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Abstract: The unconsolidated near surface and large, daily temperature variations in the desert
environment degrade the vertical seismic profiling (VSP) data, posing the need for rigorous quality
control. Distributed acoustic sensing (DAS) VSP data are often benchmarked using geophone surveys
as a gold standard. This study showcases a new simulation-based way to assess the quality of DAS
VSP acquired in the desert without geophone data. The depth uncertainty of the DAS channels in
the wellbore is assessed by calibrating against formation depth based on the concept of conservation
of the energy flux. Using the 1D velocity model derived from checkshot data, we simulate both
DAS and geophone VSP data via an elastic pseudo-spectral finite difference method, and estimate
the source and receiver signatures using matching filters. These field geophone data show high
amplitude variations between channels that cannot be replicated in the simulation. In contrast, the
DAS simulation shows a high visual similarity with the field DAS first arrival waveforms. The
simulated source and receiver signatures are visually indistinguishable from the field DAS data in
this study. Since under perfect conditions, the receiver signatures should be invariant with depth, we
propose a new DAS data quality control metric based on local variations of the receiver signatures
which does not require geophone measurements.

Keywords: distributed acoustic sensing; data quality control; vertical seismic profiling; depth
calibration; well logs

1. Introduction

In 1880, Alexander Graham Bell transmitted the first message converting acoustic
vibrations into light in his photophone. Yet, it was not until the 1960s, when experiments by
Charles Kuen Kao and others with lasers and glass fibers gave rise to the modern broadband
communication and massive deployment for fiber-glass optic cables [1]. Over the past
two decades, a new technology based on the optical time domain reflectometer has arisen
based on one of Bell’s ideas of converting vibrations into light. This new technique used in
borehole geophysics, often for vertical seismic profiling (VSP) is called distributed acoustic
sensing (DAS) [2,3]. This technique uses optical fibers, which are made of glass with a very
thin diameter that can reach 9 µm, to act as sensors recording seismic waves propagating
in the subsurface. The number of wells with fiber optic (FO) cables installed has increased
noticeably due to their advantages for sensing temperature, pressure, and fluid flow. In
particular, the FO widens the frequency bandwidth over that of conventional geophones
by at least 17 octaves [4]. With a minor operational cost and low power consumption, FO
sensing can be used on-demand to acquire single or multiple sets of VSPs covering the full
depth range of the well without well intervention [5–7]. Since dense sampling by borehole
receivers is beneficial for large-scale 3D VSP imaging in the Middle East [8], it is highly
desirable to replace geophones by DAS to achieve dense channel VSP imaging at affordable
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cost [9]. However, concerns on the quality of DAS data have held back the deployment of
DAS in VSP surveys and demanded good solutions on quality control (QC). Comparing
with the geophone data, the DAS VSP data often have issues in noise level, channel depth
uncertainty, and measurement amplitude reliability.

The noise characteristics of DAS data often differ from that of geophone data, as
shown in QC studies (e.g., [10–13]) and signal enhancement works (e.g., [14–16]). A major
noise contributor is from the field conditions of DAS VSP surveys. In particular, desert
environment features large daily temperature variations and extremely low velocities and
high heterogeneity in the near surface. In fact, VSP is often chosen for seismic imaging
in the desert because it is less susceptible to near surface velocity anomalies [8,17]. Still,
only recently a successful multi-well–single interrogator unit (IU) DAS VSP acquisition
was demonstrated by Aldawood et al. [18] in a desert environment.

To assure data quality, depth uncertainty, and DAS amplitude, the reliability must
be properly addressed when deploying DAS. Especially, any poor coupling of the sensors
in the wellbore should be revealed by QC procedures. One of the challenges to using
DAS data is calibrating the depth of DAS channels in the wellbore to the formation depth.
Overstuffing a cable with optical fiber, cable relaxation between clamps, excessive cable
length at the well head, fiber refractive index measurement imperfection, or inaccurate
depth of the end of the fiber are leading factors contributing to depth calibration errors
in DAS data [19–21]. Bakku [22], Ellmauthaler et al. [23], and Wu et al. [24] developed
techniques to overcome the depth calibration challenge, mainly, by referencing the depth of
DAS channel depth in the wellbore to certain features with known positioning such as plug
depth, perforation shots, tubing clamps, or the end of the cable. However, these features
can still be uncertain due to, for example, uneven fiber distribution between these reference
features, subsurface compression, or fiber breakage. Olofsson and Martinez [21] suggested
another way to resolve the relative depth calibration error with the assumption of knowing
the velocity field. DAS channels are first migrated individually after interchanging the
source location as receivers and DAS channels as shots. Then, the migrated volumes are
cross-correlated to measure the relative depth differences between these DAS channels.
Mateeva and Zwartjes [20] developed a simpler method that relates DAS measurement
amplitudes to a well log upscaled acoustic quantity in order to calibrate DAS channel scaler
depth to the geology. Kazei and Osypov [25] and Pevzner et al. [26] extended Mateeva’s
method to property estimation techniques, which used DAS depth calibration here.

