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Abstract: The electrical energy supply relies on the satisfactory operation of insulators. The ultra-
sound recorded from insulators in different conditions has a time series output, which can be used
to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use
convolutional filters to extract various features from the time series data. This paper proposes a
combination of Rocket algorithms, machine learning classifiers, and empirical mode decomposition
(EMD) methods, such as complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The
results show that the EMD methods, combined with MiniRocket, significantly improve the accuracy
of logistic regression in insulator fault diagnosis. The proposed strategy achieves an accuracy of
0.992 using CEEMDAN, 0.995 with EWT, and 0.980 with VMD. These results highlight the potential
of incorporating EMD methods in insulator failure detection models to enhance the safety and
dependability of power systems.

Keywords: electric power system; empirical mode decomposition; rocket algorithm; time series
classification

1. Introduction

Electrical power grids form the backbone of modern society [1], and their components’
effective management and maintenance are of paramount importance [2]. Insulators play
a critical role in ensuring the stability and reliability of these grids, as they serve as both
mechanical supports for the wires and electrical potential insulation [3]. A degradation in an
insulator’s characteristics can have severe consequences, leading to disruptive discharges,
system failures, and compromised network dependability [4]. Therefore, it is crucial to
develop robust and accurate methods for monitoring and assessing the performance of
insulators [5].

Considering that insulators are responsible for keeping the power grid working by
supporting and insulating the cables, the early identification of faulty insulators can assist
the electric power utility in identifying where there are insulators that must be replaced [6].
The ultrasound signal can be recorded during power grid inspections, providing additional
information for the inspection team. Therefore, the combination of an ultrasound signal
and the proposed approach is an advanced way of identifying and mitigating faults in
electrical power systems [7].
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Inspections of the electrical system using radio-frequency-based techniques are in-
creasingly being applied by power utilities since, before a fault occurs, partial discharges
can emit light or noise that humans have difficulty identifying [8]. For this purpose, specific
equipment, such as ultraviolet cameras, infrared cameras, and ultrasound detectors, are
used [9]. Therefore, when there is a higher probability of failure, the maintenance team can
take action in advance, improving the reliability of the electrical network [10].

Based on the ultrasound, analyzing time series data captured from the insulators
during the inspections is a promising avenue for fault detection [11]. Ultrasound-based
techniques have proven effective in identifying various insulator faults, providing valuable
insights into their condition, and allowing for timely maintenance and replacement [12].
However, the accurate classification of these time series data remains a challenge. The major
advantage of using ultrasound compared to leakage current detection [13], for example, is
that the ultrasound does not need to be in direct contact with the network; thus, inspections
can be performed with greater speed and less risk for the technical team [14].

Time series classification is a task that involves predicting a categorical label for a given
time series dataset. This data are a sequence of observations collected over time. Time series
classification aims to learn a model that can classify new time series based on past observa-
tions. Recent advances in time series classification methods have opened new possibilities
for addressing this issue [15]. The accuracy and effectiveness of time series classification
methods have recently undergone several types of substantial developments based on sta-
tistical models [16], machine learning [17], and deep learning [18] approaches. The random
convolutional kernel transform (Rocket) algorithms [19], including MiniRocket [20] and
MultiRocket [21], have attracted considerable attention from researchers due to their ability
to efficiently and accurately process time series data.

Rocket is a kernel-based approach that uses random Fourier features to map data from
time series into a feature space of high dimensionality. MiniRocket is a lightweight version
of Rocket. MiniRocket is a faster and more memory-efficient method than Rocket, given
that it only takes a small portion of the random Fourier features into account. Despite each
time point being represented by many variables, MultiRocket is a variant of MiniRocket that
is capable of handling multivariate time series classification challenges. Aiming to generate
a shared feature representation for the multivariate time series, MultiRocket implements an
innovative multivariate feature mapping technique that integrates the outputs from several
univariate MiniRocket classifiers [22].

This paper proposes a novel approach, combining Rocket algorithms with machine
learning classifiers to enhance insulator time series classification accuracy and efficacy
based on ultrasound data. The contributions of this research are summarized below:

(i) An efficient classification framework that combines the advantages of Rocket approaches
and machine learning models for the time series classification of medium voltage insula-
tors is proposed, increasing classification accuracy and generalization capabilities.

(ii) The impact of integrating empirical mode decomposition methods with the proposed
framework is shown, with significant improvements in classification accuracy.

(iii) Several classification algorithms are comprehensively compared to provide a bench-
mark for performance evaluation. This comparison will help engineers to select the
most appropriate method for their specific insulator classification task, considering
classification accuracy versus model complexity.

The proposed method was developed to identify the ultrasound signature of faulty
insulators during inspections; based on this trained hybrid machine learning approach, the
operator will obtain a classifier that has a higher chance of having an insulator that is not in
good condition. Based on these measurements, predictive maintenance can be carried out
to improve the power systems’ reliability.

The remainder of the work is presented as follows: The related works are briefly
presented in Section 2. The description of the classification problem is detailed in Section 3.
The fundamentals of the evaluated methods and the proposed approach are explained in
Section 4. Section 5 discusses the classifier designs regarding performance evaluation and
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an analysis of the results, while Section 6 provides the main conclusions and suggestions
for further research.

2. Related Works

The use of machine learning for fault estimation [23] is becoming popular for several
tasks [24]. Several authors have explored the evaluation of time series for identifying and
predicting insulator failures [25], as well as for other applications [26–28]. Klaar et al. [29]
used the empirical wavelet transform for denoising in a hypertuned long short-term mem-
ory (LSTM) for fault prediction in insulators considering a sequence-to- sequence problem.

The prediction regarded leakage current, similar to the method presented by Sopelsa
Neto et al. [30] and Medeiros et al. [31], where several models were explored for this
task. As presented by Zhang et al. [32] the long-term monitoring of electrical systems is
important to ensure their performance and reliability over time. As presented in [33] there
is a trend of adopting energy harvesting techniques for fault diagnosis.

Insulator classification is a task that other researchers have covered, considering that
these components need to be in good condition to keep the electrical power system running.
Tao et al. [34], Tan [35], Mano, Tomohiro, and Ohtsuki [36], and She et al. [37] considered
convolutional neural networks (CNNs) for image classification based on aerial images of
insulators in different conditions. According to these works [34–37], the application of
CNN is well known to be a promising alternative when images of inspections are analyzed.

