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Abstract: With an aging population, numerous assistive and monitoring technologies are under
development to enable older adults to age in place. To facilitate aging in place, predicting risk factors
such as falls and hospitalization and providing early interventions are important. Much of the work
on ambient monitoring for risk prediction has centered on gait speed analysis, utilizing privacy-
preserving sensors like radar. Despite compelling evidence that monitoring step length in addition to
gait speed is crucial for predicting risk, radar-based methods have not explored step length measure-
ment in the home. Furthermore, laboratory experiments on step length measurement using radars are
limited to proof-of-concept studies with few healthy subjects. To address this gap, a radar-based step
length measurement system for the home is proposed based on detection and tracking using a radar
point cloud followed by Doppler speed profiling of the torso to obtain step lengths in the home. The
proposed method was evaluated in a clinical environment involving 35 frail older adults to establish
its validity. Additionally, the method was assessed in people’s homes, with 21 frail older adults
who had participated in the clinical assessment. The proposed radar-based step length measure-
ment method was compared to the gold-standard Zeno Walkway Gait Analysis System, revealing a
4.5 cm/8.3% error in a clinical setting. Furthermore, it exhibited excellent reliability (ICC(2,k) = 0.91,
95% CI 0.82 to 0.96) in uncontrolled home settings. The method also proved accurate in uncontrolled
home settings, as indicated by a strong consistency (ICC(3,k) = 0.81 (95% CI 0.53 to 0.92)) between
home measurements and in-clinic assessments.

Keywords: FMCW radar; mmwave radar; ambient sensing; gait analysis; step length

1. Introduction

With an aging population, multiple countries are facing challenges caring for older
adults. Care facilities are overloaded, and hospitals are becoming overburdened. Conse-
quently, there has been a shift towards adopting aging-in-place strategies aimed at enabling
older adults to stay in their homes for as long as possible while receiving homecare support.
Aging in the home is a more scalable solution than building care facilities and is also a
preferable solution for aging individuals. Studies have shown that monitoring aging older
adults and individuals with chronic conditions in the home can have a 500% reduction in
cost to the health system [1].

To keep people in the home safely, early detection and prediction of frailty, fall risk,
and hospitalization risk are essential to provide timely interventions and reduce emergency
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room visits. Gait analysis has been shown to be a predictor of risk factors such as falls,
frailty and hospitalization [2–6]. Gait has many parameters such as speed, step length,
cadence, etc. While these parameters are not independent, they do have complex relation-
ships. For example, gait speed can be maintained with different step lengths by changing
ones cadence.

When someone walks with a shuffling gait—taking shorter steps, keeping their feet
closer to the ground, and leaning forward—fall risk is increased. Identifying this walking
pattern early (by investigating step length) can help in the early detection of falls. In [7],
different gait parameters’ importance for predicting frailty was evaluated objectively based
on a recursive feature elimination algorithm and ranked with the Gini impurity. Based on
the feature importance, step length was concluded to be more important than gait speed
in predicting frailty [7]. Furthermore, they note that adding other gait parameters to step
length and gait speed created only a slight increase in accuracy. Similarly, [8] found through
a multi-variate analysis that gait speed and step length were important for predicting
dependency and mortality but for predicting institutionalization step length alone was
the better predictor. For fall risk assessment, ref. [9] showed that people with normal gait
speed and shorter step length were also at higher risk of falls. Ref. [9] concluded that gait
speed and step length contribute additively to the assessment of fall risk.

Building upon the insights gleaned from these studies [4–9], it becomes evident that
gait speed and step length play pivotal roles in evaluating frailty, fall risk, and hospitaliza-
tion risk in older adults. While several methods have been proposed for the continuous
monitoring of gait speed in a home environment [10–15], a significant gap exists concerning
step length measurement in the home.

This paper aims to address this critical gap by proposing a radar-based approach
for monitoring step length within the home setting. Preliminary approaches for step
length measurement have been studied in controlled laboratory environments, utilizing
cameras [16], light detection and ranging (lidar) [17], and radar [18]. While camera-based
methods are intrusive for in-home use and lidar-based approaches are relatively costly,
radar-based solutions offer promise as a privacy-preserving and cost-effective means of
measuring step length in a home setting. However, radar has been tested only in laboratory
settings with young healthy subjects walking 10 m or more directly towards the radar. A
long walking sequence is essential to mitigate the impact of acceleration and deceleration,
thereby obtaining a more accurate average step length measurement. Walking directly
toward the radar enhances the signal-to-noise ratio (SNR) and guarantees that the subject
remains within the optimal distance and speed sensitivity range of the radar.

For radar-based step length measurement in a home environment, several challenges
must be overcome. First, a means of measuring step length where subjects can walk in any
directions is needed. Second, the measurement of step lengths should be conducted during
short walks, given the impracticality of expecting 10 m walks within a home environment,
where the average room size is smaller than 10 m. Finally, a comprehensive evaluation of
radar-based step length measurement using frail older adults is needed to show the validity
and reliability of using radar-based step length measurement for health risk assessment.

To tackle the challenges associated with radar-based step length measurement in home
settings and to address the absence of step length evaluation involving frail older adults,
this paper present the following contributions:

1. Introduction of the first radar-based step length measurement in an unrestricted home
environment by automatically selecting optimal walk sequences within the home to
measure step lengths.