In this paper, we focus on developing practical solutions for DAS data QC and signal
enhancement, using the same dataset of that by Aldawood et al. [18]. In the following, we
show the acquisition of the DAS data and our analysis in DAS depth calibration and esti-
mation on source signature and instrument response. Based on numerical modeling using
well logs and checkshot velocities, our simulated DAS data achieve a high similarity with
the field DAS data. This suggests a new QC tool for DAS VSP data in desert environment
via simulations using well logs, without geophone data.

2. Field DAS Data Acquisition and Previous Findings

The field data were acquired in a desert environment with two adjacent non-flowing
wells extending to about 4 km depth, following an acquisition geometry shown in Figure 1.
The wells are separated by 1.5 km and equipped with pre-installed FO cables. A vibratory
source was used while acquiring VSP data with two sensing systems which are distributed
acoustic sensing and the conventional system using geophones. One of the wells (well-A)
has fiber optic cable installed inside the borehole besides obtaining sonic log data, while
the other well (well-B) has three different installations that provide DAS, geophone, and
well log data. Well-A is highly deviated especially at the deeper section, in contrast to the
mostly vertical well-B where the maximum inclination is 2.2 degrees.
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Figure 1. A sketch showing the dual-fiber IU connecting through a jumper DAS cable with two SM 
fiber optic cables that are clamped on tubing in two wells. Well log and DAS data are acquired from 
well-A while well log, DAS and geophone are obtained from well-B. 

The DAS system relies on fiber optic cables that are clamped on tubing on both wells, 
which are connected through a jumper DAS cable on the surface to a dual-fiber interroga-
tor box. The geophone system is an array of vertical particle velocity sensors deployed in 
well-B, which provides well log data. Since our analysis focuses on well-B, we refer to it 
as “the well” in further text. A summary of the geophone and DAS acquisition and re-
cording parameters are given in Table 1, showing the source, geophone, and DAS record-
ing parameters in the acquisition. Illustration of the acquisition geometry and the data 
type of each well are shown in Figure 1, where DAS fiber optic cable is in red, geophone 
is in green, and the well log is in yellow. 

Table 1. Geophone and DAS acquisition and recording parameters during daytime in the summer. 
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Gauge 
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According to Aldawood et al. [18]. this survey was initially designed to acquire DAS 
dual-well walk-away VSP data simultaneously, in order to assess the quality of the data, 
seismic reflectivity images, and velocity model building based on DAS, geophone, and 
well logs. Their main findings include the following:  

Well-B showed a 5 dB reduction in the signal-to-noise ratio (SNR) in comparison to 
well-A due to the long jumper DAS cable that connects well-B fiber to the interrogator 
box. 

DAS corridor stack from both wells and geophone corridor stack showed good agree-
ment with the surface seismic. 

Figure 1. A sketch showing the dual-fiber IU connecting through a jumper DAS cable with two SM
fiber optic cables that are clamped on tubing in two wells. Well log and DAS data are acquired from
well-A while well log, DAS and geophone are obtained from well-B.

The DAS system relies on fiber optic cables that are clamped on tubing on both
wells, which are connected through a jumper DAS cable on the surface to a dual-fiber
interrogator box. The geophone system is an array of vertical particle velocity sensors
deployed in well-B, which provides well log data. Since our analysis focuses on well-B, we
refer to it as “the well” in further text. A summary of the geophone and DAS acquisition
and recording parameters are given in Table 1, showing the source, geophone, and DAS
recording parameters in the acquisition. Illustration of the acquisition geometry and the
data type of each well are shown in Figure 1, where DAS fiber optic cable is in red, geophone
is in green, and the well log is in yellow.

