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Abstract: Ground reaction force (GRF) components can be estimated using insole pressure sensors.
Principal component analysis in conjunction with machine learning (PCA-ML) methods are widely
used for this task. PCA reduces dimensionality and requires pre-normalization. In this paper,
we evaluated the impact of twelve pre-normalization methods using three PCA-ML methods on
the accuracy of GRF component estimation. Accuracy was assessed using laboratory data from
gold-standard force plate measurements. Data were collected from nine subjects during slow- and
normal-speed walking activities. We tested the ANN (artificial neural network) and LS (least square)
methods while also exploring support vector regression (SVR), a method not previously examined in
the literature, to the best of our knowledge. In the context of our work, our results suggest that the
same normalization method can produce the worst or the best accuracy results, depending on the
ML method. For example, the body weight normalization method yields good results for PCA-ANN
but the worst performance for PCA-SVR. For PCA-ANN and PCA-LS, the vector standardization
normalization method is recommended. For PCA-SVR, the mean method is recommended. The final
message is not to define a normalization method a priori independently of the ML method.

Keywords: insole measurement; force plate measurement; GRF component estimation; normalization
methods; machine learning; PCA pre-normalization

1. Introduction

Normalization is a crucial data pre-processing step in machine learning (ML) estima-
tion. Indeed, if measurements have heterogeneous values, quantities with low values are
taken into account less than quantities with higher values in the ML estimation procedure.
In this way, normalization assigns the same importance to all measurements. The authors
in [1] used the robust scaler method in conjunction with an ML method to provide an
automated methodology for accurately categorizing various types of defects in industrial
IoT ball bearings. The authors in [2] used the min–max normalization method to forecast
monthly precipitation. The authors in [3] used the min–max method to estimate position
in indoor navigation. The authors in [4] estimated the vertical component of the ground
reaction force (GRF) from step sound using body weight normalization. Honert et al. [5]
estimated the vertical and anterior–posterior components of the GRF using the Z−score
(ZS) normalization method.

ML methods can also be combined with principal component analysis (PCA), referred
to as PCA-ML methods in this paper. Again, it is essential to incorporate a normalization
method by centering and normalizing the data points before PCA transformation. PCA
transforms a high-dimensional input dataset into a low-dimensional dataset. The motiva-
tion behind this transformation is to reduce input data dimensionality, aiming to minimize
computational costs in embedded devices. This transformation not only involves reducing
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input data dimensionality but may also enhance ML estimation performance. The authors
in [6] used the min–max method to assess the prediction risk associated with the digital
transformation of manufacturing supply chains. The authors in [7] used the ZS method to
predict diabetic retinopathy. The authors in [8] used the min–max method to predict power
load. Also, ZS normalization is the most commonly suggested method when using PCA,
as mentioned in references [9–11].

This brief state-of-the-art review shows that normalization is required when using
ML or PCA-ML methods, whatever the domain of application. However, the authors
do not justify why they use or recommend the chosen normalization method. Moreover,
normalization methods can be categorized into two classes: statistical approaches and
physics approaches. Statistical methods encompass standard techniques, like the min–
max and ZS methods. Physics methods rely on the parameters specific to the domain
of the database [4,12–14]. This is the reason why studying the impact of normalization
methods in ML estimation accuracy must be carried out in a specific domain. Our domain
is biomechanics.

In this field, the estimation of GRF components is required in some clinical or biome-
chanical studies, particularly for the analysis of posture and movement [12]. Instrumented
insoles are current low-cost solutions for GRF component estimation. These devices mea-
sure pressure through many sensors, from which GRF components can be estimated.
Industrial pressure insole systems only evaluate the Fz component through a simple linear
combination of the pressure sensor values weighted by their individual sensor surface
areas. This low-cost approach yields estimation results with limited precision. More sophis-
ticated estimation methods rely on ML principles, which aim to identify the link between
insole plantar pressure (PP) data and GRF components in 3D by learning input/output
examples. In order to minimize computational costs in instrumented insoles, we focus only
on PCA-ML methods to estimate GRF components.

We hereby propose a detailed state-of-the-art review of normalization methods with
the PCA-ML procedure limited to our domain of application. We first introduce the ML
methods used. The authors in [12,13,15] employed artificial neural networks (ANNs) in
conjunction with PCA to reduce the dimensionality of PP data to estimate GRF components.
Rouhani et al. [12] compared the PCA-ANN, PCA-locally linear neuro fuzzy, and PCA–
least square (LS) methods for estimating GRF components. Sim et al. [13] compared
the three methods presented by Rouhani et al. [12] and also included the PCA-wavelet
neural network method in their comparison. The authors of references [12,13] estimated
GRF components for walking activities, while Joo et al. [15] focused on estimating GRF
components for golf activities.

Second, we introduce the normalization methods used. These methods may impact
the quality of GRF component estimation. While some studies normalized PP data to insole
length [12] or to body weight [13] (physics methods), others, like [15], proposed normal-
ization within the range of [–1, 1] (statistical methods). However, none of these authors
justified their choice of the normalization method. Additionally, only a few normalization
methods have been explored, despite the many existing in the literature.

To the best of our knowledge, no study has evaluated the benefit of PCA methods
in combination with normalization approaches. In the present study, we thus propose to
assess the impact of twelve different normalization methods from the literature on the
accuracy of estimating GRF components. The three components (vertical component (Fz),
anterior–posterior component (Fy), and medial–lateral component (Fx)) will be investigated
using ANN and LS. This is the first contribution. Also, we will evaluate the performance of
the support vector regression (SVR) method, as another comparative method, to estimate
GRF components, which has never been tested before in the literature, to the best of our
knowledge. This is the second contribution.

To carry out the proposed study, we need to evaluate the estimation accuracy of each
PCA-ML method in a supervised context. This is achieved in standardized laboratory
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conditions by using force plates. The force plates serve as the reference for measured GRF
components (ground truth).

Figure 1 presents the flow chart for estimating GRF components from PP, where PP
represents the input data, PPnorm represents the normalized input data, and W is the
projection matrix determined by PCA. The estimation accuracy is computed after ML
modeling. In the first stage, learning is carried out using the training dataset (red) for
modeling. In the second stage, testing is carried out using the test dataset (blue) for
computing performance metrics.
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is used to evaluate the performance of GRF components by using the corresponding GRF force 
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The experimental equipment used in our study included two pressure insole sys-
tems (Moticon, ReGo AG Munich, Munich, Germany) equipped with 16 capacitive 
pressure sensors and 2 force plates (model BMS600900, dimensions of 600 mm × 900 mm; 
AMTI, Watertown, MA, USA), as shown in Figure 2.  
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our study. Before enrollment, participants received detailed information on the study 
objective and procedure and provide written informed consent, complying with the eth-

Figure 1. Processing flow chart for estimating GRF components from PP. The PP training set is used
for ML modeling by using the corresponding GRF force plate data (in red). The PP testing set is used
to evaluate the performance of GRF components by using the corresponding GRF force plate data (in
blue). The gray rectangle indicates the classical pre-normalization PCA-ML pipeline.

Each block of Figure 1 will be detailed in the following section.

2. Materials and Methods
2.1. Materials and Protocol

The experimental equipment used in our study included two pressure insole systems
(Moticon, ReGo AG Munich, Munich, Germany) equipped with 16 capacitive pressure
sensors and 2 force plates (model BMS600900, dimensions of 600 mm × 900 mm; AMTI,
Watertown, MA, USA), as shown in Figure 2.
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Figure 2. Experimental equipment. Left: layout of the pressure sensors of Moticon insoles. Middle:
Moticon insoles. Right: AMTI force plates.

