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Abstract: Infrared image processing is an effective method for diagnosing faults in electrical equipment,
in which target device segmentation and temperature feature extraction are key steps. Target device
segmentation separates the device to be diagnosed from the image, while temperature feature extrac-
tion analyzes whether the device is overheating and has potential faults. However, the segmentation
of infrared images of electrical equipment is slow due to issues such as high computational complexity,
and the temperature information extracted lacks accuracy due to the insufficient consideration of the
non-linear relationship between the image grayscale and temperature. Therefore, in this study, we
propose an optimized maximum between-class variance thresholding method (OTSU) segmentation
algorithm based on the Gray Wolf Optimization (GWO) algorithm, which accelerates the segmentation
speed by optimizing the threshold determination process using OTSU. The experimental results
show that compared to the non-optimized method, the optimized segmentation method increases the
threshold calculation time by more than 83.99% while maintaining similar segmentation results. Based
on this, to address the issue of insufficient accuracy in temperature feature extraction, we propose
a temperature value extraction method for infrared images based on the K-nearest neighbor (KNN)
algorithm. The experimental results demonstrate that compared to traditional linear methods, this
method achieves a 73.68% improvement in the maximum residual absolute value of the extracted
temperature values and a 78.95% improvement in the average residual absolute value.

Keywords: power equipment; infrared image; segmentation; temperature feature extraction

1. Introduction

Due to its advantages of visualization, convenience, high sensitivity, and non-contact
temperature measurement, infrared thermography technology has been widely applied in
monitoring the operating status of, and detecting faults in, power system equipment [1].
Real-time and accurate infrared image monitoring of electrical equipment is crucial for
ensuring stable operation [2–4]. Improving real-time capability allows for the timely detec-
tion of equipment faults or potential issues, while enhancing accuracy reduces false alarms
and prevents wasting the time and energy of maintenance personnel. However, with the in-
creasing number of power grid devices and maintenance requirements, traditional manual
image recognition methods for infrared images are no longer sufficient to meet the demands
of large-scale fault diagnosis of power equipment [5]. Moreover, manual image recognition
results are influenced by factors such as inspection personnels’ experience, expertise, and
fatigue, which can lead to a misdiagnosis. With the rapid development of computer technol-
ogy and artificial intelligence, utilizing AI technology to extract temperature features from
massive infrared images for monitoring, analysis, and intelligent diagnosis has become a
trend and holds significant research value and application prospects. However, the key
challenge lies in how to extract temperature features quickly and accurately, and then
accurately represent the equipment’s status.
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Extracting temperature features of electrical equipment from infrared images involves
two steps: device segmentation and temperature feature extraction. Among the various
image segmentation methods, extensively utilized threshold-based, region-based, and
edge-based segmentation can be found [6–9]. Among numerous image segmentation
methods, the maximum between-class variance thresholding method, known as the OTSU
method [10–13], proposed by Nobuyuki OTSU from Japan, is regarded as the optimal
algorithm for selecting thresholds in image segmentation due to its simplicity, high accu-
racy, and independence from image brightness and contrast. As a result, it has gained
significant popularity in the field of digital image processing. However, calculating the
optimal threshold by iterating over pixel values requires a significant amount of computa-
tion, reducing the efficiency of image segmentation. In order to accelerate the segmentation
process, scholars from both domestic and international communities have proposed various
intelligent optimization algorithms, such as particle swarm optimization (PSO) [14], Grey
Wolf Optimization (GWO) [15], and the genetic algorithm (GA) [16], which have lower
computational costs. Huang et al. improved the OTSU method by using the fruit fly opti-
mization algorithm, achieving good results [17]. Ning introduced the whale optimization
algorithm into threshold image segmentation, speeding up the segmentation process and
achieving satisfactory results [18].