Table 1. Geophone and DAS acquisition and recording parameters during daytime in the summer.

Sensor Seismic
Source

Source
Sweeps

Channel
Spacing

Sampling
Rate

Recording
Length Bandwidth Gauge

Length

Geophone
vibroseis 16

15 m 4 ms
4 s 2–120 Hz

-

DAS 6.4 m 1 ms 24 m

According to Aldawood et al. [18]. this survey was initially designed to acquire DAS
dual-well walk-away VSP data simultaneously, in order to assess the quality of the data,
seismic reflectivity images, and velocity model building based on DAS, geophone, and well
logs. Their main findings include the following:

Well-B showed a 5 dB reduction in the signal-to-noise ratio (SNR) in comparison to
well-A due to the long jumper DAS cable that connects well-B fiber to the interrogator box.

DAS corridor stack from both wells and geophone corridor stack showed good agree-
ment with the surface seismic.
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DAS velocity profile at well-B can be used to reconstruct a high resolution P-wave
velocity (Vp) model that agrees with the sonic log.

The jumper cable connecting the interrogator unit with well-B is 3 km long which
would typically lead to 1–2 dB SNR reduction [10]. Aldawood et al. [18] reported 5 dB
reduction due to fiber imperfections near the wellhead confirmed by time-domain reflec-
tometry tests. Nevertheless, we still find DAS data are more reliable than geophone data
for the same well. The gauge length in this experiment was set to 24 m to increase the SNR
and to capture signals at deeper sections. Two vibroseis trucks were used simultaneously
as a source, performing 16 sweeps to acquire the DAS data with a dense sampling of 6.4 m
receiver spacing to enhance first break picking and other signal processing steps.

The photos of the dual-well DAS VSP acquisition survey in Figure 2 show the tap
location at the wellhead, switch rack at 60 m from well-A with a fiber connection, recorder
truck, seismic source array for the DAS walkaway VSP, source controller, as well as DAS
interrogator and other equipment in the recording room. The VSP data acquired were
correlated and stacked to enhance the SNR.
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Figure 2. Photos of the dual-well DAS VSP acquisition survey show the tap location at the wellhead,
switch rack at 60 m from well-A with a fiber connection, recorder truck, seismic source array for the
DAS walkaway VSP, source controller, and DAS interrogator with other equipment in the recording
room [18].

For the geophone dataset, the GEOCHAIN-ASR (advanced seismic receivers) system
was used which is a system that is designed for open or cased holes with all locking arms
opening simultaneously to reduce survey time. Single-component (vertical) geophones
were used to acquire zero offset VSP data in well-B. This dataset was acquired prior to
the DAS experiment with one vibroseis truck. The geophone array consists of a 4-channel
string with a channel spacing of 15 m. The string was lowered into the borehole to acquire
248 channels. Unfortunately, the geophone data quality is poor overall as two out of the
four receivers suffered from amplitude discrepancies.
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3. DAS Depth Calibration

Mateeva and Zwartjes [20] developed a simpler method that relates DAS measurement
amplitudes to a well log upscaled acoustic quantity to calibrate DAS channel scaler depth
to the geology. The fact that the strain measurement by DAS has a linear relationship with
an acoustic quantity from logs establishes a basis for quantitatively calibrating DAS VSP
measurements to formation depth. Specifically, we can relate the amplitude of DAS data to
a well log upscaled acoustic quantity that is more sensitive to velocity variation. For DAS
depth calibration in this paper, we follow the inversion approach by Pevzner et al. [26]
who used synthetic and field DAS data to demonstrate a linear relationship between
DAS measurement (strain) amplitude and an acoustic quantity

(
ρ ∗ c3)−0.5 composed of

medium density ρ and velocity c. This relationship is based on the energy flux conservation
theory and neglects the transmission loss of the acoustic impedance variations within each
wavelength. Therefore, we can use the DAS amplitude variation to estimate the formation
acoustic properties.

Our objective here is to align the channel depth of DAS and geophone measurements
with the formation depth based on well logs, following a modified methodology of [20]. In
the following, we list the steps of an amplitude-based DAS depth calibration procedure,
followed by an explanation.

