 0.5λ to 2.0λ.

Noise affects the images collected by the system. The signal-to-noise ratio (SNR) is
often used to measure the impact of the noise. It is defined as [25]:

SNR = 10 lg
∑i,j g(i, j)2

∑i,j n(i, j)2 (11)

where g(i, j) and n(i, j) represent the gray values at (i, j) of the original image and the noise.
For a top-tier space telescope, the SNR in its captured image typically exceeds 20 dB.

In cases where thermal noise is the primary source of interference, it can be characterized
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by a Gaussian distribution [26] with a mean of 0 and a variance of σ2
n . To enhance realism,

a series of remote sensing images with a pixel count of 256 × 256 were utilized as the target
objects, with Gaussian noise introduced to achieve SNR levels of 20 dB (0.01), 25 dB (0.003)
and 30 dB (0.001).

The degree of defocus holds significant importance as it directly influences the details
in the defocused image, consequently impacting the outcome of the PD method [27].
When the defocus amount is too minimal, the phase difference between the two images
becomes negligible, posing challenges in accurately discerning wavefront information.
Conversely, excessive defocus results in a substantial loss of high-frequency details in the
image, sacrificing valuable features crucial for a successful solution. Optimal results in the
PD method are achieved when a change in the defocus amount causes the coefficient of the
defocus term corresponding to the long side (the fourth term of the Legendre polynomial)
to reach 1.0. Additionally, the coefficient change of the defocus term corresponding to the
short side (the sixth term of the Legendre polynomial) is determined as 1/P2.

4.2. The Influence of the Secondary Mirror Obscuration

Coaxial reflective optical structures are common in large-aperture space telescopes,
where the secondary mirror obscures part of the primary mirror. This may affect the
orthogonality of the Legendre polynomial and lead to a decrease in the detection accuracy
of the PD method.

For the factors of machining technology, the shape of a secondary mirror is usually
circular. Assuming a rectangular pupil with an aspect ratio of 2 and a circle obscuration
(Figure 4) with a radius of r (0 < r < b), simulate the aberration of 1.0λ (rms) using the
4th to 10th terms of the two-dimensional Legendre polynomial, add noise with an SNR of
30 dB, and use the PD method to reconstruct the wavefront information.

Figure 4. Rectangular region with a circular obscuration.

Figure 5 shows the RMSE of the PD method results for different sizes of the obscuration.
It can be observed that the PD method becomes less accurate as the size of the secondary
mirror increases, but the error always stays below λ/100. Hence, the secondary mirror
obstruction is not a significant factor when calculating the wavefront information of the
rectangular pupil imaging system using the PD method, especially for large aspect ratios.
Therefore, the effect of the sub-mirror obstruction is neglected in the following simulation.
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Figure 5. The impact of obscuration size on the calculation accuracy of PD method.

4.3. Calculation Results and Analysis

In this paper, aberrated wavefronts with root mean square (RMS) values of 0.5λ, 1.0λ,
1.5λ, and 2.0λ were simulated using the fourth to tenth terms of the two-dimensional
Legendre polynomials. Corresponding sharp and blurred images were generated for
optical pupil aspect ratios P of 1, 2, 4, and 8, respectively. Gaussian noise, based on signal-
to-noise ratios of 20 dB, 25 dB, and 30 dB, was incorporated. The wavefront information
of the noise was determined using a genetic optimization algorithm, with the algorithm
initiating with 350 individuals. To minimize the randomness of the genetic algorithm, the
computation concluded when the score of the best individual remained unchanged for
70 consecutive generations.

The calculated wavefront phase is ϕPD(x, y). The Root Mean Square Error (RMSE)
between the real wavefront ϕ0(x, y) and ϕPD(x, y) was used to evaluate the quality of the
results. The expression of RMSE is:

RMSE =

√√√√ 1
N ∑

(x,y)
[ϕPD(x, y)− ϕ0(x, y)] (12)

N is the number of sampling points of ϕ0(x, y).
Figure 6 shows the RMSE of the PD method calculation results under different con-

ditions. Each data point represents the average outcome of 20 computations. Since the
evaluation function is based on the intensity distribution of the image, the spatial features
of the image directly affect the calculation accuracy of the PD method. As the pupil as-
pect ratio, noise, and aberration increase, the image quality decreases, which leads to the
decrease in the detection accuracy of the PD method.

When P = 1, the PD method achieves the best results. When SNR = 30 dB, even if
the aberration is 2λ, the calculation accuracy can reach λ/100, and the relative error (the
ratio of RMSE to aberration size) is 0.38%. The calculation accuracy drops slightly when
SNR = 25 dB but still reaches λ/100 (relative error 0.59%) when the aberration is less than
1λ. When the aberration reaches 2λ, the calculation accuracy is λ/20 (relative error 2.3%).
When SNR = 20 dB, the calculation accuracy worsens, but it remains in the same order of
magnitude as when SNR = 25 dB. This indicates that the PD method has good solution
results for rectangular pupil imaging systems with a small aspect ratio (similar to circular)
when SNR > 25 dB.
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Figure 6. The impact of SNR and aberration size on the calculation accuracy of PD method when
P = 1, 2, 4 and 8.