After completing the image segmentation, temperature information can be extracted
from the segmented regions. The matrix data obtained using infrared instruments contain
the temperature information of the object, which is converted from the temperature ma-
trix to the RGB image via a pseudo color transformation. The temperature information
in infrared images is usually extracted using the accompanying infrared image analysis
software, but this software is usually expensive and lacks universality. The color bar is
an important medium for converting temperature matrices to infrared images, so the tem-
perature information of each point in the image can be obtained from the color bar in the
infrared image [19]. Traditional infrared image temperature calculation approximates the
grayscale and temperature values of each pixel on the image as a linear function. By fitting
the obtained linear function relationship, the temperature value for each pixel is determined.
Zheng et al. studied the function relationship between pixel grayscale and temperature
for the FLIR T640 infrared thermal imager, using grayscale values as independent vari-
ables and temperature values as dependent variables to fit a linear function curve for the
temperature extraction of power equipment infrared images [19]. However, the grayscale
and temperature of the infrared image do not have a strictly linear correspondence, so the
accuracy of temperature estimation using linear functions still needs improvement.

In summary, the extraction of temperature features of target devices from infrared
images mainly involves image segmentation and temperature extraction. When using the
OTSU method as a key component in image segmentation, the computational complexity
is high and the segmentation speed needs improvement. When extracting temperature
information using the relationship between grayscale and temperature, there is limited
research on their non-linear relationship and the extraction accuracy needs improvement.
To address these two issues, in this study, we propose a temperature feature extraction
method for infrared images of electrical equipment based on an optimized OTSU algorithm.
First, the Gray Wolf Optimization (GWO) algorithm is used to optimize the threshold
determination process within the traditional OTSU segmentation method, resulting in an
improved OTSU segmentation algorithm based on GWO. This enhances the segmentation
speed and separates the target device regions in the infrared image. Based on this, we
propose a temperature extraction method for infrared images using the K-nearest neighbor
(KNN) algorithm to improve the temperature value extraction accuracy, obtaining a temper-
ature value feature vector that includes the highest temperature, lowest temperature, and
average temperature of the device on the image. The proposed method provides a reference
for real-time and accurate infrared monitoring of electrical equipment. The workflow of
this method is shown in Figure 1.
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Figure 1. Flowchart for temperature feature extraction from power equipment infrared images.

2. The Infrared Image Segmentation Algorithm

In order to improve the segmentation speed, the GWO optimization algorithm was
utilized to optimize the threshold determination process in OTSU. The optimized threshold
obtained through this process was then used for infrared image segmentation.

2.1. OTSU Algorithm Principle

The OTSU algorithm [20], also known as the maximum inter-class variance method,
was proposed by Otsu in 1979. It is a widely acclaimed algorithm for threshold selection
in image segmentation due to its simplicity and robustness, making it highly popular in
digital image processing.

Assuming the size of the image is M × N, the optimal threshold for a binary conversion
is T, which divides the image into two categories: background and target. The number of
pixels belonging to the background is N1, the number of pixels belonging to the target is
N2, the ratio of the background pixels in the entire image is ω1, the grayscale value of the
background is µ1, the ratio of the target pixels in the entire image is ω2, the grayscale value
of the target is µ2, and the average grayscale value of the entire image is µ. Therefore [21]:

ω1 =
N1

M·N (1)

ω2 =
N2

M·N (2)

N1 + N2 = M·N (3)

Employing Equations (1)–(3), we obtain:

ω1 + ω2 = 1 (4)

µ =
µ1·N1 + µ2·N2

M·N
µ1ω1 + µ2ω2

(5)

The formula for between-class variance is as follows:

σ2
B = ω1(µ1 − µT)

2 + ω2(µ2 − µT)
2 (6)

It can be equivalent to:
σ2

B = ω1ω2(µ1 − µ2)
2 (7)
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Ideally, within the same class, the intra-class variance should be minimal, while
the variance between the background and the target across classes should be maximal,
indicating a significant distinction between the two components comprising the image.
Consequently, the threshold value that maximizes the variance between the background
and the target is determined by iteratively exploring various threshold values, leading to
the desired outcome.

2.2. The GWO-Optimized OTSU Segmentation Algorithm

GWO is a novel swarm intelligence algorithm proposed by Australian researchers
based on their observation of the hunting behavior and hierarchical structure of wolf packs
in the natural world [15].

In the GWO algorithm, the wolf pack is divided into four hierarchical levels in a
pyramid shape, as shown in Figure 2. The leaders of the pack, represented by levels α, β
and γ, have a more acute perception of potential prey locations compared to other wolves.
They lead the pack in searching, tracking, and approaching the prey.