• Picking the first break arrival times
• Flattening DAS and geophone first arrivals with the first break picks (FBPs)
• Specifying 50 ms window around FBPs for DAS and geophone to compute RMS

amplitudes
• Calculating Vp proxies from DAS and geophone using RMS values and picked travel-

times; computing windowed cross-correlation of P-wave velocity from DAS with log
and geophone with log for different depth shifts

• Extracting the depth shift with the highest correlation coefficient
• Applying that depth shift to DAS channels to maximize the correlation.

The first three steps above are rather routine for VSP data analysis, and the results of
these steps are combined in Figure 3; started by picking the first break arrivals of the zero
offset DAS and geophone shot records at Figure 3a,b. Note that, in Figure 3b, some coherent
noise is shown on the upper right corner. Due to automatic gain control (AGC) effect, which
is one of the most common gain recovery methods in seismic processing, this coherent
noise before the first break arrivals is amplified and appears to look like signals. However,
when computing this noise, it is correlation duplication. A similar effect also appears in
the upper right corner of Figure 3a as horizontal lines before the first break arrivals, and
it is called instrument noise. Typically, a noise shakes the IU and the box puts that noise
across all DAS data. In Figure 3c,d, the first break arrivals data were flattened by shifting
traces with picked travel times. After that, a time window of 50 ms around FBPs was
selected to compute the root-mean-square (RMS) amplitudes for DAS measurement (strain)
and the amplitude of geophone measurement (particle velocity). Figure 3e,f displays the
windowed flattened DAS and geophone sections. It is obvious from Figure 3f that the
geophone absolute amplitudes have high variations due to poor coupling of two out of
four actual devices used for acquisition making them unusable.
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Figure 3. Zero offset shot records of (a) DAS and (b) geophone data where green curves denote the
first break picks. The shot records after flattening the first arrivals for (c) DAS and (d) geophone. A
time window of 50 ms around the first break picks for (e) DAS and (f) geophone data.
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Following Pevzner et al. [26], we estimated Vp from DAS RMS amplitudes. Figure 4a
shows the Vp proxy against the upscaled well log Vp and DAS interval Vp. Since the
amplitudes of geophone data have unrealistic variations (Figure 3f), we only extracted
the interval velocity from the FBPs of the geophone data and compared them with the
DAS and upscaled log Vp in Figure 4. The green curve in Figure 4b reflects the issue with
two out of four geophones in the acquisition, noted by the acquisition team. This results
in a quasi-periodic variation with a period of about 60 m, corresponding to 4 channels
shift. Non-regularized geophone picks (green curve in Figure 4b) result in geologically
non-feasible P-wave velocities that can be corrected in processing [18], (black curve in
Figure 5b). The velocities from DAS RMS amplitudes are less biased to the interpreter’s
FBPs than the DAS interval velocity. Figure 4a shows that both velocities estimated from
DAS RMS amplitudes and DAS FBPs match the upscaled well log. In Figure 4a, the DAS
Vp from FBPs (black curve) shows a deeper shift compared to the well log (red curve),
leading to our depth calibration shown in Figure 5. In Figure 4b, we notice that the well
log (red curve) shows higher velocity on average than the corrected geophone velocity
(black curve). This can be explained by the well-known typical increase in average P-wave
velocity at higher frequencies confirmed by simulations [27] and case studies [28,29].
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Figure 4. Comparison of P-wave velocities with depth between DAS, geophone and well log data.
(a) Black curve represents DAS velocity estimated from the FBPs, green is velocity estimated from
DAS RMS amplitudes, and red is for upscaled well log velocity. (b) Green curve represents geophone
velocity estimated from FBPs, black is geophone corrected velocity, and red is for upscaled well
log velocity.
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Figure 5. Three panels of normalized cross-correlation coefficients (in 500 m depth window) as
functions of depth and depth shift between log-based Vp and (a) time-based geophone Vp, (b) time-
based DAS Vp, and (c) amplitude-based DAS Vp, respectively. Note in (b) that −24 m depth shift for
DAS data (shifting channels up) delivers the best match to log-based data; (d) cross-correlation curves
(unnormalized) between log-based Vp and time-based DAS Vp (CC_DAS_Log); and amplitude-based
DAS Vp proxy (CC_RMS Log) before (transparent curves) and after (solid curves) applying the −24 m
depth shift.