This paper considers the CNNs to analyze the ultrasound signal, which is an inno-
vative way of evaluating the time series of the ultrasound detected from insulators in
different conditions. The use of CNNs for time series classification proposed here is an
outstanding solution in this field since the majority of the research considers images from
visual inspections.

2.1. Visual Inspections and Classification

To automate visual inspection tasks, Prates et al. [38] suggested applying CNNs to
recognize flaws and different insulators in overhead power distribution lines (OPDLs).
More than 2500 photos obtained from a studio and a realistic OPDL were used to train the
model. Multi-task learning was also employed to enhance fault detection performance
by predicting the insulator class. Also, based on images, in [39], a new hybrid method is
proposed, which combines object detection to CNNs for classification.

The you only look once (YOLO) deep learning neural network model using the un-
manned aerial vehicle has been presented in the work of Sadykova et al. [40] as an effective
technique for detecting high-voltage insulators. The purpose is to provide a real-time clas-
sification of insulator conditions while avoiding expensive manual inspections that involve
traveling across a wide area in adverse weather. The technique uses a training set size of
56,000 image samples and data augmentation to prevent overfitting. The experimental
findings show how well the proposed method works for accurately determining insulators
and assessing their surface conditions for the presence of ice, snow, and water through
different classifiers. Also, in [41], a hybrid version of YOLO is proposed for inspections of
the power grids.

Aiming to monitor the condition of equipment for high-voltage power stations,
Mitiche et al. [42] addressed the use of bispectrum representations as complex input fea-
tures in complex-valued deep CNNs. This approach achieved excellent classification
accuracy for discharge signals. An automated inspection system that uses computer vision
to gauge erosion in silicone rubber samples was presented by Ibrahim et al. [3]. Using the
International Electrotechnical Commission (IEC-60587 [43]) standard to describe failure,
the system was intended to classify samples into one of three groups based on the level
of erosion. The suggested system compared the performance of ANNs, applying feature
extraction methods and pre-processing approaches.

A novel model based on feature pyramid neural networks and an adaptive thresh-
old algorithm with line detection, image rotation, and vertical projection data, applied
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to insulator fault detection in transmission lines, was proposed by Zhao et al. [44].
Singh et al. [45] presented an evaluation of infrared thermal images; their method com-
putes several features from the segmented region of interest and utilizes a Gaussian kernel
SVM to classify the insulator faults. A robust methodology based on deep learning and
uncertainty detection for automatic insulator fault inspection, using aerial images, was
approached by Dai [46]. The bounding box prediction was improved, and the detection
robustness was enhanced using the predicted uncertainty scores.

2.2. Time Series and Machine Learning

The problem of interpreting leakage current measurements for overhead insulator
condition monitoring due to the intermittent harmonic content of the supply voltage
was presented by Ghosh et al. [47]. To monitor leakage current in the presence of voltage
harmonics, the study suggested applying the instant value of the time integral of the leakage
current as a low-sensitivity parameter. The study demonstrated that changes in system
voltage’s harmonic content significantly impact the harmonic properties of the leakage
current. The suggested measuring method was tested and validated using experimental
data that were captured in the lab and integrated into an online measurement tool that was
evaluated in the lab.

The problem of appropriately simulating the flashover phenomena in contaminated
insulators was approached by Belhouchet et al. [48]. This issue is made more challenging by
the complexity of determining the arc constants generated in dry bands when the electrical
voltage goes beyond critical levels. Using data from artificially contaminated insulator
experiments, the authors suggest a strategy for optimization based on genetic algorithms
and artificial neural networks (ANN) to identify the arc constants and dielectric properties
of the surface. The research, which used a generalized pollution flashover model, observed
that the inverse connection of flashover voltage and leakage current was validated by the
optimized mathematical model’s realistic simulation of the experimental data.

A method for predicting line trip defects in power systems that combine a support
vector machine and LSTM networks was suggested by Zhang et al. [49]. The suggested
approach addresses the shortcomings of existing approaches based on the activities that
are carried out to preserve relays and electrical components. In order to acquire the final
prediction results, the support vector machine is used for classification and the LSTM
networks are employed to capture the temporal aspects of multi-sourced data. The LSTM
is suggested for time series with high nonlinearities [50] and can be further improved by
using the attention mechanism [51].

Polisetty et al. [52] concentrated on the significance of keeping a close watch on outside
insulation systems to preserve the integrity of substations and overhead transmission and
distribution lines. The study used an ANN and a commercial acoustic sensor to classify the
electrical discharge patterns in external insulating systems. The ANN was then expanded
to incorporate three different types of flaws on outdoor ceramic insulators and distinguish
between five frequent discharges of electricity produced under controlled settings. The
investigation successfully identified approximately 85% of the controlled samples.

A new method for insulator condition monitoring based on meteorological and en-
vironmental information was suggested by De Santos and Sanz-Bobi [53]. The method
combined the random under-sampling technique to estimate important condition indica-
tors with an adaptive boosting algorithm (RUSBoost). The proposed method was compared
with other algorithms at France’s 245 kV test station. The findings indicate that RUSBoost
outperformed the competitors’ algorithms, rating highly in the estimation of insulator
conditions. Advanced hybrid methods were applied by several researchers [54–56], and
the idea of combining techniques helps the model by using the advantages of more than
one approach.

A knowledge-based optimization approach to deal with the challenge of determining
the optimal process settings for manufacturing medium voltage insulators was proposed
by Kong et al. [57]. Their method utilized historical approximations produced during
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the optimization process to enhance the accuracy of the gradient estimates and to adjust
the size of the iteration step. Their approach reduced the cost and improved the quality
control efficiency for insulators, which is crucial for their efficient production and confident
operation. Models based on the ensemble approach are promising as they usually need
less computational effort compared to deep learning [58].

The adoption of deep learning algorithms for the condition monitoring of high voltage
equipment in electrical power systems was reviewed by Mantach et al. [59]. Contrasting
conventional machine learning approaches, deep learning combines feature extraction
with the learning stage and uses raw data as input. This paper included contemporary
research on deep learning approaches for monitoring high-voltage equipment, including
gas-insulated switchgear, transformers, cables, rotating machines, and outside insulators.

A novel approach to monitoring the pollutant insulator discharge mode in high-
voltage lines by combining auditory emission signals with a one-dimensional CNN struc-
ture (1D-CNN) was presented by Hao et al. [60]. The procedure includes data collection
in a lab, accompanied by the use of 1D-CNN to reduce the dimensionality of the signal
samples and extract features. With a recognition rate of over 99.84%, the model successfully
replaces the need for human data preparation in conventional monitoring approaches and
may be used to carry out monitoring tasks for the pollution insulator discharge mode.