Nine healthy male subjects (height: 178 ± 4.2 cm; weight: 77 ± 11.1 kg) participated
in our study. Before enrollment, participants received detailed information on the study
objective and procedure and provide written informed consent, complying with the ethical
standards of the Declaration of Helsinki (2013). They wore their own shoes with Moticon
insoles, which were of the same size (42 EU). Prior to the experiment, each subject performed
three exercises to calibrate the Moticon insoles: a slow walk, standing still, and shifts in
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body weight. The subjects performed two different tasks on the two force plates to obtain
measured GRF component data for both feet (one force plate per foot; Figure 2). These
tasks were the following (the reported number indicates the min and max values of steps
for each subject):

(1) Normal walking (7–20 steps);
(2) Slow walking (8–22 steps).

The measured GRF component data from the two force plates and the PP data from
the Moticon insole systems were sampled at 100 Hz.

The Fx and Fy components of the force plate frame may not have the same orientation
as the foot frame. For the sake of simplification, the Fx and Fy of the force plate frame
are considered as the components of the frame of the foot. The foot progression angle
(FPA) is used to transform the Fx and Fy components from the force plate frame to the
frame of the foot. In our study, the subjects walked in a straight line along the Fy direction
(Figure 2), which is the laboratory’s axis of progression (ensured by the protocol that
requires the right foot to be placed on one force plate and the left foot on the other force
plate). Furthermore, all the subjects participating in this study were healthy (no pathological
orientation deviation). In the case of healthy subjects, the study by Caderby et al. [16]
showed that estimating the FPA is neither obvious nor standardized and can produce
very different FPA values, but the difference is still less than ten degrees. Additionally,
we believe that not transforming data with FPA would have little impact on our results.
Actually, the FPA value may be tainted by errors, and its addition can impact the quality
of GRF component estimation. For these reasons, we did not consider any transformation
from the reference frame of the force plates to the frame of the foot.

In the absence of a direct method for digitally or analogically synchronizing force plate
data with insole data, we chose a post-processing time-shift synchronization approach
for both right and left feet. For this task, we utilized the unique Fz component provided
by the Moticon insole system. The Fz component equals the sum of plantar pressure
divided by the sensor area over the sensors. We refer to this estimation as Fz_insole. This
involves taking the Fz_insole curve and shifting it in relation to the vertical force of the
force plate (referred to as Fz_force_plate) curve across a given time range. Subsequently,
we compute the root mean square error (RMSE) value and the correlation coefficient (R) as
two functions of the time shift. The time-shift value with the lowest RMSE corresponds to
the optimal moment for synchronizing the data from the insoles with those from the force
plates. A high R value ensures sufficient correlation between the two curves and validates
the time-shift value. Figure 3 presents an example of the synchronization by time-shifting
between Fz_insole and Fz_force_plate for the right foot during one step.
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2.2. Normalization Methods

Normalization is an important step for data pre-processing, as it can significantly im-
pact estimation accuracy. Additionally, by ensuring that all variables are equally important
and on the same scale, normalization can help speed up the training phase. In our study, we
present and apply twelve normalization methods: min–max in the range [0, 1] or [−1, 1],
mean, Z-score, robust scaler, vector standardization, maximum linear standardization,
decimal scaling, median, and tanh (statistical methods); body weight and length insole
(anthropometric/physics methods).

Min–max (MM) [17] is one of the most popular normalizing methods. Given a row of
data X = [x1, x2, . . . , xn], the normalized data using the min–max method in range [0, 1]
(MM[0, 1]) are given as

xnormi =
xi − min(X)

max(X)− min(X)
, i = 1, . . . , n, (1)

where n is the length of the data.
However, this method may not be robust, because it is highly sensitive to outliers [17].

This method can be generalized to adjust the data within the range [a, b] [18]:

xnormi = a +
xi − min(X)

max(X)− min(X)
(b − a). (2)

We opted for the max–min method to normalize our data within the range of [−1, 1]
(MM[−1, 1]).

The mean method [18] shifts the mean of the data to zero and rescales the dynamic
range of the data:

xnormi =
xi − µ(X)

max(X)− min(X)
, (3)

where µ(X) represents the mean of the data. A drawback of this method is its sensitivity to
outliers.

The most classical method is the Z-score (ZS) [17] technique, which centers and reduces
data as

xnormi =
xi − µ(X)

σ(X)
. (4)

where σ(X) is the standard deviation. The ZS method is less sensitive to outliers than the
mean method.

The robust scaler (RS) [18] method is an order statistics-based technique utilized for
data that contain outliers. Once normalized, the data exhibit a median of zero:

xnormi =
xi − median(X)

x75 − x25
, (5)

where x75 is the third quartile and x25 is the first quartile.
Anysz et al. [19] defined the vector standardization (VS) method as

xnormi =
xi√
n
∑

i=1
x2

i

. (6)

They also proposed [19] the maximum linear standardization (MLS) technique. This
method involves dividing each sample by the maximum value of the data:

xnormi =
xi

max(X)
. (7)
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Decimal scaling (DS) [17] is used particularly when all the different data are distributed
on a logarithmic scale. The normalization writes

xnormi =
xi

10d , (8)

where d is the number of digits of the maximum absolute value of the data [17]:
d = log10(max(abs(X)).

The median (Med) normalization method involves dividing each sample by the me-
dian of the data [20]:

xnormi =
xi

median(X)
. (9)

The tanh normalization method, as proposed by Hampel et al. [21], can be used to
scale data within the range of [0, 1] using the equation provided below:

xnormi = 0.5
(

tanh
(

0.01
(

xi − µ(X)

σ(X)

))
+ 1

)
. (10)

The last two normalization methods involve some anthropometric measures. The
body weight (BW) normalization method divides the data by the body weight (BW) of the
subject [14]:

xnormi =
xi

BW
. (11)

The length of the insole (LI) normalization method, proposed by Rouhani et al. [13],
divides the data by the length of the insole pressure system:

xnormi =
xi
LI

. (12)

The input (PP) data must be normalized for each pressure sensor when using PCA
prior to SVR and LS. In the case of PCA-ANN, the ANN-estimated outputs are normalized
values that require denormalization post-processing to retrieve the appropriate magnitude
of GRF components. The denormalization method applied to the estimated output is the
reverse procedure with respect to the normalization method applied to the input. Note that
the authors in [13] propose a specific use of the LI method by denormalizing the estimated
output with the BW method.

2.3. Principal Component Analysis

Principal component analysis (PCA) is a technique used to reduce the dimensionality
of a dataset (PP data) that contains a large number of dependent variables. The goal is to
retain as much of the important information in the dataset as possible [22] by transforming
the variables into uncorrelated variables, known as principal components (PCs). Applying
PCA to a dataset offers several advantages, such as the following [23]:

(1) It takes less computation time;
(2) Redundant, irrelevant, and noisy data can be removed;
(3) Data quality can be improved;
(4) Some ML methods do not perform well on high-dimensional data. To address this

issue and improve accuracy, for example, in ANN, it can be helpful to reduce the
dimension of the data.

The steps of PCA [22] begin with the normalization of PP data. Subsequently, we
calculate the covariance matrix of the PP data points, from which we calculate the eigenvec-
tors and their corresponding eigenvalues. Finally, we select the k eigenvectors, also called
principle components (PCs), that explain the most cumulative variance of the eigenvalues.
We use k PCs to create the projection matrix, called W matrix. We transform the data
points into a new set with k dimensions using the W matrix. We used PCA to reduce the
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dimension of the input data from 16 to k PCs, supposing that k was the smallest value for
which cumulative variance was higher than 98% [13,16].