When P = 2, the accuracy of the PD method deteriorates. The calculation accuracy
cannot reach λ/50 when SNR = 20 dB and aberration is greater than 0.5λ. It is necessary
to use active optical devices to correct the aberration or improve the SNR to enhance the
calculation accuracy and meet the wavefront detection requirements.

When P = 4, the accuracy of the PD method declines further, and this effect is more
pronounced when P = 8. The detection accuracy is only at the sub-wavelength level when
the aberration is greater than 1λ. However, it is noteworthy that when P = 8, SNR = 25 dB,
and aberration size is 0.5λ, the calculation accuracy reaches within λ/50. This indicates that
for imaging systems with large pupil aspect ratio and good SNR, although very accurate
detection of the wavefront is impossible when the aberration is large, it is feasible to use
active optical devices to perform multiple rounds of detection-correction operations on the
system wavefront and ultimately achieve the image quality standard.

5. Experiment

The experimental setup employed a Celestron CGEM 1100HD telescope (made by
Celestron, a company located in Torrance, CA, USA) with a 280 mm aperture and an
F-number of 10. A rectangular diaphragm featuring an aspect ratio of 2 was added to create
a rectangular aperture. Multiple imaging systems with rectangular pupils can be obtained
by rotating the diaphragm. Additionally, a filter with a center wavelength of 645.32 nm
was incorporated into the telescope, and a Canon R50 camera (made by Canon, a company
located in Tokyo, Japan.) was connected to the displacement platform to collect in-focus
and defocus images. Refer to Figure 7 for a visual representation of the telescope.

The device captured numerous images with varying focus levels. A broader region fea-
turing the identical observation target was captured and aligned, and then a 256 × 256 image
was extracted based on the alignment outcomes. This extracted image was subsequently em-
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ployed in the PD method for wavefront calculation. The degree of defocus was established
at 0.5163 mm in accordance with Equation (13).

εz = −8F2 △ d (13)

Figure 7. Imaging device. A Celestron CGEM 1100HD telescope became a rectangular imaging
system with a rectangular diaphragm. A Canon R50 camera was connected to the displacement
platform as the detector.

The self-collimating examination accurately identifies the wavefront, serving as a
benchmark for assessing the efficacy of the PD method. Figure 8 illustrates the underlying
principle and the practical implementation of the self-collimating test. In this setup, an
interferometer releases a spherical wave from the imaging system’s focal plane. This wave
transforms into a plane wave after traversing the imaging system and is then reflected by a
plane mirror. Retrieval of the wavefront information occurs when the light wave returns to
the interferometer through its initial optical pathway.

Figure 8. Schematic diagram of self-collimating examination.
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By rotating the diaphragm, multiple imaging systems with rectangular pupils were
obtained. Figure 9 displays the wavefront maps identified through both the PD method and
the self-collimating test in two sets of experiments. In the two groups of experiments shown
in the figure, the PD method detected the wavefront deviation from the self-collimating
detection result as 1.9% and 2.4%. The detection accuracy was slightly lower than the
simulation results (about 1.7%) due to the neglect of higher-order aberration, defocus error,
secondary mirror obstruction, and other factors. This indicates that in the rectangular pupil
imaging system (especially the system with active optical devices), using the PD method to
detect the wavefront information and then correct the surface shape of the primary mirror
is feasible.

Figure 9. Comparison of wavefront map gained by the two methods.

6. Discussion

In summary, this paper explored how to apply the PD method to the imaging system
with a rectangular aperture. For wavefront fitting, we propose the Legendre polynomial,
which is orthogonal in the rectangular region and has defocus terms (the fourth and sixth
terms) that make it more suitable for the PD method than other polynomials. When
ignoring the higher-order aberration, the first 10 terms of the Legendre polynomial can
satisfy the requirements for wave fitting.

The PD method retrieves the wavefront information from both in-focus and defocus
images and reconstructs it by an evaluation function and an optimization algorithm. We
simulated the detection accuracy under different aspect ratios, aberration sizes, and SNRs
to explore the application range. These factors significantly affect the intensity distribution
of the images, reduce the spatial feature information, and lower the wavefront detection
accuracy. The results were satisfactory when the SNR was above 25 dB. This implies that we
should enhance the robustness of the PD method and the quality of the images. The pupil
aspect ratio and the aberration also affected the results. We should control the pupil aspect
ratio to improve the detection accuracy. Large initial aberration is a major challenge, but it
can be corrected by active optics technology through several detection-correction cycles.

The large secondary mirror in the experiment reduces the Legendre polynomial
orthogonality, lowering the PD method accuracy. Moreover, to keep the aperture area, the
rectangular aperture aspect ratio is at most 2. We will design and produce a better, less
obscured, and higher aspect ratio rectangular aperture imaging system and explore its
wavefront detection further.
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This paper demonstrated the applicability of the PD method for wavefront detection
in the imaging system with a rectangular pupil. To use this method in space telescopes,
further research on the mechanisms of various errors and precise defocus mechanisms
is required.

The rotation of the primary mirror in the RSA system will cause a motion blur on
the PSF, and the wavefront detection technology for this process needs to be explored
in the future. Moreover, during the practical imaging procedure, the rotation of the
RSA pupil around the center introduces known rotation-related phase differences in the
captured images, offering an additional avenue for utilizing the PD method in calculating
wavefront information.
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