To quantify the quality of different Vp profiles from DAS and geophone data, we
compute windowed cross-correlations treating well log Vp as ground truth. The highest
cross-correlation corresponds to the optimal local depth shift to align VSP measurements
and the well log. Figure 5 shows cross-correlation coefficients normalized to have a
maximum value of 1 at each depth. The red line in Figure 5b,c represents the −24 m bulk
shift that we applied to DAS data to maximize the correlation coefficient along most of
the well depths. However, we observe that the shallow depth has a wider range of shift
values. Figure 5d illustrates a comparison for the cross-correlation between DAS and the
well log before and after the shift. There is also a large difference in depth shift values,
around where the red arrow points, in Figure 5b,c which corresponds to low values of
unnormalized cross-correlation coefficient in Figure 5d and likely indicates problems with
coupling. For the geophone, as shown in Figure 5a, a bulk shift of −10 m gives the highest
normalized correlation.

In this case, velocities estimated from either the DAS data or the DAS RMS amplitudes
show a bulk depth shift of −24 m, or the DAS channel depth is deeper than the well log
depths by 24 m, Interestingly, the bulk depth shift can be more reliably derived using the
correlation with amplitude-based DAS velocity (Figure 5c) than that with time-based DAS
velocity. In contrast, the bulk depth shift of geophones is −10 m. As shown in the bottom
part of Figure 5a, there is not much variation in geophone shift values, whereas additional
maxima at the top part occur, which might be caused by cycle skipping when matching
P-wave velocities from log and geophones.

4. Source Signature and DAS Instrument Response Estimation

Many researchers [4,30–32] have derived empirical DAS instrument response R(t) that
transfers true ground strain to observed DAS waveforms. Their derivations are based on
comparisons between geophone and DAS data assuming a known and consistent geophone
instrument response. In our case, the geophone data have inconsistent amplitude variations,
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hence cannot be used as a reference. Therefore, we propose to use synthetic simulations as a
reference to expand the methodology of previous publications to the case where geophone
data are unavailable or of poor quality. We represent the DAS data using the following
convolutional model:

UDAS(t, xr, xs) = R(t, xr) ∗ G(t, xr, xs) ∗ S(t, xs) (1)

where UDAS is the recorded DAS data, R is the DAS instrument response, G is the DAS
synthetics simulated with a Dirac-delta source (numerical Green’s function), and S is the
source signature.

To analyze a newly introduced DAS instrument response, we first simulate synthetic
elastic data and compare them with field DAS data. We then estimate the source signature
using deconvolution. Next, we estimate the DAS instrument response connecting the syn-
thetic and field traces at different depth levels using additional deconvolution operations.
Finally, by applying the receiver’s response of a field shot gather (chosen at 50 m offset in
this case) over a synthetic DAS shot gather that is simulated using a different offset (250 m)
in combination with source estimation, we achieve an improved matching with the field
record of the 250 m offset shot.

4.1. Simulation of DAS Data

Egorov et al. [33] developed a 2D pseudo-spectral seismic modeling code that simulates
DAS seismic shot gathers using an elastic wave equation. In this study, DAS records of two
shots were generated with a time sample interval of 5 ms and a grid size of 12.5 m. Sources
were positioned at 50 m and 250 m offsets away from the wellhead. Acquisition with the
FO cable along the whole borehole length with 6.4 m channel spacing and 24 m gauge
length was simulated. These parameters replicate actual acquisition parameters described
in Section 2. Data Type and DAS acquisition geometry. Dirac-delta function is used as a
source signature to simulate Green’s function. Table 2 shows the modeling parameters
including the source and receiver geometries.

Table 2. The main input parameters for modeling two synthetic DAS gathers.