A CNN bidirectional LSTM, named CNN-Bi-LSTM neural network design with hy-
perparameter optimization, used to classify leakage current levels according to sequential
weather factors and insulator data, was evaluated by Nguyen et al. [61]. The CNN-Bi-
LSTM was employed in real-time monitoring services to improve the operations of the
TaiPower electric utility in Taiwan. On the other hand, a CNN-LSTM neural network with
hyperparameter tuning for categorizing the leakage/discharge current on a web-based
service was evaluated by Tham and Cho [62]. Leakage current surge and weather data are
used as input parameters in four different models to predict leakage current classification.

2.3. Ultrasound Detector

Using ultrasound to classify the condition of the insulators of medium voltage power
grids, Stefenon et al. [63] proposed using the echo state network. They showed that
identifying a specific condition, such as drilling, is easier than performing a multiclas-
sification. They highlighted that the broken and drilling insulators have more partial
discharges than contaminated or clean insulators, making it possible to obtain classification
results with over 99% accuracy when these conditions are evaluated. In this evaluation,
the echo state network was more promising than the support vector machine (SVM) or
multilayer perception.

Ferreira et al. [64] proposed a method for calculating electrical insulator pollution
using ultrasonic noise. The audio was reduced using the spectral subband centroid energy
vectors’ algorithm before being input into an artificial neural network that can distinguish
between different degrees of pollution. Their method was applied to process ultrasonic
sounds from different types of electrical equipment given to multiple forms of pollution.
In [65], the contamination of insulators was evaluated using deep learning.

Concerning an evaluation of the time series to predict the increase in faults in the
power supply system, Branco et al. [66] presented a study of the number of faults that
occurred over the year. The failures could be related to climatic variations. Depending on
the season, more failures can occur, especially in this study, where there is a rainy season,
increasing the probability of failure [67]. A highlight that was presented in this research
was the use of wavelet transform to mitigate the impact of unrepresentative variations.
This technique can be used in chaotic time series, such as ultrasound, which are studied to
detect failures in power utilities [68].

The study of ultrasound has been explored by several authors [69–72], and can be
applied to classification, as presented in this paper. Considering an experiment under
medium voltage, the ultrasound equipment is employed to define insulator patterns under
different conditions, as will be explained in detail in the next section.
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3. Insulators Ultrasound Measurement

This section provides a detailed account of the classification problem and explains the
experiment performed in the high-voltage laboratory presented in Figure 1. The experiment
involves applying a voltage of 7.95 kV phase-to-ground to the insulators, equivalent to
13.8 kV phase-to-phase in the power system, the electrical potential used in the considered
distribution branch located in southern Brazil.

Figure 1. Insulator drilled with a bench drill to simulate a perforation caused by an electric discharge:
(A) top view; (B) bottom view .

This paper considered three conditions: an insulator in good condition, an artificially
contaminated insulator, and a drilled insulator. The insulators are pin-type profiles, class
15 kV, from the Germer manufacturer. These insulator profiles are commonly installed
in conventional distribution power grids in rural southern Brazil, which are exposed to
organic contamination from unpaved roads and saline contamination when close to the
coast [73].

To simulate the drilling caused by lightning, a perforation was performed on the
top of insulators using a bench drill. Figure 1A presents the top view of the drilling, and
Figure 1B shows the bottom view, where the fixation pin is attached. This problem is less
present in the distribution grid because the perforations can occur underneath the mooring.
Perforation is more common in polymeric insulators, where the temperature required for
carbonization is lower than that in glass insulators [74].

The contamination over the insulator surface is an issue that increases the conductivity
of the surface, leading to a higher leakage current and possible flashovers [75]. The
flashovers mainly occur in bad weather conditions, making it challenging to identify
the exact location of the fault during inspections. When lightning strikes the electrical
power grid, perforations or boundary discharges might occur, resulting in a higher risk of
irreversible failures, for which corrective maintenance is required [76].

To simulate the contamination on the insulators, the solid layer procedure presented by
NBR 10621/2017 [77] (Brazilian Standard: high-voltage insulators to be used in alternating
current systems—artificial pollution tests) was followed, based on IEC-507 [78] (artificial
pollution tests on high-voltage insulators to be used in alternating current systems). The
contaminants that were considered were kaolin and sodium chloride. The NBR 10621/2017
[77] standard determines the tolerable performance of porcelain or glass insulators for
outdoor applications [79].

The experiment was conducted inside an acrylic chamber since the ultrasound detector
is sensitive to noise from external sources. The ultrasound detector was set at a distance
of 0.4 m from the insulators (see Figure 2), and recorded noise signals with a maximum
frequency of 500 kHz; this distance was fixed for comparative purposes. In the distribution
grids, the operator may face scenarios with varying relief, which may result in a greater need
for measurement. The difficulty in reaching the grid is one of the significant challenges in
inspections of power distribution networks carried out by the electric utility company [80].



Sensors 2024, 24, 1113 7 of 24

Figure 2. High-voltage applied experiment under controlled conditions.

To mitigate the interference from partial discharges resulting from the mooring of
the insulator, the fixing was carried out with non-conductive materials [81]. The chamber
held two affixed insulators, and voltage was applied to these insulators while the ground
contained an equal reference. The ground was attached only to the insulator under eval-
uation to prevent one insulator from affecting the other. An M500 model from Petterson
recorded the ultrasonic signal. The conductivity of the water used to spray the samples
during the experiment was 56 kg/m3, which corresponds to a medium–high contamination
level according to IEC-507.

As partial discharge typically occurs over the frequency range from 10 kHz to 210 kHz,
a comprehensive assessment of more than 50 times the base frequency ensures that all
frequencies beyond 10 kHz are captured under a single wave cycle. In addition to the
500 kHz frequency rate, to ensure that the signal was properly recorded for a sufficient
length of time, the data log was held for 50 s. After the signal was saved, a total of
1 × 105 records were considered for a comprehensive assessment. Figure 3 presents an
example of the signal recorded by the ultrasound equipment.

During the experiments, the faulty insulators were subjected to a voltage equal to that
of the electrical power network in which they are employed. This condition does not result
in a flashover, since this fault usually occurs when, in addition to the contamination, there
is high humudity. Considering that the focus of this paper is to identify faulty insulators
before failure occurs under regular environmental conditions, there is no flashover and the
ultrasound is not measured under this condition.
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Figure 3. Ultrasound recorded signal: (a) normal; (b) fault.