2.4. Machine Learning Methods for GRF Component Estimation

• Artificial Neural Network (ANN)

The artificial neural network (ANN) is a robust algorithm based on the functioning
human brain to recognize specific data among a vast number of data and can perform
multiple tasks simultaneously. ANN uses a back-propagation network to update the
weights between the layers, biases, and activation function parameters to estimate an
output closer to the measured output. We conducted a series of experiments on the right
foot with varied parameters, following a systematic order. We started with an initial
configuration of 2 hidden layers having nodes (128, 256), a batch size of 32, Adamax
optimizer, a learning rate of 0.01, activation function set to leaky_relu, and the mean
normalization method. We then modified the number of hidden layers and their nodes,
which are shown in parentheses, as 1 hidden layer (150); 2 hidden layers (256, 128), (200,
400), (400, 200); 3 hidden layers (600, 400, 200); and 4 hidden layers (800, 600, 400, 200). The
optimizer was adjusted by experimenting with Adam, SGD with momentum values of 0.5
and 0.9, and Adamax. We investigated the impact of varying the learning rate, with 0.001,
0.01, 0.05, and 0.1 values. The batch size was systematically altered, exploring values of 1,
16, 32, 64, and 128. Lastly, we explored different activation functions, including sigmoid,
relu, tanh, leaky_relu, and wavelet.

The optimal parameters identified from these simulations for ANN modeling, which
yielded the highest accuracy of GRF component estimation for the right foot, are as follows:
a learning rate of 0.01, a batch size of 32, and the Adamax optimization algorithm. The
ANN topology is shown in Figure 4. The left and right insoles are symmetric and for sake of
simplification, we make the assumption that the ANN model architectures and parameters
for the left foot are identical to those for the right foot.
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Figure 4. The topology of the ANN for estimating the three GRF components.

Figure 4 depicts the network topology used to estimate the GRF components, where
input vector X = [PC1, PC2, . . . , PCk] is followed by two hidden layers, each consisting of
400 and 200 nodes, respectively. The activation function of both hidden layers is represented
by hi , which is chosen to be a relu activation function. The output layer’s activation function
is represented by y1, y2, and y3, which stand for the three GRF components.
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The outputs of node j in the first and second hidden layers are given by the following
formula and are denoted as h1(j) and h2(j), respectively:

h1(j) = hj(
k

∑
i=1

w1,i,jPCi + b1,j), j = 1, · · · , n (13)

and

h2(j) = hj(
400

∑
i=1

w2,i,jPCi + b2,j), j = 1, . . . , 200, (14)

where w1,i,j, w2,i,j, b1,j, and b2,j are the weights and biases for both hidden layers, respectively.
The output layer employed the identity activation function, and its calculation is

expressed as

y(j) =
200

∑
i=1

w3,i,jh2(j) + b3,j, j = 1, 2, 3, (15)

where w3,i,j is the weight connecting the last hidden layer and the output layer, and b3,j is
the bias of the output layer.

The neural network models were implemented using Pytorch (v3.10.7) library and
NVIDIA RTX A4500 GPU.

• Least Square (LS) Method

The least square (LS) method is a regression method that allows for finding a linear
model that connects the output with the inputs based on knowledge of the experimental
data. The fundamental concept behind this approach is centered on minimizing the
quadratic criterion between the measured and estimated output quantities, which are
related to the chosen mathematical linear model.

• Support Vector Regression (SVR) Method

Support vector regression (SVR) is a supervised statistical learning algorithm that is
utilized for solving regression problems. For classification tasks, the analogous algorithm
SVM (support vector machine) can be employed. The decision boundary is represented by
the two black lines in Figure 5, while the red line denotes the hyperplane.
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Figure 5. Example of a hyperplane function that maximizes the number of measured data within the
decision boundary.

The distance between the hyperplane and the two decision boundary lines is denoted
by ξ, which is a parameter that can be chosen, while the variables ζ ′ and ζ indicate the
errors between the two decision boundary lines and the measured data.

The objective of this approach is to identify the hyperplane function (which can be
a nonlinear function) that maximizes the number of measured data within the decision
boundary [24].

We conducted tests with linear and radial basis function (RBF) kernels while varying
parameters for the right foot. Specifically, for the linear and RBF kernels, we tested ξ = 15
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and 20 with different values of C, including 0.1, 1, 10, 50, and 100 (C is a regularizing
parameter that determines the tolerance for deviations between the kernel and the measured
data). Additionally, the supplementary γ parameter with values of 0.1, 1, 10, 50, and 100
was tested for the RBF kernel.

From these simulations, it was found that the RBF kernel model with ξ = 20, C = 50,
and γ = 10 showed the highest accuracy in estimating GRF components for the right foot.
The left and right insoles are symmetric, implying that the SVR model parameters for the
left foot are identical to those for the right foot.

The two methods mentioned above (LS and SVR) were implemented using Python
(v3.10.7) and an Intel Xeon Gold 5218 R @ 2.10 GHz CPU.

2.5. Machine Learning Modeling

In order to assess the impact of normalization methods on PCA in conjunction with
ANN, LS, and SVR for estimating GRF components, performance indicators were calcu-
lated between the estimated (by insole PP data) and measured (by force plate data) GRF
components using the whole test datasets of both feet with intrasubject (intras) and inter-
subject (inters) strategies. The indicators were reported in terms of correlation coefficient
(R) and root mean square error (RMSE).

To construct the ML methods for estimating GRF components, we utilized the datasets
of 8 subjects for slow and normal activity for both feet, and 70% of the steps from the
datasets for each activity of each subject were used for the training set. The total number of
steps for each activity is shown in Table 1. An additional 10% of the steps for each activity
were used solely for the validation set of the PCA-ANN model. Our model was evaluated
using the intras strategy, which involved testing the model on the test datasets of the same
8 subjects, representing 20% of the steps for each activity. Additionally, we assessed the
generalization capacity of our model using the inters strategy, where the whole remaining
data of the 9th subject were used for evaluation purposes. Table 1 presents the number of
samples and steps for the whole dataset.

Table 1. The number of samples (steps) of the dataset for the 9 subjects.

Activity Foot Dataset

Slow walking Left 17,732 (128)
Right 15,008 (112)

Normal walking Left 12,719 (111)
Right 11,100 (101)

For the three ML methods, both intras and inters strategies included the rotation of
the training and test datasets to ensure robust results, employing a leave-one-subject-out
cross-validation approach. This resulted in the creation of a total of 108 models (9 models
for each of the 12 normalization methods) for each foot and each ML method.

2.6. Metrics

We used RMSE and R coefficient [12,13,15] to evaluate the accuracy of the models for
GRF component estimation:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
, [N] (16)

and

R =

n
∑

i=1
(ŷi − µ(Ŷ)(yi − µ(Y))√

n
∑

i=1
(ŷi − µ(Ŷ))2 n

∑
i=1

(yi − µ(Y))2
. (17)
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where n is the number of data points for GRF components; yi is the force plate-measured

GRF component (Fx, Fy, or Fz) at time i; ŷi is the estimated GRF component; µ(
⌢
Y) is the

mean of the estimated GRF components;
⌢
Y = ŷ1, . . . , ŷn are the estimated GRF components;

µ(Y) is the mean of measured GRF components; and Y = y1, . . . , yn are the measured
GRF components.