Figure 2. The Gray Wolf ranking system.

During the process of optimizing parameters using the GWO algorithm, the positions
of the current time for levels α, β and γ are defined as the three best solutions found so far,
while the position of the prey represents the actual best solution within the search range.
The optimization process of the GWO algorithm is essentially a process of searching for the
best solution within the search range based on the current best solutions [15].

The advantages of GWO lie in its simplicity and efficiency. It does not require complex
parameter settings and has a fast convergence speed. Additionally, GWO exhibits good
global search capability and convergence performance, making it capable of achieving
good results for various optimization problems.

The traditional OTSU algorithm involves sequentially traversing all pixel values in
an image to obtain the optimal threshold, which can be time-consuming. To speed up the
segmentation process, the GWO optimization algorithm is employed to optimize the process
of finding the optimal threshold. OTSU’s inter-class variance function is used as the fitness
function, with population individuals representing pixel values. By iteratively updating the
positions of the initial population, a new population is obtained. Each iteration produces a
population with better fitness values than the previous generation, and after reaching the
maximum number of iterations, the population represents the optimal threshold.

Utilizing the GWO algorithm, the optimal threshold is determined, enabling the
binarization of the image. This process involves assigning a value of 1 to pixels with
grayscale values surpassing the optimal threshold, while pixels with grayscale values lower
than the optimal threshold are set to 0. As a result, the image is segmented, yielding a
binary representation. The pseudocode of GWO algorithm is shown in Algorithm 1 and
the flowchart of the GWO-optimized OTSU segmentation algorithm is shown in Figure 3.
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Algorithm 1: GWO Algorithm Pseudocode

1. Input:
population_size—size of the population;
num_iterations—number of iterations;
lower_bound—lower bound for the variables;
upper_bound—upper bound for the variables.

2. Initialization:
Create a population of size population_size and randomly initialize the position and fitness value
for each individual;

Compute the fitness value for each individual.
3. Find the optimal solution:
For each iteration, do the following:
For each individual, compute the fitness value;
Find the best individual with the highest fitness value in the current population, denoted as alpha;
Find the second best individual with the second highest fitness value in the current population,
denoted as beta;
Find the worst individual with the lowest fitness value in the current population, denoted as delta;
For each individual in the population, update the position based on the position of alpha, beta,
and delta:
For each dimension, compute the new position;
If the new position is out of bounds, set it to the boundary value;

Return the position of the best individual with the highest fitness value.
4. Main program:
Initialize the population;
For each iteration, do the following:
Find the position of the best individual;
Output the current iteration number and the fitness value of the best solution;
Update the population.
5. Output:

The position and fitness value of the best solution.

Figure 3. Flowchart of the GWO-optimized OTSU segmentation algorithm.
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3. Infrared Image Temperature Feature Extraction Method Based on an Optimized
OTSU Algorithm

Extracting the temperature information of the segmented regions allows us to obtain
the temperature features of the target device. In infrared images, the temperature data
corresponding to each pixel are stored in matrix form. The color bar serves as a tempera-
ture reference in the image, where each temperature point on the color bar theoretically
corresponds to a temperature point in the image. By associating the temperature param-
eters with the image grayscale using the color bar, we can obtain the temperature value
of each point in the image. In this section, the KNN algorithm is employed to extract the
temperature values of the pixels, thereby obtaining the temperature feature vector of the
target device.

3.1. Traditional Linear Temperature Extraction Method

After converting the infrared image into grayscale, the temperature information of the
device is reflected in the grayscale values. There exists a certain monotonic relationship
between the temperature values and the grayscale values. The formula for converting the
RGB three-channel infrared image to grayscale is as follows:

Gray = 0.299R + 0.587G + 0.114B (8)

where Gray is the pixel value after grayscale conversion, and R, G, B are the pixel values of
the three channels of the infrared image.

By leveraging the temperature range provided by the color bar, comprising the maxi-
mum and minimum values, it is possible to establish the correlation between the tempera-
ture values and the grayscale values.