4. Methodology

The model proposed in this paper combines empirical mode decomposition methods
with random convolutional kernel transform models and state-of-the-art classifiers to obtain
a hybrid architecture, as presented in Figure 4, which is explained in this section. The input
signal is based on a time series measured by ultrasound during high-voltage experiments
considering insulators under different conditions, as explained in the previous section.

Input time series

Convolution

Random 1-D 
convolution kernals PPVs

Concatenated 
PPVs

Classifier

PPV calculator

Logistic Regression
Ridge Regression

Decision Tree
k-NN
LDA

Gaussian Naive Bayes
SVM

Random Forest
Gradient Boosting

AdaBoost
Gaussian Process

XGBoost
LightGBM

EMD
CEEMDAN

EWT
VMD

Figure 4. Architecture of the proposed model.

A time series is a sequence of points of information collected over time, typically at
fixed intervals. The classification of time series is related to the development of models
to classify time series data into predetermined categories based on their patterns and
characteristics over time. The Rocket [19], MiniRocket [20], and MultiRocket [21] algorithms
have been widely evaluated for time series classification tasks.

The fundamental concept of Rocket methods is to obtain features from time series
data and use these features to train a classifier. These models use convolutional kernels
to transform the time series data into features, which are then used for classification [82].
Given a time series x = x1, x2, . . . , xT , these algorithms compute features such as the
maximum value (Max) and the proportion of positive values (PPV) for each of the k
convolutional kernels. The convolutional operation for a kernel ϕ = ϕ1, ϕ2, . . . , ϕm can be
expressed as follows :

zi = (x ∗ ϕ)i = ∑ j = 1mxi+j−1ϕj, (1)

where ∗ denotes the convolutional operation, zi is the output of the convolution, and m is
the kernel length. The Max and PPV features are computed as follows:

Max = max
1≤i≤T−m+1

zi, (2)
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PPV =
1

T − m + 1

T−m+1

∑
i=1

1(zi > 0), (3)

where 1(·) is the indicator function. The extracted features are then used to train a linear
classifier for time series classification.

MiniRocket distinguishes itself from Rocket by computing features using a fixed set
of k convolutional kernels with a shorter kernel length, resulting in greater computational
efficiency and refining the convolutional process by introducing alterations to the ker-
nels [83]. The MiniRocket transform calculates the Max and PPV features for each k fixed
convolutional kernel. By leveraging a fixed set of kernels with shorter kernel lengths,
MiniRocket significantly diminishes the computational effort while retaining a competitive
performance in time series classification tasks [84].

The MultiRocket algorithm extends the Rocket framework by incorporating multiple
pooling operators and transformations to enhance the diversity of the generated features.
MultiRocket employs first-order differences to transform the primary input series, thereby
creating an alternative representation and processing the raw input series. Both represen-
tations undergo the application of convolutions, and the processing of the convolution
outputs is executed using four distinct pooling operators. The integration of additional
procedures expands the range of features and improves the algorithm’s performance [21].

4.1. Empirical Mode Decomposition

For time series decomposition, feature extraction, and noise reduction, the empir-
ical mode decomposition (EMD) methods are applied [85]. The variations in the EMD
include the complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) [86], empirical wavelet transform (EWT) [87], and variational mode decomposition
(VMD) [88]. These methods are advanced signal processing techniques that aim to decom-
pose a given time series into a finite set of components, with each representing an intrinsic
mode function (IMF) [89] or oscillatory mode.

EMD is a data-driven method that decomposes non-linear time series in a set of
IMFs [90]. The main idea behind EMD is the so-called sifting process, which iteratively
extracts IMFs by identifying local extrema and fitting envelopes using cubic spline inter-
polation. Given a time series x(t), the sifting process begins with the identification of all
the local maxima and minima. Next, the upper and lower envelopes are created by the
interpolation of the local maxima and minima, employing cubic spline interpolation. The
mean of the envelopes is then calculated as follows:

m(t) =
1
2
(eupper(t) + elower(t)), (4)

where eupper(t) is the upper envelope and the elower(t) is the lower envelope [91].
The difference between the original signal and the mean is considered a candidate IMF:

c(t) = x(t)− m(t), (5)

and this process is repeated on the IMF until it meets the predefined stopping criterion.
Then, it is applied to the residual signal until all IMFs are extracted.

The EWT involves the decomposition of a given signal in oscillatory modes with
varying scales and frequencies [92]. The EWT algorithm produces a collection of n non-
linear functions, known as IMFs, from the signal x(t) and a wavelet mother function ψ(t).
The process of generating these IMFs is outlined in Algorithm 1.
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Algorithm 1: EWT
Result: IMF1(t), IMF2(t), . . . , IMFn(t) and residual signal Rn(t)
Set x1(t) = x(t);
while x1(t) is not an IMF do

The local mean m(t) of x1(t) can be computed by applying a moving average
filter.

The local amplitude a(t) of x1(t) can be computed by subtracting the local
mean of x1(t).

The zero-crossings of a(t) can be located to obtain the local extrema of x1(t).
The local extrema can be obtained with an envelope e(t) of x1(t).
The IMF1(t) can be computed by subtracting the envelope of the signal:

IMF1(t) = x1(t)− e(t).
Set x1(t) = IMF1(t).

end
for i = 2 to n do

Set xi(t) = IMFi−1(t).
Steps 2–6 for xi(t) can be repeated to achieve IMFi(t);

end
Compute the Rn(t) = xn(t)− ∑n

i=1 IMFi(t).

Once the set of IMFs is obtained, EWT employs a Fourier transform to each IMF
to produce a set of n spectrograms, which are utilized to visualize the time-frequency
information of the signal [93]. The EWT has the following expression:

x(t) =
n

∑
i=1

IMFi(t) + Rn(t)

IMFi(t) =
∫

x(τ)hi(τ − t)dτ

where hi(τ) is the ith filter, set as the convolution of the scaling function φ(t), and the ψ(t)
is scaled by a factor of 2i:

hi(τ) = 2i φ(2iτ)ψ(2iτ). (6)

The EWT combines the concepts of EMD and wavelet transform. The main idea of
EWT is to decompose the signal in a set of oscillatory modes using an adaptive filter bank.
The filter bank is designed based on the signal’s time-frequency content, estimated by the
continuous wavelet transform [94]. The EWT decomposition is as follows:

x(t) =
N

∑
i=1

wi(t) + r(t), (7)

where wi(t) are the wavelet components, N is the number of modes, and r(t) is the residual.
VMD is another decomposition technique that formulates the extraction of IMFs as a

constrained variational problem. VMD decomposes the time series in a set of band-limited
IMFs by minimizing the cost function that balances the compactness of the frequency
spectrum and the smoothness of the time-domain signal [95]. The VMD optimization
problem can be written as follows:

min
uk(t),ωk

K

∑
k=1

∫ ∣∣∣∣∂t

(
uk(t)

1 + jωkt

)∣∣∣∣2dt (8)

s.t. x(t) =
K

∑
k=1

uk(t) (9)
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where uk(t) are the mode functions, K is the number of modes, and ωk are the center
frequencies of the modes.