3. Results
3.1. Impact of Normalization Methods on PCA for ANN, LS, and SVR for Estimating
GRF Components

The nine models from PCA-ANN, LS, and SVR methods were evaluated using RMSE
and R metrics for both feet with both strategies. Tables 2–5 present the average and standard
deviation (SD) of these metrics. The values are reported for all normalization methods
and the entire test dataset. The best estimation results considering RMSE and R values
are highlighted in bold for both intras and inters strategies. The optimal number of PCs,
explaining more than 98% [12,15] of cumulative variance of the PP data, is also presented
in these tables.

Table 2. Average ± SD of RMSE (R) between the estimated (by insole PP data) and measured (by
force plate data) Fx and Fy components for the 9 models using intras and inters strategies with the
test dataset of the left foot.

Strategy Normalization
Method

Number of
PCs

Fx[N] Fy[N]
PCA-ANN PCA-LS PCA-SVR PCA-ANN PCA-LS PCA-SVR

Intras

MM[0, 1] 10-9 13.89 (0.712) ±
0.56 (0.016)

14.97 (0.641) ±
0.67 0.028)

13.83 (0.710) ±
0.51 (0.009)

30.92 (0.647) ±
2.13 (0.032)

33.05 (0.546) ±
1.04 (0.025)

29.85 (0.666) ±
1.80 (0.029)

MM[−1, 1] 10-9 14.12 (0.707) ±
0.87 (0.023)

14.99 (0.639) ±
0.68 (0.028)

14.30 (0.681) ±
0.46 (0.018)

31.48 (0.632) ±
2.51 (0.051)

33.03 (0.547) ±
1.03 (0.024)

29.04 (0.675) ±
1.13 (0.020)

Mean 10-9 14.09 (0.712) ±
1.01 (0.025)

15.12 (0.633) ±
0.78 (0.028)

13.78 (0.712) ±
0.56 (0.010)

30.93 (0.643) ±
2.17 (0.038)

33.09 (0.544) ±
1.11 (0.031)

29.24 (0.679) ±
1.70 (0.028)

ZS 10 13.88 (0.720) ±
1.05 (0.029)

15.11 (0.633) ±
0.77 (0.027)

16.78 (0.549) ±
0.43 (0.020)

30.21 (0.663) ±
1.55 (0.023)

32.60 (0.562) ±
1.07 (0.031)

36.11 (0.452) ±
0.96 (0.027)

RS 10-9 14.11 (0.706) ±
0.50 (0.015)

15.20 (0.626) ±
0.88 (0.037)

15.36 (0.644)
0.22 (0.019)

30.28 (0.656) ±
1.74 (0.027)

33.10 (0.545) ±
1.32 (0.020)

31.79 (0.607) ±
0.87 (0.024)

VS 10 14.23 (0.697) ±
0.60 (0.019)

14.92 (0.646) ±
0.69 (0.019)

14.78 (0.656) ±
0.672 (0.021)

31.33 (0.620) ±
1.22 (0.039)

32.85 (0.555) ±
0.84 (0.030)

32.85 (0.551) ±
0.84 (0.026)

MLS 10-9 14.11 (0.709) ±
0.70 (0.027)

14.97 (0.641) ±
0.67 (0.028)

13.83 (0.710) ±
0.51 (0.009)

30.95 (0.644) ±
2.50 (0.042)

33.05 (0.546) ±
1.04 (0.025)

29.85 (0.666) ±
1.80 (0.029)

DS 6 14.82 (0.658) ±
0.83 (0.031)

16.03 (0.559) ±
0.66 (0.072)

15.18 (0.624) ±
0.63 (0.047)

31.92 (0.599) ±
1.68 (0.041)

33.04 (0.547) ±
1.00 (0.023)

31.30 (0.607) ±
1.28 (0.024)

Med 9-8 15.40 (0.655) ±
0.99 (0.033)

14.94 (0.640) ±
0.73 (0.029)

17.57 (0.494) ±
0.49 (0.009)

31.94 (0.613) ±
1.04 (0.035)

33.16 (0.545) ±
1.33 (0.031)

37.44 (0.362) ±
0.89 (0.035)

Tanh 10 15.20 (0.621) ±
0.72 (0.030)

15.17 (0.630) ±
0.69 (0.021)

15.19 (0.633) ±
0.77 (0.026)

32.85 (0.550) ±
0.80 (0.049)

33.10 (0.542) ±
1.09 (0.049)

33.19 (0.535) ±
0.93 (0.048)

BW 9 14.80 (0.699) ±
1.01 (0.018)

15.35 (0.648) ±
0.45 (0.024)

19.29 (0.257) ±
0.63 (0.014)

31.55 (0.627) ±
1.59 (0.044)

33.66 (0.534) ±
1.25 (0.030)

39.30 (0.006) ±
1.15 (0.001)

LI 9-8 14.47 (0.686) ±
0.54 (0.016)

15.26 (0.621) ±
0.76 (0.029)

19.13 (0.282) ±
0.61 (0.024)

30.88 (0.647) ±
1.44 (0.035)

33.52 (0.530) ±
0.86 (0.023)

39.30 (0.013) ±
1.15 (0.008)

Inters

MM[0, 1] 10-9 17.48 (0.528) ±
3.92 (0.191)

15.10 (0.610) ±
3.42 (0.138)

17.68 (0.473) ±
2.97 (0.139)

38.09 (0.538) ±
8.74 (0.123)

32.62 (0.638) ±
6.62 (0.088)

37.94 (0.527) ±
7.06 (0.097)

MM[−1,1] 10-9 17.96 (0.528) ±
4.58 (0.203)

15.16 (0.613) ±
3.38 (0.140)

16.33 (0.546)±
4.40 (0.117)

38.53 (0.574) ±
9.56 (0.091)

32.61 (0.639) ±
6.63 (0.088)

35.34 (0.513) ±
9.77 (0.114)

Mean 10-9 18.85 (0.525) ±
4.64 (0.191)

14.87 (0.623) ±
3.86 (0.143)

17.14 (0.502)±
3.50 (0.159)

38.95 (0.529) ±
13.6 (0.201)

31.43 (0.652) ±
6.29 (0.086)

37.75 (0.528) ±
7.83 (0.084)

ZS 10 17.32 (0.526) ±
4.89 (0.205)

15.12 (0.587) ±
2.96 (0.139)

17.52 (0.514)±
4.23 (0.087)

41.60 (0.528) ±
12.2 (0.134)

32.32 (0.619) ±
6.93 (0.091)

39.58 (0.175) ±
11.1 (0.071)

RS 10-9 18.01 (0.532) ±
4.93 (0.227)

14.88 (0.593) ±
3.64 (0.195)

16.94 (0.547) ±
4.46 (0.102)

36.43 (0.585) ±
9.60 (0.077)

32.28 (0.634) ±
7.27 (0.082)

37.70 (0.370) ±
11.3 (0.085)

VS 10 14.66 (0.602) ±
3.32 (0.155)

14.56 (0.620) ±
2.83 (0.136)

14.94 (0.623) ±
3.60 (0.149)

32.62 (0.649) ±
6.72 (0.053)

32.07 (0.637) ±
6.71 (0.085)

31.60 (0.636) ±
6.77 (0.085)

MLS 10-9 18.49 (0.525) ±
5.60 (0.201)

15.10 (0.610) ±
3.42 (0.138)

17.68 (0.473) ±
2.97 (0.139)