The function relationship between the temperature values and the grayscale values is:

T = kGray + b

k =
tmax − tmin

Gmax − Gmin

b = tmax −
tmax − tmin

Gmax − Gmin
·Gmax

(9)

In the formula, T represents the temperature value, Gray represents the grayscale
value, tmax and tmin represent the upper and lower limits of the temperature value on the
color bar, and Gmax and Gmin represent the maximum and minimum grayscale values on
the color bar, respectively.

3.2. KNN-Based Infrared Image Temperature Value Extraction Method

Traditional linear methods for extracting temperature values from infrared images
calculate the temperature of each point on the image based on a linear relationship be-
tween the grayscale value and the temperature. However, since the grayscale value
and temperature on an infrared image do not strictly follow a linear relationship, the
accuracy of temperature values obtained using this method requires improvement. In
this section, we propose a KNN-based method for extracting temperature values from
infrared images.

KNN (K-nearest neighbor) is an algorithm introduced by Cover and Hart in 1968. The
term “K-nearest neighbor” implies that each sample can be represented by its K-closest
neighbor in the dataset [22]. As shown in Figure 4, when drawing a circle centered on a
sample, since the highest number of shapes inside the circle are triangles, then the sample
is considered a triangle.
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Figure 4. KNN classification diagram. a. b, c represent samples of known categories, A represents
samples to be classified.

The KNN algorithm usually uses the Euclidean distance as the distance metric. For
two n-dimensional vectors in space, A(x11,x12,. . .,x1n) and B(x21,x22,. . .,x2n), the Euclidean
distance between them is calculated as follows:

dAB =

√
n

∑
k=1

(x1k − x2k)
2 (10)

In establishing the training set, the training data and their corresponding class labels
must be determined. Then, the test data to be predicted are compared to the training set
data one by one based on their features. The K-nearest data points are selected from the
training set, and the classification with the most votes among these K data points is taken
as the class of the new sample.

The temperature value of a point on the color bar is obtained using the highest and
lowest temperatures on the color bar and the height of the color bar, according to the
following formula:

t = (y − ymin)tdis + tmin (11)

where ymin is the y-coordinate of the lowest temperature point and t is the temperature
value of point (x, y).

The gray value of point (x, y) is extracted, and a temperature value corresponding to
the gray value is obtained. Following this method, a coordinate x is selected, and every
pixel on the color bar is traversed from bottom to top to obtain all gray values and their
corresponding temperature values, which are saved as a csv file.

By using the data in the csv file as the training set for the KNN algorithm, setting the
K value to 1, and using the gray value of the measurement point as the algorithm input,
the temperature of the measurement point can be obtained as the output. The flowchart of
the KNN-based infrared image temperature extraction method proposed in this section is
shown in Figure 5.
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Figure 5. Flow diagram of infrared image temperature extraction method based on KNN.

3.3. A Temperature Feature Extraction Method for Infrared Images Based on an Optimized
OTSU Algorithm

This section proposes a temperature feature extraction method for infrared images
based on an optimized OTSU algorithm. Following the segmentation of the infrared
image using the method described in Section 2.2, the temperature extraction method from
Section 3.2 is then applied to extract the three temperature features of the image: maximum
temperature, minimum temperature, and average temperature.

1. Extraction of maximum and minimum temperatures

The process of extracting the maximum and minimum temperatures of the infrared
image on the surface of the equipment is as follows: determine the region of the equipment,
find the pixel with the maximum and minimum values, and extract the corresponding
temperature values as the maximum and minimum temperatures.

2. Extraction of average temperature

Since the maximum and minimum temperatures can only reflect the local temperature
of the power equipment and cannot fully reflect the state of the power equipment, the
average temperature is considered another effective feature quantity of the equipment.
By extracting the average temperature and combining it with the maximum temperature,
minimum temperature, and maximum temperature rise, it becomes an effective temper-
ature feature quantity of the power equipment. The process of extracting the average
temperature is as follows: determine the area of the power equipment, extract all pixel
values, accumulate the number of pixel points, calculate the average pixel value, deter-
mine the temperature value corresponding to the average pixel value, and obtain the
average temperature.

4. Method Validation

In order to validate the viability of the proposed method in this article, infrared
images of equipment such as insulators, transformers, and casings were captured using the
FLIR T865 infrared thermal imager. The experimental environment consisted of Python
3.8, Windows 10, Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz CPU, and 8 GB RAM. The
experimental setup had a population size of 80, a maximum iteration count of 50, and a
search range of (0, 255).