4.2. Classification Methods

To evaluate the effectiveness of Rocket methods, including MiniRocket and Multi-
Rocket, in classifying faults in insulators, a comprehensive analysis is conducted by combin-
ing these algorithms with various classifiers mentioned above. This experimental design
aims to determine the best-suited combination of Rocket techniques and classification
methods, ultimately enhancing insulator fault detection accuracy.

Logistic Regression: Logistic regression, a prevalent linear technique employed for
classification, utilizes a logistic function to model the probability of a specific class or
event [96]. The following equation represents the logistic function:

P(y = 1|x) = 1
1 + e−(β0+β1x)

(10)

Ridge Regression: Ridge regression, also known as Tikhonov regularization, is a
linear regression technique incorporating an L2 regularization term to address the issue
of multicollinearity and improve the generalization of the model [97]. This is particularly
useful when there are highly correlated features. The objective function for ridge regression
can be written as follows:

L(w, b) =
n

∑
i=1

(yi − (wTxi + b))2 + λ|w|2 (11)

where w is the weight vector, b is the bias term, yi and xi are the true label and the feature
vector for the i-th instance, respectively, and λ is the regularization parameter that controls
the trade-off between model complexity and the goodness of fit. The regularization term,
λ|w|2, discourages the model from assigning large weights to the features, leading to a
more stable and robust solution.

Decision Tree: The decision tree classifier, a non-parametric, hierarchical model,
recursively partitions the input space into discrete regions according to feature values. The
decision rules are derived by minimizing the impurity of the resultant nodes, which can be
quantified utilizing metrics such as Gini impurity or entropy [98].

The architecture of the classifier is built in the form of a tree structure, where each
internal node represents a feature or attribute, each branch represents a decision rule, and
each leaf node represents a class label or a decision. According to Mishra et al. [99], the
architecture can be further improved using clustering techniques.

k-NN: The k-nearest neighbors (k-NN) classifier, a non-parametric, instance-based
learning algorithm, classifies novel instances based on the majority class of their k nearest
neighbors. The distance metric and the value of k are crucial to the algorithm’s performance.
Since it is a classification problem, employing an odd k is more advantageous, avoiding
draws [100]. For this task, the weighted mode is denoted by the following:

γt = arg max
c∈Y

k

∑
i=1

ωi I(c, γi) (12)

where,

ωi =
1

d(xt, xi)
, (13)

I(a, b) returns 1 if a = b [101]. γi is the class of the xi example associated with the ωi weight,
and c is the class with the best-weighted mode. To calculate the neighbors the Euclidean,
cosine, correlation, chebychev, city block, spearman, standardized Euclidean, Minkowski,
and Mahalanobis distances methods can be applied [102].
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LDA: Linear discriminant analysis (LDA), a technique utilized for dimensionality
reduction and classification, identifies the linear combination of features that optimally
separates distinct classes by maximizing the dispersion between classes and minimizing
the dispersion within a class [103]:

J(w) =
wTSBw
wTSWw

(14)

where SB and SW represent the between-class and within-class scatter matrix, respectively.
Gaussian Naive Bayes: Gaussian Naive Bayes is a classification algorithm that is

based on Bayes’ theorem [104], assuming the features are conditionally independent and
follow a Gaussian distribution:

P(A|B) = P(B|A)P(A)

P(B)
(15)

where A and B are events or variables. The Gaussian Naive Bayes assumes that the features
in the dataset are normally distributed and that they are independent of each other.

SVM: The support vector machine (SVM) classifier endeavors to identify the optimal
separating hyperplane between classes [105]. Its performance is governed by the kernel
function and regularization parameter C:

min
w,b,ξ

1
2

wTw + C
n

∑
i=1

ξi (16)

s.t. yi(wTxi + b) ≥ 1 − ξi (17)

ξi ≥ 0. (18)

Random Forest: An ensemble learning methodology constructs multiple decision
trees and amalgamates their outputs via majority voting [106]. The operator regulates the
number of trees (T) and their maximum depth. Let X be the set of input features and Y be
the set of output classes. The random forest classifier consists of T decision trees, ht(x)T

t=1,
with each grown to a maximum depth. Each tree is created by a randomly sampled subset
of the train data, typically using a replacement (i.e., bootstrapped samples), and a random
subset of input features at each split. The random forest classifier is provided using the
following definition:

H(x) = arg max
c∈Y

T

∑
t=1

I(c, ht(x)), (19)

where H(x) represents the final classification, again I(a, b) returns 1 if a = b, and 0 other-
wise, and ht(x) is the output of the t-th decision tree for input x.

Gradient Boosting: The gradient boosting classifier, an ensemble learning technique,
sequentially builds weak learners, with each learner rectifying the errors committed by the
preceding one [107]:

Fm(x) = Fm−1(x) + ρmhm(x) (20)

where Fm(x) denotes the boosted model at step m, hm(x) signifies the weak learner, and ρm
represents the step size. The gradient boosting method has also been utilized for prediction
by various authors [108–110].

AdaBoost: Adaptive boosting (AdaBoost) classifier, an adaptive boosting technique,
combines weak learners to form a robust classifier, with each learner weighted based on
its accuracy [111]. The algorithm updates the weights of the training instances at each
iteration, assigning greater importance to misclassified instances:
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Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt
(21)

where Dt(i) is the weight of instance i at iteration t, ht(xi) is the prediction, yi is the true
label, αt is the weight of the weak learner, and Zt is the normalization factor.