38.89 (0.528) ±
11.7 (0.183)

32.62 (0.638) ±
6.62 (0.088)

37.94 (0.527) ±
7.06 (0.097)

DS 6 18.23 (0.521) ±
5.52 (0.198)

17.26 (0.524) ±
4.54 (0.150)

16.88 (0.532) ±
4.62 (0.159)

33.89 (0.615) ±
7.11 (0.071)

32.62 (0.625) ±
6.48 (0.094)

32.52 (0.631) ±
6.69 (0.065)

Med 9-8 16.51 (0.567) ±
4.88 (0.152)

14.68 (0.601) ±
3.14 (0.148)

17.93 (0.486) ±
4.24 (0.113)

35.35 (0.606) ±
7.85 (0.060)

31.99 (0.634) ±
7.07 (0.094)

39.68 (0.131) ±
11.3 (0.087)

Tanh 10 15.07 (0.616) ±
3.58 (0.138)

14.78 (0.595) ±
2.88 (0.136)

15.14 (0.605) ±
3.26 (0.140)

31.81 (0.638) ±
6.99 (0.071)

32.29 (0.620) ±
6.92 (0.092)

31.50 (0.638) ±
7.09 (0.080)

BW 9 17.52 (0.567) ±
4.15 (0.106)

16.00 (0.598) ±
3.85 (0.139)

19.14 (0.286) ±
3.73 (0.081)

41.60 (0.513) ±
10.0 (0.138)

32.97 (0.624) ±
7.14 (0.074)

40.06 (0.006) ±
11.0 (0.003)

LI 9-8 17.26 (0.530) ±
3.43 (0.150)

14.49 (0.634) ±
3.11 (0.109)

19.04 (0.310) ±
3.77 (0.082)

42.90 (0.463) ±
12.3 (0.233)

33.03 (0.610) ±
8.52 (0.097)

40.06 (0.018) ±
11.0 (0.017)
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Table 3. Average ± SD of RMSE (R) between the estimated (by insole PP data) and measured (by
force plate data) Fz component for the 9 models using intras and inters strategies with the test dataset
of the left foot.

Strategy Normalization
Method Number of PCs

Fz[N]
PCA-ANN PCA-LS PCA-SVR

Intras

MM[0, 1] 10-9 63.13 (0.977) ± 4.15 (0.003) 83.36 (0.957) ± 12.67 (0.013) 59.99 (0.979) ± 4.39 (0.003)
MM[−1, 1] 10-9 64.70 (0.976) ± 4.63 (0.003) 84.66 (0.956) ± 12.27 (0.013) 73.40 (0.969) ± 1.62 (0.002)

Mean 10-9 62.84 (0.978) ± 3.95 (0.002) 82.50 (0.959) ± 8.73 (0.008) 59.35 (0.979) ± 3.16 (0.002)
ZS 10 63.38 (0.977) ± 5.15 (0.004) 77.53 (0.964) ± 7.22 (0.007) 160.81 (0.837) ± 6.03 (0.012)
RS 10-9 71.06 (0.971) ± 6.78 (0.005) 96.11 (0.941) ± 22.12 (0.028) 108.83 (0.931) ± 5.96 (0.009)
VS 10 72.93 (0.970) ± 5.55 (0.004) 83.13 (0.958) ± 6.43 (0.008) 87.15 (0.956) ± 11.69 (0.012)

MLS 10-9 66.40 (0.975) ± 5.77 (0.004) 83.36 (0.957) ± 12.67 (0.013) 59.99 (0.979) ± 4.39 (0.003)
DS 6 108.91 (0.941) ± 24.48 (0.020) 123.45 (0.886) ± 42.53 (0.092) 104.16 (0.924) ± 33.72 (0.059)

Med 9-8 112.89 (0.928) ± 13.25 (0.017) 101.34 (0.936) ± 15.50 (0.022) 185.00 (0.776) ± 7.14 (0.016)
Tanh 10 81.53 (0.959) ± 10.25 (0.010) 79.49 (0.962) ± 7.37 (0.007) 85.32 (0.96) ± 14.24 (0.011)
BW 9 61.84 (0.978) ± 4.67 (0.003) 109.14 (0.945) ± 7.68 (0.006) 271.29 (0.442) ± 6.35 (0.009)
LI 9-8 72.49 (0.969) ± 5.71 (0.005) 84.87 (0.956) ± 12.36 (0.013) 264.95 (0.478) ± 6.24 (0.010)

Inters

MM[0, 1] 10-9 107.47 (0.944) ± 25.07 (0.020) 106.96 (0.940) ± 31.80 (0.030) 112.41 (0.942) ± 42.21 (0.021)
MM[−1, 1] 10-9 110.61 (0.936) ± 25.71 (0.016) 106.95 (0.941) ± 31.81 (0.030) 118.08 (0.934) ± 50.36 (0.030)

Mean 10-9 102.51 (0.942) ± 17.42 (0.025) 98.15 (0.947) ± 25.42 (0.025) 106.51 (0.946) ± 40.92 (0.022)
ZS 10 106.30 (0.933) ± 29.23 (0.029) 98.63 (0.949) ± 24.00 (0.018) 183.11 (0.808) ± 36.42 (0.046)
RS 10-9 120.47 (0.912) ± 38.21 (0.086) 117.99 (0.919) ± 54.84 (0.085) 146.61 (0.888) ± 45.29 (0.044)
VS 10 91.65 (0.949) ± 24.34 (0.013) 101.65 (0.949) ± 36.60 (0.027) 98.20 (0.951) ± 31.74 (0.030)

MLS 10-9 114.30 (0.938) ± 32.34 (0.017) 106.96 (0.94) ± 31.80 (0.030) 112.41 (0.942) ± 42.21 (0.021)
DS 6 149.84 (0.904) ± 54.20 (0.047) 145.49 (0.896) ± 73.81 (0.090) 120.89 (0.921) ± 59.96 (0.052)

Med 9-8 127.73 (0.905) ± 40.76 (0.035) 95.79 (0.945) ± 20.06 (0.022) 197.21 (0.766) ± 3360 (0.073)
Tanh 10 90.14 (0.952) ± 19.02 (0.019) 96.70 (0.952) ± 26.18 (0.020) 97.39 (0.951) ± 16.28 (0.023)
BW 9 95.87 (0.949) ± 27.95 (0.026) 115.54 (0.946) ± 35.99 (0.024) 269.09 (0.471) ± 25.96 (0.041)
LI 9-8 147.79 (0.923) ± 72.68 (0.032) 108.84 (0.953) ± 35.87 (0.019) 264.68 (0.497) ± 25.53 (0.041)

Table 4. Average ± SD of RMSE (R) between the estimated (by insole PP data) and measured (by
force plate data) Fx and Fy components for the 9 models using intras and inters strategies with the
test dataset of the right foot.