For validation and analysis, an infrared image with a temperature range from 28.4 ± 1 ◦C
to 9.2 ± 1 ◦C and a pixel resolution of 640 × 480 was selected as an example, as shown in
Figure 6.
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Figure 6. Power equipment in operation.

4.1. Infrared Image Segmentation

The algorithm’s performance was assessed by comparing both the runtime and the
quality of image segmentation. To conduct an objective and scientific evaluation of the
segmentation results, two widely used image quality evaluation metrics, peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM), were chosen.

In this study, infrared images of operating electrical equipment (Figure 6), and cropped
portions of insulators, transformers, and casings from these infrared images were selected
as experimental images. The four experimental images include an overall infrared image
and localized infrared images. The original images of the four experimental images and
their grayscale histograms are shown in Figure 7. From Figure 7, it can be seen that the
histograms of infrared images have obvious double peaks, so the image can be segmented
by setting a threshold. However, only the threshold range can be obtained from the
histogram, and an accurate threshold cannot be obtained. Therefore, it is necessary to use
the OTSU method to calculate an accurate optimal threshold.

The proposed GWO-OTSU algorithm was compared to the traditional OTSU algorithm,
as well as the classical genetic algorithm, the sparrow optimization algorithm, and the whale
optimization algorithm. Each algorithm was employed to derive the optimal threshold
for the aforementioned experimental images, where by σB

2 is taken as the output of the
fitness function for all optimization methods and the grayscale value that maximizes the
output value, which is the optimal threshold, is identified. However, under identical
conditions, the runtime of the same algorithm, represented as “t”, is not fixed but exhibits
fluctuations. Therefore, to provide an objective evaluation, the same algorithm was run
100 times under the same hardware configuration, and the average runtime was calculated.
The experimental results are shown in Table 1. Based on the optimal thresholds obtained,
the images were segmented, and the segmentation results are shown in Figure 8.

As can be seen from Figure 8 and Algorithm 1, the binarization thresholds for the four
experimental images are 90, 93, 112, and 96, respectively. Under the same evaluation criteria
for PSNR and SSIM, the proposed GWO-OTSU algorithm reduced the average computation
time for the optimal threshold by 83.99% compared to the traditional OTSU algorithm, while
maintaining similar segmentation results. Although the other three optimization algorithms
can also accurately determine the optimal threshold, their average runtime improvement
rates were 68.07%, 70.32%, and 71.93%, respectively, which is more than 12% lower than
the improvement rate of the proposed algorithm, indicating that they are less real-time
than the proposed algorithm. Therefore, without sacrificing segmentation accuracy, the
proposed algorithm exhibits a lower runtime compared to the traditional OTSU algorithm,
enabling faster determination of the optimal threshold for image segmentation.
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Table 1. Test results.

Compared
Categories Image GWO–OTSU SSA–OTSU GA–OTSU WOA–OTSU OTSU

Threshold

(a) 90 90 92 90 90
(b) 93 93 93 93 93
(c) 112 112 111 113 112
(d) 96 96 94 94 96

PSNR

(a) 27.91 27.91 27.92 27.91 27.91
(b) 27.40 27.40 27.40 27.40 27.40
(c) 28.41 28.41 28.34 28.40 28.41
(d) 28.01 28.01 28.00 28.00 28.01

SSIM

(a) 0.5030 0.5030 0.4999 0.5030 0.5030
(b) 0.3624 0.3624 0.3624 0.3624 0.3624
(c) 0.4723 0.4723 0.4787 0.4665 0.4723
(d) 0.2390 0.2390 0.2414 0.2414 0.2390

Elapsed
time/ms

(a) 21.87 43.76 42.29 38.68 147.82
(b) 21.77 43.86 39.83 38.63 134.38
(c) 22.04 42.94 40.62 38.26 133.76
(d) 21.98 44.24 39.76 38.13 131.56

Average running
time/ms 21.915 43.7 40.625 38.425 136.88

Average uptime
lift rate/% 83.99 68.07 70.32 71.93

Figure 7. Cont.
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Figure 7. Experimental image and histogram thereof. (a) Infrared image of operational power
equipment; (b) insulator intercepted in the equipment; (c) transformer intercepted in the equipment;
(d) sleeve intercepted in the equipment.