Gaussian Process: Gaussian process classifier, a Bayesian, non-parametric model, em-
ploys a Gaussian process prior over the function space and yields probabilistic classification
results [112]. This is determined by a mean m(x) and a covariance function k(x, x′):

f (x) ∼ GP(m(x), k(x, x′)) (22)

XGBoost: The extreme gradient boosting (XGBoost) algorithm is a highly efficient
and scalable tree-based ensemble learning model, designed for both classification and
forecasting problems [113]. It is an extension of the gradient boosting algorithm, employing
advanced regularization techniques to improve the model’s generalization and control
overfitting. XGBoost optimizes the following objective function:

L(ϕ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
j=1

Ω( f j) (23)

where ϕ represents the model parameters, l(yi, ŷi) denotes the loss function comparing the
true label yi and the forecasted label ŷi, and Ω( f j) is the regularization term for the j-th tree.
The regularization term comprises the tree complexity, measured by the number of leaves
T, and the L2-norm of the leaf scores w:

Ω( f ) = γT +
1
2

λ|w|2 (24)

The algorithm employs second-order gradient information (Hessian) and the first-
order gradient to update the model, making the learning process more accurate and faster.
Furthermore, it utilizes column block and sparsity-aware techniques to efficiently handle
sparse data and parallelize the tree construction process, enabling it to tackle large-scale
datasets efficiently [114].

LightGBM: The light gradient boosting method (LightGBM), a boosting framework,
leverages tree-based learning algorithms and is designed to be efficient and scalable for
large datasets [115]. It adopts gradient-based one-sided sampling and exclusive feature
bundling to expedite training and diminish memory usage.

The Rocket algorithm is applied considering Equations (1)–(3). For the application of
this method, the time series is denoised using the EMD methods, which can be defined
by Equations (4)–(9). Considering a denoised signal, the classifiers are evaluated; these
classifiers are explained considering Equations (10)–(24).

A limitation of the application of the proposed method is that other signals measured
during the inspection may result in interference at high frequencies; therefore, a specialist
operator needs to perform the measurements to ensure that the signal is correctly recorded.
This means that the gain of the equipment must be set considering the field conditions.

In the next section, the results of the application of the proposed method are pre-
sented. Initially, the results of different classifiers considering window sizes of 10, 50, and
100 records are presented. Then, the incorporation of Rocket, MiniRocket, and MultiRocket
models with 10, 50, and 100 time steps are evaluated. Finally, the use of EMB methods to
reduce noise that is not significant is evaluated.

5. Results

In the experiments presented in this section, a k-fold cross-validation methodology is
used to evaluate the performance of the models, where k is equal to five. Cross-validation



Sensors 2024, 24, 1113 14 of 24

is a widely used technique to estimate the predictive performance of a model; in particular,
5-fold cross-validation involves splitting the dataset into five equal-sized partitions. Four
partitions are used to train the model for each fold, and the remaining partition is utilized
for testing. This procedure is repeated five times, such that each fold serves as the test set
exactly once. The resulting accuracy scores from each fold are then averaged to estimate
the model’s accuracy The default scikit-learn [116] parameters were employed in all the
classification algorithms.

The performance of various algorithms for fault detection in insulators is evaluated
using three different time window sizes, namely WS10, WS50, and WS100. Table 1 presents
the accuracy results of 14 algorithms, including logistic regression, ridge regression, de-
cision tree, k-NN, LDA, Gaussian Naive Bayes, SVM, random forest, gradient boosting,
AdaBoost, Gaussian process, XGBoost, LightGBM, and CatBoost. The results indicate a
clear trend regarding the time window size and the overall performance of the algorithms,
with the critical difference diagram shown in Figure 5.

Table 1. Accuracy of different methods for windows size of 10, 50, and 100 (best results are in bold).

Model WS10 WS50 WS100

Logistic Regression 0.5193 ± 0.0395 0.5167 ± 0.0325 0.5683 ± 0.0436
Ridge Regression 0.4923 ± 0.0134 0.5158 ± 0.0308 0.58 ± 0.041
Decision Tree 0.849 ± 0.0832 0.8658 ± 0.0789 0.8283 ± 0.0759
k-NN 0.8762 ± 0.0713 0.9025 ± 0.0748 0.85 ± 0.1182
LDA 0.4858 ± 0.0147 0.495 ± 0.0286 0.525 ± 0.0247
Gaussian Naive Bayes 0.8428 ± 0.0927 0.9133 ± 0.0746 0.9283 ± 0.0586
SVM 0.5343 ± 0.0379 0.5283 ± 0.0263 0.53 ± 0.0306
Random Forest 0.8672 ± 0.0815 0.9225 ± 0.0621 0.925 ± 0.0548
Gradient Boosting 0.8792 ± 0.0694 0.9433 ± 0.0439 0.9433 ± 0.0464
AdaBoost 0.8693 ± 0.07 0.9258 ± 0.0504 0.9317 ± 0.0593
Gaussian Process 0.6085 ± 0.0811 0.6342 ± 0.0564 0.615 ± 0.0883
XGBoost 0.8753 ± 0.0691 0.9417 ± 0.0484 0.935 ± 0.0539
LightGBM 0.8732 ± 0.0695 0.94 ± 0.0467 0.95 ± 0.0431

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linear Discriminant Analysis
Ridge Regression

SVM
Logistic Regression

Gaussian Process
Decision Tree

KNN Gaussian Naive Bayes
Random Forest
AdaBoost
XGBoost
LightGBM
Gradient Boosting
CatBoost

CD

Figure 5. Critical Difference Diagram for the results of Table 1.

From Table 1 it is evident that tree-based methods, such as decision tree, random
forest, gradient boosting, AdaBoost, XGBoost, LightGBM, and CatBoost, exhibit superior
performance compared to other algorithms, as can be further seen in Figure 6. CatBoost,
LightGBM, and gradient boosting show the highest accuracies in WS50 and WS100 time
windows, particularly strong results. Moreover, the table demonstrates that the accuracy
of the algorithms generally improves as the time window size increases from WS10 to
WS100. This observation suggests that longer time windows provide more information for
the algorithms to identify the patterns and relationships between the features, resulting in
improved performance. For instance, CatBoost’s accuracy increases from 0.8842 ± 0.0658
in WS10 to 0.95 ± 0.0459 in WS100, highlighting the significance of using longer time
windows for fault detection in insulators.
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Figure 6. Classification for a time window of 100 for (a) Logistic Regression; (b) Ridge Regression;
(c) Decision Tree; (d) XGBoost. Blue indicates normal operation conditions, while red indicates
a fault.

Tables 2–4 present the results of different machine learning algorithms for insulator
fault detection when using Rocket, MiniRocket, and MultiRocket data transforms for three
different time windows: WS10, WS50, and WS100, respectively. These transforms were
applied to enhance the time-series data and improve the performance of the algorithms.
A notable outcome of these transformations is the improvement in accuracy across all
algorithms, particularly in the case of linear algorithms.