Strategy Normalization
Method

Number of
PCs

Fx[N] Fy[N]
PCA-ANN PCA-LS PCA-SVR PCA-ANN PCA-LS PCA-SVR

Intras

MM[0, 1] 10-9 11.35 (0.887) ±
0.56 (0.009)

13.86 (0.823) ±
0.58 (0.013)

12.51 (0.857) ±
0.72 (0.011)

33.47 (0.624) ±
1.75 (0.033)

31.67 (0.624) ±
1.37 (0.026)

31.64 (0.646) ±
1.50 (0.025)

MM[−1, 1] 10-9 11.73 (0.881) ±
0.50 (0.008)

13.67 (0.829) ±
0.73 (0.011)

13.82 (0.825) ±
0.825 (0.010)

32.00 (0.641) ±
1.20 (0.024)

31.73 (0.622) ±
1.40 (0.026)

32.66 (0.610) ±
1.79 (0.033)

Mean 10-9 11.40 (0.885) ±
0.58 (0.009)

13.86 (0.823) ±
0.59 (0.013)

12.49 (0.858) ±
0.73 (0.012)

33.34 (0.621) ±
1.51 (0.031)

31.67 (0.624) ±
1.376 (0.026)

31.55 (0.649) ±
1.68 (0.028)

ZS 10 11.28 (0.888) ±
0.65 (0.013)

13.66 (0.829) ±
0.75 (0.027)

17.84 (0.699) ±
0.84 (0.016)

32.38 (0.648) ±
1.75 (0.048)

31.67 (0.625) ±
1.50 (0.015)

37.65 (0.425) ±
1.47 (0.039)

RS 10-9 11.68 (0.880) ±
0.60 (0.010)

13.38 (0.837) ±
0.64 (0.012)

16.34 (0.753) ±
0.79 (0.019)

33.12 (0.630) ±
2.06 (0.040)

31.76 (0.621) ±
1.27 (0.015)

35.93 (0.502) ±
1.78 (0.046)

VS 10 11.75 (0.876) ±
0.55 (0.012)

13.34 (0.838) ±
0.36 (0.011)

13.50 (0.835) ±
0.44 (0.011)

31.34 (0.653) ±
1.44 (0.029)

31.65 (0.624) ±
1.04 (0.023)

31.26 (0.636) ±
1.03 (0.021)

MLS 10-9 11.51 (0.883) ±
0.48 (0.008)

13.86 (0.823) ±
0.58 (0.013)

12.50 (0.857) ±
0.72 (0.011)

32.32 (0.636) ±
1.33 (0.032)

31.67 (0.624) ±
1.37 (0.026)

31.64 (0.646) ±
1.50 (0.025)

DS 6 12.79 (0.853) ±
0.55 (0.014)

14.51 (0.804) ±
1.18 (0.027)

13.66 (0.830) ±
0.91 (0.014)

32.16 (0.624) ±
1.90 (0.030)

32.12 (0.612) ±
1.28 (0.016)

31.26 (0.637) ±
1.49 (0.013)

Med 9-8 14.88 (0.811) ±
1.64 (0.032)

14.33 (0.809) ±
0.92 (0.028)

19.37 (0.615) ±
0.75 (0.020)

31.63 (0.665) ±
2.13 (0.030)

31.56 (0.627) ±
1.04 (0.021)

39.39 (0.292) ±
1.86 (0.061)

Tanh 10 13.36 (0.836) ±
0.63 (0.020)

13.64 (0.829) ±
0.82 (0.028)

14.26 (0.818) ±
0.84 (0.027)

30.80 (0.649) ±
1.25 (0.014)

31.46 (0.631) ±
1.32 (0.013)

31.17 (0.644) ±
1.24 (0.012)

BW 9 12.55 (0.862) ±
0.80 (0.018)

14.70 (0.799) ±
0.97 (0.025)

22.91 (0.390) ±
0.88 (0.005)

33.33 (0.613) ±
2.12 (0.057)

31.94 (0.615) ±
1.35 (0.024)

40.53 (0.002) ±
1.76 (0.004)

LI 9-8 11.53 (0.883) ±
0.52 (0.013)

14.03 (0.819) ±
0.72 (0.015)

22.59 (0.431) ±
0.86 (0.009)

32.78 (0.621) ±
1.96 (0.049)

32.01 (0.611) ±
1.23 (0.035)

40.52 (0.032) ±
1.76 (0.011)

Inters

MM[0, 1] 10-9 16.79 (0.777) ±
5.51 (0.064)

14.43 (0.799) ±
2.72 (0.065)

15.19 (0.786) ±
2.53 (0.082)

47.92 (0.434) ±
23.01 (0.180)

34.01 (0.594) ±
8.89 (0.099)

39.48 (0.429)±
9.67 (0.127)

MM[−1, 1] 10-9 16.18 (0.770) ±
3.45 (0.071)

14.57 (0.796) ±
2.85 (0.067)

16.75 (0.765) ±
3.34 (0.078)

44.49 (0.450) ±
19.78 (0.161)

34.22 (0.589) ±
8.81 (0.094)

37.96 (0.388) ±
11.41 (0.090)

Mean 10-9 17.62 (0.776) ±
8.06 (0.078)

14.54 (0.797) ±
2.87 (0.068)

15.15 (0.787) ±
2.48 (0.080)

41.33 (0.486) ±
14.35 (0.147)

34.04 (0.593) ±
8.93 (0.098)

39.12 (0.438) ±
9.08 (0.130)

ZS 10 15.38 (0.779) ±
3.35 (0.080)

15.29 (0.788) ±
3.18 (0.067)

19.42 (0.654) ±
3.50 (0.073)

42.61 (0.481) ±
12.71 (0.154)

34.30 (0.584) ±
9.75 (0.095)

39.86 (0.140) ±
12.56 (0.053)

RS 10-9 16.12 (0.739) ±
3.81 (0.110)

15.35 (0.772) ±
3.37 (0.084)

18.56 (0.695) ±
3.37 (0.070)

47.21 (0.482) ±
15.43 (0.124)

33.29 (0.599) ±
10.02 (0.081)

40.00 (0.225) ±
12.17 (0.052)

VS 10 14.14 (0.798) ±
3.25 (0.089)

14.25 (0.796) ±
2.35 (0.078)

14.21 (0.798) ±
2.26 (0.082)

39.03 (0.515) ±
12.48 (0.169)

33.70 (0.587) ±
9.40 (0.085)

33.21 (0.601) ±
9.35 (0.086)



Sensors 2024, 24, 1137 12 of 17

Table 4. Cont.

Strategy Normalization
Method

Number of
PCs

Fx[N] Fy[N]
PCA-ANN PCA-LS PCA-SVR PCA-ANN PCA-LS PCA-SVR

Inters

MLS 10-9 14.53 (0.810) ±
2.70 (0.067)

14.42 (0.799) ±
2.72 (0.065)

15.19 (0.786) ±
2.53 (0.082)

42.61 (0.520) ±
18.24 (0.138)

34.01 (0.594) ±
8.89 (0.099)

39.48 (0.429) ±
9.67 (0.127)

DS 6 15.57 (0.744) ±
2.98 (0.122)

15.34 (0.765)±
2.76 (0.100)

14.72 (0.774) ±
2.91 (0.094)

37.21 (0.523) ±
9.74 (0.122)

33.20 (0.592) ±
9.26 (0.097)

33.14 (0.591) ±
9.35 (0.108)

Med 9-8 17.82 (0.740) ±
4.69 (0.097)

15.051 (0.79) ±
2.17 (0.076)

20.07 (0.602) ±
3.48 (0.072)

43.86 (0.518) ±
22.05 (0.154)

33.21 (0.610) ±
9.82 (0.081)

39.62 (0.081) ±
12.72 (0.045)

Tanh 10 14.50 (0.802) ±
2.61 (0.064)

15.19 (0.788) ±
3.17 (0.065)

15.54 (0.792) ±
2.65 (0.061)

33.07 (0.606) ±
9.43 (0.099)

34.38 (0.585) ±
9.40 (0.094)

33.57 (0.597) ±
9.42 (0.093)

BW 9 16.96 (0.757) ±
4.76 (0.079)

16.00 (0.797) ±
3.19 (0.066)

22.66 (0.401) ±
3.96 (0.043)

44.02 (0.435) ±
15.34 (0.200)

33.73 (0.587) ±
8.64 (0.114)

39.56 (0.010) ±
12.99 (0.015)

LI 9-8 16.09 (0.770) ±
4.25 (0.099)

14.99 (0.780)±
2.16 (0.088)

22.46 (0.429) ±
3.96 (0.047)

41.44 (0.469) ±
9.86 (0.079)

33.92 (0.576) ±
10.47 (0.109)

39.55 (0.038) ±
12.99 (0.019)

Table 5. Average ± SD of RMSE (R) between the estimated (by insole PP data) and measured (by
force plate data) Fz component for the 9 models using intras and inters strategies with the test dataset
of the right foot.