Input Parameters

Velocity Model (m/s) Vp
Grid Size (m) 12.5
Record Length (s) 4
Time Sample Interval (s) 0.0005

Receiver Geometry

Rec. Orientation Vertical
Starting x of Rec. Array (m) 4000
End x of Rec. Array (m) 4000
Rec. Depth from Free Surface Start (m) 12.5
Rec. Depth from Free Surface End (m) 4177
Rec. Spacing Interval (m) 1

Source Geometry
Starting x of Source Array (m) 4050 and 4250
End x of Source Array (m) 4050 and 4250
Source Offset (m) 100

DAS Acquisition Parameters Gauge Length (m) 24

Wavelet Dirac-Delta -

The P-wave velocity generated using checkshot data for well-B (Figure 4b) is used
as a key input parameter for DAS modeling. The S-wave velocity is estimated using
constant Vp/Vs ratio equal to 1.75. Gardner’s equation has been used to calculate the
bulk density using Vp. The source wavelet used for generating DAS synthetic data is a
Dirac-delta wavelet. The synthetic DAS gathers of the two shots of 50 m and 250 m offset
are illustrated in Figures 6a and 6c, respectively. The output of the simulation is denoted as
G. Convolution and deconvolution are the tools routinely used to match synthetic data and
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field observations. Using these tools, we show how to estimate source signature (S) and
DAS instrument response (R) in the next two subsections.

Figure 6. Synthetic of two DAS shot gathers of (a) 50 m and (c) 250 m offset, and field data of two
DAS shot gathers of (b) 50 m and (d) 250 m offset.

4.2. Estimation of Source Signature

The source signature in a desert environment has typically poor repeatability [34],
hence, it must be estimated for every vibrating point. Figure 6b,d shows two gathers of
field DAS data for 50 m and 250 m offsets corrected for geometrical spreading, respectively.
Also, note that the 1D model used for simulations is expected to work better for shorter
offsets as 3D heterogeneity has less effects on vertically propagating waves. While there is
resemblance in shape of the first arrival time curves of the corresponding synthetic gathers
in Figure 6a (compared to 6b) and 6c (compared to 6d), the synthetic and recorded in-field
wavefields cannot be compared without source matching.

To compare field and synthetic DAS data directly, the source signature of synthetic DAS
wavefield needs to be adjusted (Figure 7). We adjust the source by averaging convolutional
matching filters (MF) constructed for trace-to-trace matching of 50 m synthetic and field
DAS shot gathers.

Figure 8a shows the DAS estimated source signature from using matching filter. The
source signature was used as the S proxy in Equation (1) to generate synthetic traces in
Figure 7. The scheme in Figure 8b illustrates how a matching filter connects synthetic trace
with a field data trace via convolution. Finally, Figure 8c shows an example of matching
filter which was computed by deconvolving field data traces with synthetic traces at the
same depth.
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source) and field DAS data is shown in Figure 9. It shows that the field data spectrum is
relatively well replicated by synthetic data after source matching.
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4.3. Estimation of Receiver Signature

Following Equation (1), to represent the DAS field, we need to estimate the instrument
response R. We estimate R by deconvolving the DAS field wavefield with the synthetic
DAS wavefield, trace by trace for a 50 m offset shot. Figure 10 illustrates our estimates of
receiver instrument response for all channels. The ideal instrument response would be a
delta function centered at time 0 indicating that the field data are perfectly replicated by the
simulation, yet we observe variations in some channels. These discrepancies can be caused
by local coupling issues with the fiber as well as inaccuracies in the elastic parameter model
utilized for simulations.
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Figure 11 shows the final QC panel that can be useful for DAS data quality assessment
in the field. An interleave is shown in Figure 11a comparing the field and synthetic (matched
source S and receiver response R applied) DAS data for a 250 m offset. Note that the receiver
response was estimated using field data and synthetic data for a 50 m offset. One can barely
distinguish the synthetic traces from the field in Figure 11a. Figure 11b shows a zoomed-in
version of receiver response (Figure 10) where one can spot the amplitude variations with
depth. In current implementation, the deconvolution is deterministic, and variations are
only observed in the receiver function depending on spectrum thresholding that practically
controls the variance. In future work this can be further studied by expanding the dataset
and using more sophisticated deconvolution methods posing it as an optimization problem.
Finally, Figure 11c demonstrates a comparison of source signatures estimated for both shot
locations compared to an auto-correlation of the linear sweep of 2–120 Hz that was used by
the vibroseis as input source signature in this field experiment. The sweep parameters were
dictated by practicality. Higher frequencies quickly attenuate with depth due to scattering
and intrinsic attenuation. Lower frequencies require very long total sweep durations to
make the signal-to-noise ratio high enough for processing while each sweep already takes
more than 20 s to record. While the timing of the peaks on the source signatures matches
almost perfectly, a significant variation in the signal shape is observed, which is well
supported by previous studies of [34] where they proved for the desert environment that
running the source at the same location at different times, gives large variations in the
source signature measured by a nearby geophone. The geophone data in this study were
acquired with a source that is located in a different position and at a different time. This QC
tool can be used in practice by looking at the receiver response, the channels that deviated
from the mean above a certain threshold could be discarded from processing.
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respectively; (b) receiver response for 50 m offset; and (c) source signature comparison for 50 m and
250 m offsets.
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As a potential quantitative QC tool that can measure DAS VSP data, we add the peak
signal-to-noise ratio for the receiver signatures. The peak of the signal is 1 assuming the
noise is stationary around the peak, so the power is averaged in a small-time window.
Averaging on time and receivers is denoted as avgt and avgr, respectively:

PSNR(xr) = 10log10
1

avgt

(
R(t, xr)− avgr(R(t, xr))

2
(2)

Figure 12 shows that the noisy channels can be easily identified by simple thresholding
of the new metric. Here the PSNR threshold of 15 dB appears to be a reasonable choice
leading to poorly agreeing with synthetic simulation channel identification throughout
the well.
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PSNR just shows that a metric can be relatively easily defined to track the quality of the
receiver functions and we do not expect that the exact definition expressed by Equation (2)
will always lead to optimal results. Finetuning of such a metric can be the subject of future
research. Notably such averaging of raw data is not possible and even if flattened, the data
would suffer from variations in the wavelet with depth and reflections.

5. Discussion

Though geophone data are often considered as a ground truth for DAS data analysis,
it is clearly not the case for our dataset as two out of four geophones used in this test had
significantly different amplitudes and deemed the conversion between DAS and geophone
data nonviable. In this case, depth and amplitude of the geophone data are inferior to the
same attributes of the DAS data. For this dataset, the amplitude of geophones was not
reproducible in the simulation. Without regularization, the first breaks from the geophone
data led to wider spread in interval velocities. Both the geophone and DAS traces need
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depth shifts to match the logging depth. Contrary to DAS that can be adjusted with a single
bulk shift over the measurement depth range, the FBP analysis of geophones suggests that
the depth shift may vary with depth for optimal matching to logging data. The relative
amplitudes of DAS data turned out to be more usable than the geophone amplitudes. Apart
from the instrument coupling issues noted by the acquisition team for this particular survey,
we can explain it by the difference in the nature of the sensors. Geophones are practically
point receivers; hence, their amplitudes are heavily dependent on local properties of the
subsurface. On the other hand, DAS is a distributed array of sensors which contributes to
making the amplitudes of DAS measurements more robust.

Since the amplitudes of geophones were not reproducible in the simulation, we
focused our analysis on DAS data. Instead of taking geophone data as the ground truth
we used simulated DAS data to QC the field DAS data. Source signature estimation using
matching filters led to a visual similarity in simulated and field DAS data for the first
arrival waveforms at different offsets. This suggests that the 1D velocity model based on
the checkshot data is an adequate representation of the subsurface for zero- and near-offset
shot simulations in our case. Usage of 1D model for synthetic data simulations is an
obvious limitation of the method, restricting it to only slowly, laterally varying areas. If
large lateral variations are expected near the DAS-equipped borehole a 2D or even 3D
model could potentially be built using VSP and potentially surface data. The 1D model
itself can also potentially be further improved by incorporating the well log information
into the model building process. However, a more advanced simulation model building
process would also be more ambiguous. First, a more complex workflow would be needed
to build a laterally inhomogeneous model. Second, part of the noise in the data could
potentially be presented as lateral anomalies in the model. Finally, dispersion for P-wave
velocity measured in logging and VSP experiments is a well-known but varying factor.
Therefore, we acknowledge the simplicity of the 1D model used here as a limitation and
leave potential improvements of the methodology for future research.

6. Conclusions

We observed that the desert environment with unconsolidated near surface can lead
to non-replicable geophone amplitude variations. Hence, we designed a new QC workflow
for DAS VSP data in the desert environment based on well logs, without the need for
geophone data. DAS data simulation, using finite differences, and incorporating source
and receiver signatures, leads to visually indistinguishable synthetic and field DAS data
for the first arrival waveforms. Our work also demonstrates that significant amplitude
variations in a few DAS channels can be replicated by including the instrument response or
signature into the simulations.
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