Upon applying the Rocket, MiniRocket, and MultiRocket transforms, linear algorithms
such as logistic regression, ridge regression, and LDA exhibit a substantial increase in their
accuracy, as can be observed in the tables. These improvements can be attributed to the
transforms’ ability to better capture the underlying patterns in the data, which allows linear
algorithms to leverage this information and perform more effectively.

For instance, in Table 2, the accuracy of logistic regression increases from
0.7552 ± 0.0353 with Rocket to 0.8465 ± 0.06 with MultiRocket. In contrast, the accu-
racy of ridge regression increases from 0.6762 ± 0.0462 with Rocket to 0.8068 ± 0.0447
with MultiRocket. Similarly, in Table 3, logistic regression and ridge regression exhibit
high accuracies of 0.955 ± 0.0395, and 0.9533 ± 0.036 with Rocket, respectively. These
results suggest that the use of data transforms boosts the performance of linear algorithms,
enabling them to compete with more complex models.
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Table 2. Accuracy of different methods with different rocket methods for a window size of 10
time steps (best results are in bold).

Model Rocket MiniRocket MultiRocket

Logistic Regression 0.7552 ± 0.0353 0.8453 ± 0.068 0.8465 ± 0.06
Ridge Regression 0.6762 ± 0.0462 0.7943 ± 0.0518 0.8068 ± 0.0447
Decision Tree 0.7427 ± 0.0617 0.8635 ± 0.0687 0.8687 ± 0.064
k-NN 0.7375 ± 0.0387 0.8488 ± 0.0729 0.8623 ± 0.0676
LDA 0.6048 ± 0.0635 0.7832 ± 0.0421 D.N.C. *
Gaussian Naive Bayes 0.7615 ± 0.0515 0.8253 ± 0.0926 0.8342 ± 0.0894
SVM 0.6968 ± 0.0438 0.8257 ± 0.0647 0.8413 ± 0.0583
Random Forest 0.762 ± 0.0553 0.8788 ± 0.0659 0.882 ± 0.0676
Gradient Boosting 0.7735 ± 0.0543 0.8837 ± 0.0655 0.8873 ± 0.0632
AdaBoost 0.7452 ± 0.0544 0.8678 ± 0.0695 0.8715 ± 0.0639
XGBoost 0.7623 ± 0.0472 0.8785 ± 0.0687 0.8823 ± 0.0638
LightGBM 0.7713 ± 0.0482 0.8832 ± 0.067 0.8873 ± 0.0622

* Did not converge (D.N.C.).

Table 3. Accuracy of different rocket methods with a window size of 50 time steps (best results are
in bold).

Model Rocket MiniRocket MultiRocket

Logistic Regression 0.955 ± 0.0395 0.955 ± 0.0395 0.955 ± 0.0384
Ridge Regression 0.9533 ± 0.036 0.9533 ± 0.036 0.9508 ± 0.0389
Decision Tree 0.9258 ± 0.0551 0.9342 ± 0.0468 0.9367 ± 0.0511
k-NN 0.9483 ± 0.0427 0.9483 ± 0.0427 0.9433 ± 0.043
LDA 0.9533 ± 0.0361 0.9533 ± 0.0361 0.9492 ± 0.0418
Gaussian Naive Bayes 0.9308 ± 0.0491 0.9308 ± 0.0491 0.9283 ± 0.0502
SVM 0.9525 ± 0.0398 0.9525 ± 0.0398 0.9525 ± 0.0368
Random Forest 0.9483 ± 0.0459 0.9508 ± 0.0461 0.9483 ± 0.0402
Gradient Boosting 0.9517 ± 0.042 0.9483 ± 0.0452 0.9492 ± 0.0414
AdaBoost 0.9475 ± 0.0416 0.9475 ± 0.0416 0.955 ± 0.0349
Gaussian Process 0.9367 ± 0.0509 0.9367 ± 0.0509 D.N.C. *
XGBoost 0.9475 ± 0.044 0.9475 ± 0.044 0.9575 ± 0.0339
LightGBM 0.9542 ± 0.0365 0.9542 ± 0.0365 0.9592 ± 0.0309

* Did not converge (D.N.C.).

Table 4. Accuracy of different methods with different rocket methods for a window size of 100 time
steps (best results are in bold).

Model Rocket MiniRocket MultiRocket

Logistic Regression 0.9783 ± 0.0194 0.9783 ± 0.0194 0.9733 ± 0.0249
Ridge Regression 0.9767 ± 0.0193 0.9767 ± 0.0193 0.9717 ± 0.034
Decision Tree 0.9633 ± 0.0323 0.9667 ± 0.0316 0.97 ± 0.0282
k-NN 0.9567 ± 0.037 0.9567 ± 0.037 0.9683 ± 0.0309
LDA 0.97 ± 0.0261 0.97 ± 0.0261 0.975 ± 0.0247
Gaussian Naive Bayes 0.945 ± 0.0515 0.945 ± 0.0515 0.9483 ± 0.0392
SVM 0.9783 ± 0.018 0.9783 ± 0.018 0.9717 ± 0.0277
Random Forest 0.9717 ± 0.0314 0.9767 ± 0.0244 0.9733 ± 0.0309
Gradient Boosting 0.9683 ± 0.0271 0.97 ± 0.0251 0.9717 ± 0.0245
AdaBoost 0.9783 ± 0.0201 0.9733 ± 0.0295 0.965 ± 0.0399
Gaussian Process 0.96 ± 0.0363 0.96 ± 0.0363 D.N.C.∗

XGBoost 0.9767 ± 0.0249 0.9767 ± 0.0249 0.975 ± 0.0228
LightGBM 0.9767 ± 0.022 0.9767 ± 0.022 0.965 ± 0.0429

* Did not converge (D.N.C.).

It is essential to note that the algorithm’s performance still improves as the time
window size increases, consistent with the earlier observation in Table 1. This trend
is evident across all three tables, reinforcing the importance of considering longer time
windows when applying these algorithms to insulator fault detection.
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5.1. Empirical Mode Decomposition

Table 5 presents the logistic regression results applied to fault detection in insulators
with the MiniRocket transform for a window size of 100 (WS100), and further explores
the impact of combining the MiniRocket transform with three different EMB methods:
EWT, CEEMDAM, and VMD. The purpose of applying these EMB methods before the
MiniRocket transform is to explore if the predictions can be further improved.

Table 5. Results for logistic regression considering different window sizes and EMB.