Strategy Normalization
Method

Number of
PCs

Fz[N]
PCA-ANN PCA-LS PCA-SVR

Intras

MM[0, 1] 10-9 65.68 (0.976) ± 3.36 (0.003) 93.66 (0.948) ± 4.43 (0.006) 67.34 (0.974) ± 2.04 (0.002)
MM[-1,1] 10-9 66.15 (0.975) ± 2.39 (0.002) 91.02 (0.951) ± 7.18 (0.007) 76.20 (0.967) ± 3.06 (0.002)

Mean 10-9 66.37 (0.976) ± 3.60 (0.003) 93.76 (0.948) ± 4.611 (0.006) 67.40 (0.974) ± 1.92 (0.002)
ZS 10 67.35 (0.974) ± 2.90 (0.003) 102.31 (0.936) ± 18.19 (0.024) 163.65 (0.834) ± 7.49 (0.014)
RS 10-9 71.24 (0.971) ± 3.38 (0.003) 102.71 (0.935) ± 19.12 (0.024) 127.77 (0.904) ± 6.03 (0.009)
VS 10 78.23 (0.966) ± 3.67 (0.003) 92.26 (0.949) ± 10.17 (0.012) 99.00 (0.942) ± 13.17 (0.015)

MLS 10-9 71.57 (0.972) ± 5.05 (0.004) 93.66 (0.948) ± 4.43 (0.006) 67.36 (0.974) ± 2.04 (0.002)
DS 6 92.22 (0.952) ± 13.58 (0.011) 118.30 (0.912) ± 24.58 (0.037) 99.08 (0.940) ± 17.06 (0.019)

Med 9-8 116.90 (0.929) ± 11.55 (0.011) 105.90 (0.931) ± 19.61 (0.028) 204.91 (0.725) ± 4.80 (0.011)
Tanh 10 98.21 (0.942) ± 12.17 (0.015) 102.53 (0.936) ± 15.51 (0.021) 119.46 (0.919) ± 19.15 (0.026)
BW 9 67.36 (0.974) ± 3.99 (0.003) 114.76 (0.93) ± 16.609 (0.021) 270.02 (0.476) ± 5.38 (0.007)
LI 9-8 74.35 (0.969) ± 2.65 (0.001) 97.69 (0.943) ± 11.852 (0.013) 262.60 (0.513) ± 5.67 (0.011)

Inters

MM[0, 1] 10-9 93.94 (0.949) ± 24.97 (0.027) 102.28 (0.952) ± 24.87 (0.024) 101.99 (0.948) ± 38.26 (0.019)
MM[−1, 1] 10-9 92.96 (0.949) ± 24.41 (0.035) 110.95 (0.943) ± 36.74 (0.052) 123.07 (0.928) ± 46.17 (0.029)

Mean 10-9 93.88 (0.949) ± 22.20 (0.030) 110.01 (0.941) ± 36.95 (0.052) 102.77 (0.946) ± 38.62 (0.022)
ZS 10 91.65 (0.949) ± 22.68 (0.027) 97.48 (0.944) ± 26.36 (0.020) 185.59 (0.798) ± 38.15 (0.043)
RS 10-9 104.01 (0.936) ± 30.59 (0.04) 123.92 (0.914) ± 47.41 (0.067) 164.64 (0.852) ± 40.75 (0.034)
VS 10 89.82 (0.952) ± 30.34 (0.024) 97.09 (0.944)± 33.64 (0.036) 106.37 (0.932) ± 48.24 (0.059)

MLS 10-9 95.37 (0.953) ± 25.75 (0.032) 102.28 (0.952) ± 24.87 (0.024) 101.99 (0.948) ± 38.26 (0.019)
DS 6 134.25 (0.888) ± 50.72 (0.082) 140.46 (0.879) ± 49.44 (0.094) 111.04 (0.912) ± 28.92 (0.060)

Med 9-8 151.27 (0.888) ± 44.57 (0.044) 109.51 (0.925) ± 38.04 (0.069) 209.15 (0.73) ± 33.75 (0.051)
Tanh 10 103.94 (0.942) ± 38.79 (0.032) 98.25 (0.942) ± 28.44 (0.026) 116.92 (0.931) ± 35.51 (0.039)
BW 9 93.64 (0.949) ± 20.28 (0.026) 128.14 (0.954) ± 50.48 (0.023) 264.46 (0.501) ± 30.29 (0.038)
LI 9-8 147.34 (0.922) ± 53.39 (0.053) 101.09 (0.940) ± 28.65 (0.036) 259.22 (0.529) ± 30.39 (0.040)

After analyzing Tables 2 and 3, we conducted an analysis to determine the most
effective ML method and the corresponding normalization method for estimating GRF
components for both feet using the two strategies. For the left foot with the intras strategy,
we found that PCA-SVR was the most effective method for estimating Fx, Fy and Fz using
the mean, MM[−1, 1], and mean normalization methods, respectively. For the inters strategy,
PCA-LS was found to be the most effective method for estimating Fx and Fy using the LI
and mean normalization methods, respectively. For the estimation of Fz, PCA-ANN was the
most effective method using the tanh method. Based on the results from Tables 4 and 5 for
the right foot, regarding the intras strategy, PCA-ANN was the most effective method for
estimating Fx, Fy and Fz, using the ZS, tanh and Med and MM[0, 1] normalization methods,
respectively. Concerning the inters strategy, for the estimation of Fx, Fy and Fz, PCA-
ANN was the most effective method using the VS and MLS, tanh and VS normalization
methods. We can conclude that for the estimation of GRF components, PCA-ANN was
the most effective method, followed by PCA-SVR and then PCA-LS in decreasing order
of effectiveness.
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3.2. An Illustration Example of Slow and Normal Walking

Figure 6 provides an illustration of the estimated GRF components of a single step of
the whole test dataset of the right foot with intras and inters strategies. The normalization
technique that produces the most accurate estimation for each ML method in Tables 4 and 5
is employed to estimate each GRF component (e.g., for the right foot, using the PCA-SVR
model, MM[0, 1] is applied to estimate Fz with the intras strategy).
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Figure 6. The estimated and measured GRF components for a single step during the “slow walking”
and “normal walking” activities for right foot using the intras and inters strategies. The estimated
values are represented by the red line for PCA-ANN, the blue line for PCA-SVR, and the green line
for PCA-LS. The measured values are represented by the black line.
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Table 6 displays the RMSE and R values for both feet, corresponding to Figure 6,
between the estimated and measured GRF components. The RMSE and R values are
calculated between the instance of initial contact at the heel (On-Heel) and the instance
of foot lift-off (Toe-Off). Based on Table 6, the results of the estimated GRF components
by intras and inters strategies during slow walking are more accurate than those during
normal walking.