Figure 8. Cont.
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Figure 8. Experimental images and segmentation renderings. (a) Infrared image of operational power
equipment; (b) insulator intercepted in the equipment; (c) transformer intercepted in the equipment;
(d) sleeve intercepted in the equipment.

In order to discuss the statistical differences between the methods and further demon-
strate the superiority of our method, we conducted experiments on 20 different infrared
images of power equipment using the same method. These 20 infrared images of power
equipment are from Appendix J of the DL/T 664-2016 Infrared Diagnosis Application
Specification for Live Equipment [23], including bushings, transformers, capacitors, circuit
breakers, lightning arresters, insulators, cables, clamps, isolating switches, and other equip-
ment. The experimental image threshold, running time, and other results are shown in
Table 2, and the binary image is shown in Figure 9.

From Table 2 and Figure 9, it can be seen that under the same segmentation effect,
the proposed GWO-OTSU algorithm reduces the average calculation time of the optimal
threshold by 84.10% compared to the traditional OTSU algorithm. The average runtime
improvement rates of the other three optimization algorithms are 67.77%, 71.37%, and
71.85%, respectively, which is more than 12% lower than the improvement rate of the
algorithm proposed in this article. Furthermore, their real-time performance is not as
good as the method proposed in this article. Therefore, without sacrificing segmentation
accuracy, compared to traditional OTSU algorithms, the proposed algorithm has a lower
runtime and can quickly determine the optimal threshold for image segmentation.

4.2. Temperature Feature Vector Extraction
4.2.1. Extraction of Temperature Values from Normal Infrared Images

The grayscale result of converting Figure 6 to grayscale is shown in Figure 10.
The temperature points of the color bar correspond one-to-one with the temperature

points of the infrared image in theory, so analyzing the accuracy of temperature extraction
on the color bar can help obtain the accuracy of temperature extraction of infrared images.
Uniformly select 20 points on the color bar as sampling points for analysis.

The calculation method for the actual temperature of the sampling points in this article
was as follows: Since the color bar is temperature-linear, the temperature of each point on
the color bar should increase uniformly with the increase in the vertical coordinate. If the
vertical coordinates of the starting and ending temperatures are determined, the temper-
ature values of each intermediate point can be calculated. In Figure 9, if the coordinates
of the upper left corner are set to (0,0), then the coordinates of the lower right corner are
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(639,479). Within the range where the color bar is located, the vertical coordinates of the
sudden change in grayscale value are taken as the vertical coordinates of the starting and
ending temperatures. Therefore, the vertical coordinates corresponding to 28.4 ◦C are 30,
and the vertical axis corresponding to 9.2 ◦C is 423. Therefore, for the color bar in Figure 9,
starting from 30, the vertical coordinates increase by 1, and the temperature value decreases
by 0.049 ◦C. In this way, the temperature values corresponding to each ordinate in the
30–423 range can be obtained, and 20 temperature values can be taken evenly from the
middle as the actual temperature values of the sampling points.

Table 2. Test results.

Compared
Categories Image GWO–OTSU SSA–OTSU GA–OTSU WOA–OTSU OTSU

Threshold

(1) 50 50 50 51 50
(2) 84 84 83 85 84
(3) 28 28 28 27 28
(4) 63 63 63 63 63
(5) 54 54 54 54 54
(6) 77 77 78 78 77
(7) 41 41 39 42 41
(8) 33 33 34 33 33
(9) 43 43 43 42 43
(10) 37 37 36 38 37
(11) 67 67 64 69 67
(12) 76 76 77 74 76
(13) 35 35 32 34 35
(14) 84 84 84 82 84
(15) 16 16 19 16 16
(16) 31 31 33 30 31
(17) 62 62 59 63 62
(18) 45 45 45 46 45
(19) 66 66 66 69 66
(20) 60 60 63 58 60