Accuracy

Window Size W/o EMB EWT CEENDAM VMD

10 0.8487 ± 0.0711 0.9757 ± 0.0177 0.9192 ± 0.129 0.9677 ± 0.0267
50 0.9583 ± 0.0333 0.9883 ± 0.0116 0.98 ± 0.0278 0.9767 ± 0.0187
100 0.9783 ± 0.0194 0.995 ± 0.0067 0.9917 ± 0.0105 0.98 ± 0.0187

When these EMB methods are applied in conjunction with MiniRocket, the accuracy
of logistic regression significantly improves compared to when using the MiniRocket trans-
form alone. This improvement can be attributed to the ability of EMB methods to decom-
pose the time series into different components, thereby highlighting the underlying patterns
and structures in the data that may not be easily captured by the MiniRocket transform.

For example, when using the EWT method, the accuracy of logistic regression increases
from 0.9783 ± 0.0194 without EMB to 0.995 ± 0.0067 with EWT. Similarly, the accuracy of
logistic regression improves to 0.9917 ± 0.0105 with CEENDAM and 0.98 ± 0.0187 with
VMD. Figure 7 presents the critical difference diagram comparing the methods. These
results indicate that applying EMB methods before the MiniRocket transform enhances the
performance of logistic regression by providing a more refined representation of the data.
In Table 6, the advantages and disadvantages of the classification methods are compared.

Table 6. Comparison with other approaches.

Author Approach Advantages Disadvantages

[6] EN-ELM
Computation
is fast.

It might obtain the
wrong measurements
because of interference.

[39]
Pseudo-prototypical
part network.

It has interpretable
results.

If the data are not correctly
selected in the first
step, the model will not work.

[41] Hybrid-YOLO
It obtains a better
performance than
standard approaches.

If the data are not correctly
selected in the first step,
the model will not work.

[63] ESN
It excels for
drilling classification.

It has lower accuracy
for multiclassification.

Our
Method Rocket with EMD It is adaptable.

Needs an operator
to set the ultrasound
equipment.
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Figure 7. Diagram of Critical Difference for the results of Table 5.

5.2. Discussion

The findings in the preceding subsections offer insightful information on how various
machine learning techniques perform in defect detection. The study of these results can aid
in the selection of acceptable methodologies and techniques for fault detection in insulators,
notably the effects of time window size and data transform. The performance of the models
was constantly enhanced by increasing the temporal window size. Longer time windows
provide the algorithms with more information to find patterns and connections between
features, improving insulator defect identification.

According to this study, larger time windows should be favored in practical applica-
tions to improve the precision of defect detection models. The advantages of extended
periods must be weighed against the additional computational expenses. The amount of
data being processed and the complexity of the models grow as the time window size
grows. More extended training periods and increased computational demands may result
from this. Therefore, when choosing the time window size for insulator fault detection,
practitioners should carefully consider the trade-offs between the improvements in accuracy
and the extra computational resources needed.

The results show that tree-based approaches, such as random forests, decision trees,
gradient boosting, AdaBoost, XGBoost, and LightGBM, consistently outperform other algo-
rithms in insulator fault detection. These techniques offer great accuracy when identifying
insulator faults and are particularly good at managing non-linear connections between
features. This shows that tree-based approaches should be the best options for insulator
failure detection jobs. However, tree-based methods might be more prone to overfitting
than other algorithms, particularly when working with small datasets. Pruning is one
regularization approach that should be used to decrease overfitting risks and preserve
model generalizability.

Logistic regression, ridge regression, and LDA perform much better when Rocket,
MiniRocket, and MultiRocket data transforms are used. These modifications allow linear
algorithms to take advantage of the information and perform better, even competing with
more complicated models, by capturing more underlying patterns in the data. This result
suggests that data transforms can be a useful preprocessing step in real-world applica-
tions, especially when using linear algorithms for insulator fault detection. Engineers
may simplify their models by using these transforms while maintaining excellent fault
detection accuracy.

Further, the results indicate that combining EMD methods and MiniRocket transform
enhances the performance of logistic regression by providing a more refined represen-
tation of the data. This suggests that using EMD methods can improve fault detection
capabilities when used in conjunction with rocket-like algorithms. The following guide-
lines can be offered for insulator failure detection using ultrasound signals in light of the
study’s findings:

• Consider the trade-offs with computational resources and training timeframes care-
fully when using longer time windows to increase the fault detection models’ accuracy.

• Consider the use of tree-based algorithms for insulator failure detection, such as Cat-
Boost, LightGBM, and gradient boosting, while being cautious of overfitting concerns
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and using regularization techniques as necessary. To improve the efficiency of linear
algorithms and potentially reduce model complexity while retaining high accuracy,
use data transforms like Rocket, MiniRocket, or MultiRocket.

• Employ EMD methods to enhance the performance of less complex regression meth-
ods by providing a more refined representation of the data and improving fault
detection capabilities.

By using these suggestions, engineers can create more successful insulator failure
detection models that improve the dependability and safety of electrical power systems. The
next section presents the final remarks and suggestions for future work. The conclusions
will be related to the applicability of ultrasound, the best structure to classify the time series,
and what can be accomplished by the ultrasound equipment in future projects.

6. Conclusions and Future Research Directions

Using ultrasound as a decision-making support tool during inspections of the electrical
power grid, combined with deep learning, proves to be promising since the proposed model
achieves acceptable classification results. A significant advantage of using this equipment
is that it is not necessary to measure contact with the electrical potential, reducing the risk
to the operator and improving flexibility in inspecting the distribution power grid.

The findings indicate that tree-based methods, such as decision tree, random forest,
gradient boosting, AdaBoost, XGBoost, and LightGBM, generally outperform other algo-
rithms in terms of accuracy. Longer time windows (e.g., WS100) resulted in improved
performance across all algorithms, suggesting that larger windows provide more informa-
tion for pattern identification. Additionally, the application of Rocket, MiniRocket, and
MultiRocket data transforms led to a significant increase in accuracy for linear algorithms
such as logistic regression, ridge regression, and linear discriminant analysis. This improve-
ment could be attributed to the transforms’ ability to capture the underlying patterns in the
data better, enabling linear algorithms to perform more effectively.

In future work, it could be promising to evaluate the development of an embedded
system to perform inspections based on the model presented in this paper. The evaluated
model has a low computational effort in the test phase, making its application in an
embedded system an interesting potential solution, in addition to the test performed with
the aid of a personal computer. Considering the promising results achieved by the applied
classifiers, in future work, more state-of-the-art models could be evaluated to obtain a
broader analysis that could be applied to other components of the power grid.
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