Table 6. RMSE (R) between the estimated (by insole PP data) and measured (by force plate data) GRF
components for slow and normal walking using intras and inters strategies for the right foot, corre-
sponding to Figure 6. The most accurate normalization method for each ML method in Tables 4 and 5
is used to estimate each GRF component.

Strategy Activity Method Fx[N] Fy[N] Fz[N]

Intras

Slow
PCA-ANN 5.15 (0.975) 11.17 (0.709) 26.60 (0.996)
PCA-SVR 7.40 (0.912) 12.43 (0.681) 29.03 (0.995)
PCA-LS 6.92 (0.948) 12.63 (0.669) 68.49 (0.980)

Normal
PCA-ANN 6.88 (0.946) 24.84 (0.425) 48.95 (0.988)
PCA-SVR 10.53 (0.941) 21.12 (0.577) 45.33 (0.989)
PCA-LS 8.91 (0.911) 23.61 (0.484) 75.18 (0.973)

Inters

Slow
PCA-ANN 3.42 (0.981) 17.33 (0.701) 33.68 (0.993)
PCA-SVR 6.84 (0.941) 16.07 (0.673) 60.69 (0.981)
PCA-LS 6.39 (0.930) 15.15 (0.736) 44.42 (0.994)

Normal
PCA-ANN 15.29 (0.879) 18.61 (0.889) 44.42 (0.984)
PCA-SVR 18.87 (0.808) 28.49 (0.691) 64.23 (0.965)
PCA-LS 17.54 (0.837) 26.71 (0.727) 66.23 (0.965)

Tables 2–6 indicate that the performance in estimating Fx and Fy using the optimal
normalization method is quite comparable. However, the estimation of the Fz component
shows a difference, with the PCA-ANN method providing the best outcomes, except in
one case. Furthermore, as depicted in Figure 6, in instances where the measured GRF
components from the force plate are equal to 0, particularly for the Fz component, PCA-LS
and PCA-SVR may provide an estimation that differs from 0 due to the constant parameter
bias (b). In such cases, PCA-ANN is a better option.

4. Discussion

From Tables 2–5, the R value results of our study indicate that the vertical compo-
nent (Fz) of the GRF can be estimated more accurately (R_Fz = 0.952–0.979) than the
anterior–posterior component (Fy) (R_Fy = 0.606–0.675) and the medial–lateral component
(Fx) (R_Fx = 0.634–0.888). These findings are consistent with previous research studies that
have also reported similar outcomes [12,13,15] for different estimation methods by using
insole measurement. This result holds whatever the strategy and the foot. For instance,
Rouhani et al. [12] employed PCA-ANN and PCA-LS, yielding the following R values
for the three components: R_Fz = 0.991, R_Fy = 0.957–0.960, and R_Fx = 0.933–0.935 with
the intras strategy and R_Fz = 0.957–0.967, R_Fy = 0.906–0.908, and R_Fx = 0.764–0.780
with the inters strategy. Sim et al. [13] employed PCA-ANN and PCA-LS, yielding
R_Fz = 0.921–0.980, R_Fy = 0.878–0.948, and R_Fx = 0.730–0.912. Joo et al. [15] used PCA-
ANN, yielding R_Fz = 0.660–0.950, R_Fy = 0.730–0.830, and R_Fx = 0.650–0.880.

From Tables 2–5, the metrics show very similar results between right and left feet. This
supports the hypothesis stating that both feet can have the same model.

We can note that the optimal results are achieved by PCA-ANN, followed by PCA-
SVR and then PCA-LS with 7, 3, and 2 optimal configurations, respectively, among the
12 configurations. The 12 configurations include three components, two feet, and two
strategies. The PCA-LS and PCA-SVR both search for the best hyperplane that achieves
regression. The latter is linear for LS and nonlinear for SVR (choice of the RBF kernel)
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which explains why better results were obtained with PCA-SVR than with PCA-LS. Even if
SVR provides the best results for some specific configurations (3 out of 12 optimal ones), we
recommend the use of ANN, which shows the best results in the majority of configurations
(7 out of 12 optimal ones).

From Tables 2–6, it can be inferred that the effectiveness of each normalization tech-
nique using PCA varies depending on the ML method (ANN, SVR, or LS) and the strategy
(intras or inters) employed for estimating the GRF components of both feet. Contrary to
the suggestions of previous studies [9–11], our findings suggest that the ZS normalization
method may not always be the optimal approach to estimating GRF components when
utilizing PCA. For example, using the ZS method to estimate GRF components for both feet
with PCA-SVR and both strategies is not recommended because the precision of estimation
is low (error values range from 1.2 to 2.7 times greater than the optimal results).

Also, the authors in [12,13] recommended the use of the BW and LI methods to
estimate the GRF when employing PCA. However, for PCA-SVR and PCA-LS methods, in
the case of Fz estimation for both feet with both strategies, these two methods performed
poorly, with error values ranging from 1.1 to 4.1 times greater than the optimal results.

In conclusion, for estimating GRF components with both strategies for both feet, we
recommend using the VS normalization method with PCA-ANN (error values ranging from
1 to 1.2 times greater than the optimal results) and PCA-LS (error values ranging from 1 to
1.4 times greater than the optimal results). For PCA-SVR, we recommend using the mean
method (error values ranging from 1 to 1.2 times greater than the optimal results). Moreover,
the same normalization method may produce either poor or excellent accuracy results
depending on the ML method employed. It is recommended not to define a normalization
method a priori independently of the ML method.

As an example, the BW method can be the least effective for PCA-SVR. For the intras
strategy, in the estimation of the Fz component of the left foot, this method produced an
error value (271.29 N) that is more than three times the optimal error (59.35 N).

In the case where we want to compare or test the performance of the three ML
methods by using the same PC data, we recommend using the mean or VS normalization
methods for estimating the GRF components with both strategies for both feet. These two
methods have shown favorable results with the three ML methods when compared with
the optimal results.

PCA can reduce computation time by reducing input dimensionality. However, it
requires 16 sensors to reduce the input dimension to 10-6 PCs (Tables 2–5), depending on
the normalization method. This suggests a careful choice of the normalization method for
minimizing the number of PCs.

5. Conclusions

We conducted a comprehensive study on normalization methods with PCA-ML for
GRF estimation, exploring 12 statistical and physical normalization methods instead of the
3 proposed by the authors in [12,13,15]. Moreover, we studied the ZS normalization method,
widely used or recommended with PCA [9–11] in other application domains. However, the
rationale for choosing these methods was not explained. We employed PCA-SVR, a method
that, to the best of our knowledge, has never been examined in the literature on GRF
component estimation. The PCA-SVR method achieved the second-highest accuracy in
estimating GRF components, preceded by PCA-ANN. This paper finally recommends the
use of some normalization methods regarding the ML method employed. For PCA-ANN
and PCA-LS, the VS normalization method is recommended. For PCA-SVR, the mean
method is recommended.

However, our study is limited to normal foot morphology and walking, and further
research is needed for other foot characteristics. In other words, for different conditions, the
normalization methods with the three ML methods in conjunction with the PCA method
need to be reevaluated for estimating GRF components.
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We tested only three ML methods. In the future, we plan to explore other ML methods
in conjunction with PCA, such as the long short-term memory method. Also, in future
work, we aim to select relevant pressure sensors among all the sensors of the insoles using
PCA. The selection allows for a reduction in the number of sensors while maintaining high
GRF component estimation accuracy.
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