Elapsed time/ms

(1) 22.66 43.96 40.63 37.08 131.47
(2) 22.15 43.79 37.12 40.07 131.16
(3) 22.29 44.76 39.57 39.59 136.79
(4) 22.87 45.83 40.96 36.65 133.47
(5) 21.85 44.66 40.08 38.09 139.70
(6) 19.99 42.37 36.50 42.55 131.48
(7) 21.01 42.67 34.42 38.40 133.83
(8) 20.29 42.53 39.08 37.19 132.44
(9) 20.19 41.64 33.96 34.69 132.31
(10) 21.19 42.02 38.04 37.92 134.32
(11) 20.79 40.70 35.23 35.58 133.84
(12) 20.22 44.27 34.52 37.59 133.85
(13) 21.45 41.37 32.92 38.22 139.19
(14) 20.87 42.42 39.84 37.78 131.57
(15) 20.98 42.48 42.56 35.42 131.56
(16) 21.97 42.50 38.28 35.77 131.17
(17) 20.51 42.46 38.51 37.09 130.29
(18) 20.77 42.35 42.08 35.99 132.69
(19) 20.50 43.87 39.10 37.96 132.79
(20) 21.83 43.67 40.77 37.65 135.10

Average running time/ms 21.219 43.016 38.2085 37.564 133.451
Average uptime lift rate/% 84.10 67.77 71.37 71.85
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Figure 9. Infrared image and its segmented image. (1)–(20) represents the experimental image number.

Figure 10. Grayscale chart.
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The traditional linear and proposed methods are used to extract the temperature and
grayscale relationship of the infrared image color bar, and the measured temperature values
of each sampling point on the color bar are obtained. Then, error analysis is performed on
the actual temperature value of the sampling point and the measured temperature value,
and the analysis results are shown in Figure 11.

Figure 11. Measurement point temperature measurement results.

From the figure, it is evident that the measurement results obtained using the proposed
method closely align with the actual values. The absolute residuals of the test data are
shown in Figure 12.

Figure 12. Comparison of absolute residual values.

From Figure 12, it can be observed that the absolute residuals of the proposed method
are generally smaller compared to those of the traditional linear method. The maximum
absolute residual for the traditional linear method is 0.57 ◦C, while the proposed method
is only 0.15 ◦C, resulting in an improvement rate of 73.68%. The average residual for the
traditional linear method is 0.19 ◦C, whereas the proposed method proposed is only 0.04 ◦C,
resulting in an improvement rate of 78.95%. Hence, the proposed method exhibits higher
accuracy compared to the traditional linear method.

A randomly selected rectangular region on the captured infrared image, with the coor-
dinates of the top left and bottom right points being (288, 167) and (315, 186), respectively.
Following the method described in Section 2.1, the maximum temperature value, minimum
temperature value, and average temperature value of all points within the region are cal-
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culated as 28.35 ◦C, 26.69 ◦C, and 27.76 ◦C, respectively. The actual maximum, minimum,
and average temperature values of all points within the rectangular box can be obtained
from the accompanying infrared image analysis software, which are 28.383 ◦C, 26.652 ◦C,
and 27.826 ◦C, respectively. It can be observed that the absolute residuals between the
extracted minimum, maximum, and average temperature values and their actual values
are 0.033 ◦C, 0.038 ◦C, and 0.066 ◦C, respectively. This indicates that the proposed method
can accurately extract temperature features from infrared images. Therefore, the proposed
method can be used for temperature extraction in infrared images and obtain high-precision
temperature values.

In order to further demonstrate the effectiveness of the method proposed in this article,
we conducted experiments on 20 infrared images of power equipment using the same
method. These 20 infrared images of power equipment were captured using a FLIR infrared
thermal imager, including bushings, transformer boxes, radiators, and oil conservators.
The experimental image is shown in Figure 13, and the experimental residual absolute
value analysis is shown in Figure 14.

Figure 13. Experimental infrared images. (1)–(20) represents the experimental image number.

Figure 14. Cont.
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Figure 14. Comparison of the absolute residual values. (1)–(20) represents the experimental result
number corresponding to each image in Figure 13.

From Figure 14, it can be seen that compared to traditional linear methods, the absolute
residual values are generally smaller. In order to observe the errors of the two methods
more intuitively, we calculated the experimental average absolute error and maximum
residual absolute values for each image, as shown in Figure 15.

Figure 15. Error per infrared image: (a) mean absolute error; (b) absolute value of maximum residuals.

From Figure 15, it can be seen that compared to traditional linear methods, the pro-
posed method has a smaller average absolute error and smaller maximum residual absolute
values. Therefore, the proposed method can achieve higher accuracy in extracting tempera-
ture values from infrared images.

4.2.2. Extraction of Temperature Values from Infrared Images with Added Noise

Due to the harsh operating environments of most power equipment, there may be
various interfering factors during actual maintenance, leading to the presence of significant
noise in the captured infrared images. This noise is primarily Gaussian noise, with a small
amount of salt-and-pepper noise. In order to validate the effectiveness of the proposed
temperature extraction method under the influence of noise, Gaussian noise with a mean of
0 and a variance of 2, as well as salt-and-pepper noise with a density of 0.002, were added
to the captured infrared images. Figure 16 shows the images with the added noise.
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Figure 16. Infrared image after adding noise.

Both the traditional linear method and the proposed method were used to extract
the temperature and grayscale relationship from the color bar in the infrared images with
added noise. The temperature measurement values for various points on the color bar were
obtained. Error analysis was conducted on 20 uniformly selected points on the color bar,
and the results are shown in Figures 17 and 18.

Figure 17. Adding noise measurement point temperature measurement results.

Figure 18. Comparison of the absolute values of residuals.
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From the above two figures, it can be observed that even in the presence of noise,
the absolute residuals of the proposed method are still generally smaller than those of the
traditional linear method.

Figure 19 shows a comparison of the temperature value fluctuations for each measure-
ment point extracted using the proposed method and the traditional linear method before
and after the addition of noise.

Figure 19. Temperature value fluctuation comparison chart.

From Figure 19, it can be observed that before and after the addition of noise, the
temperature values extracted utilizing the proposed method show minimal fluctuations
for each measurement point. In contrast, the temperature values extracted employing
the traditional linear method exhibit larger fluctuations. This indicates that the proposed
method provides more stable test results and demonstrates better resistance to interference.

4.2.3. Extraction of Temperature Feature Vectors from Power Equipment Infrared Images

A temperature feature vector T = [t1, t2, t3] was created, where t1 represents the
maximum temperature, t2 represents the minimum temperature, and t3 represents the
average temperature. The relevant temperature values of the infrared images of insulators,
transformers, and bushings in Figure 6 were extracted according to the method outlined in
Section 3.3 to realize the temperature feature extraction of the infrared image of the power
equipment. The temperature feature vectors T1, T2, and T3 for the three power equipment
infrared images are as follows:

T1 = [21.06 ◦C, 13.90 ◦C, 19.26 ◦C]
T2 = [28.40 ◦C, 11.15 ◦C, 23.59 ◦C]
T3 = [23.22 ◦C, 14.96 ◦C, 21.06 ◦C]

5. Conclusions

In this study, we investigated real-time and accuracy issues during temperature feature
extraction from power equipment infrared images, drawing the following two conclusions:

1. By utilizing the Gray Wolf Optimization (GWO) algorithm to calculate the maximum
inter-class variance threshold for the OTSU method, an optimized OTSU segmentation
algorithm based on GWO is obtained. This algorithm improves the rate of finding the
optimal segmentation threshold. The experimental results show that the proposed
method reduces the average computation time for the optimal threshold by 83.99%,
while maintaining a similar segmentation effect.

2. By combining the K-nearest neighbor (KNN) algorithm, the temperature values from
power equipment infrared images are extracted, addressing the issue of high errors in
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temperature calculation using traditional linear fitting methods. The experimental
results show that compared to the traditional linear method, the proposed method
achieves a 73.68% improvement in the absolute residuals and a 78.95% improvement
in the average residuals. The proposed method, therefore, demonstrates higher
accuracy compared to the traditional linear method.

This method may provide a reference for extracting temperature features from images
in power equipment fault diagnosis. In future research, we can extract the temperature in-
formation of power equipment from infrared images and combine it with relevant industry
and national standards to conduct fault prediction for power equipment. Furthermore, the
classification of fault levels can be based on the temperature variations in power equip-
ment captured in infrared images, thereby reducing human and material losses caused by
equipment failures.
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