2. Provision of a comprehensive evaluation of the proposed in-home step length mea-
surement for both reliability, through test–retest reliability testing, and validity, by
correlating with established in-clinic step length measurements. This evaluation is
conducted with frail older adults in their own homes over a two-week period.

3. Presentation of a thorough in-clinic validation of step length measurement involving
frail older adults undergoing five different types of walks.
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These real-world methods and evaluations are crucial to validate the effectiveness
of radar-based approaches for continuous in-home gait monitoring of older adults aging
in place.

2. Related Works

There is a scarcity of controlled setting studies on radar-based step length measure-
ment, with none conducted in an uncontrolled environment. The existing works, out-
lined in Table 1, primarily adopt two approaches: one based on Doppler echoes from
the ankle/toes [19,20] and the other on Doppler echoes from the torso [18,21–23]. The
ankle/toe-based methods, as highlighted in [23], necessitate close proximity of the radar
sensor to the walker’s feet, making them applicable only in controlled settings, such as
treadmill-based studies. Conversely, the torso-based methods are deemed more suitable
for ambient step length measurement in a home setting due to the larger size and density
of the torso, resulting in stronger radar echoes compared to the ankles/toes.

Table 1. Existing radar-based step length measurement techniques using trunk movement.

Method Distance (m) No. of Participants Participants Ground Truth

[21] 4 3 Young adults Marker attached to shoe
[22] 25.2 † 4 Young adults Fixed 70 cm steps
[18] 56 ‡ 5 Young adults Fixed 70 cm steps
[23] 10 10 Young adults MOCAP

† 4.2 m back and forth three times; ‡ 14 m back and forth two times.

The torso-based method hinges on the cyclical pattern of torso speed throughout the
gait cycle, as depicted in Figure 1. Step length is determined by measuring the distance
between torso speed peaks [18,22], the distance between torso acceleration peaks [23], or
by dividing the average gait speed by the step frequency. The latter is calculated through
frequency decomposition of the torso speed profile [21].

Figure 1. The forward velocity and acceleration of the center of mass during a single gait cycle. The
peak-to-peak distance of velocity and acceleration is equivalent to one step length. Illustration based
on speed profile and gait descriptions is given in [24,25].

The existing works discussed in Table 1 exhibit several limitations. Firstly, they
predominantly focus on evaluating their methodologies using a limited sample of young,
healthy individuals without mobility issues, neglecting the assessment of frail older adults
who may exhibit deviations from a healthy gait. Secondly, these methodologies presuppose
long, constant-speed walk sequences ranging from 4 to 14 m or repeated walks up to 56 m,
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which prove impractical in a home setting, particularly for older adults who are frail and
incapable of maintaining a constant speed over extended distances. Thirdly, the removal
of the initial and final 1–2 m of walk sequences to eliminate acceleration and deceleration
effects necessitates even longer walk sequences, thereby excluding the analysis of typical
short walks anticipated in a home environment. Lastly, the investigated works do not
explore the passive measurement of step length in an unconstrained home environment.

Each individual approach has its own set of limitations. The acceleration peak-to-
peak method proposed by [23] involves taking the derivative of the torso speed profile,
making it susceptible to noise inherent in the torso speed measurement. The step frequency-
based method introduced by [21] relies on maintaining a constant speed during the walk,
achieved by eliminating acceleration and deceleration effects at the walk’s start and end.
However, this method is impractical for home settings where shorter walk sequences
prevent effective compensation for acceleration effects. Consequently, in this study, the
torso speed peak-to-peak distance method, as utilized in [18,22], is employed for step
length measurement.

3. Hardware

In the proposed approach, the Chirp smart sensor CHIRP-01-T [26], affixed to the wall,
is employed to monitor individuals, extract torso speeds, and ascertain step length. The
Chirp smart sensor is an Internet of Things (IoT) device equipped with onboard processing
and utilizes the Texas Instruments (TI) IWR6843AOP radar. The TI radar operates as
a frequency-modulated continuous-wave (FMCW) radar within the frequency range of
60–64 GHz. It is approved for use by the Federal Communications Commission (FCC) of
the United States [27]. Moreover, studies have confirmed the safety of this radar frequency
range for continuous monitoring of humans [28,29].

Due to bandwidth constraints for continuous 24/7 data collection within a home and
the limited computational capabilities of the IoT device, only radar point clouds, as detailed
in Section 4.1, are processed at a rate of 10 frames per second to track individuals and
measure step lengths.

3.1. Clinical Setup

Data collection was conducted in a large multipurpose room within a hospital setting
(Figure 2) with a 4 m ProtoKinetics Zeno Walkway (Havertown, PA, USA) at a sampling
frequency of 100 Hz. The Chirp device (Waterloo, ON, Canada) was positioned at the
end of the walking path at a distance of 6.03 m from the start and 2.03 m from the end
of the ProtoKinetics Walkway at a sampling frequency of 10 Hz (10 frames per second).
The ProtoKinetics Zeno Walkway (pressure sensors) and Chirp devices (radar positioning)
collected data simultaneously.

Figure 2. In-clinic setup of the 4 m ProtoKinetics Zeno Walkway Gait Analysis System and Chirp
Smart Home Sensor for testing concurrent validity of step length measurement. Obstacles are only
used for obstacle walks. Narrow walk pathway is used for narrow walking scenario only.
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The clinical data collection for all participants occurred in multiple sessions over a
four-month period. All efforts were made to set up the Zeno Walkway and Chirp sensor at
the exact locations specified in Figure 2. The location of clutter (tables, chairs, etc.) in the
room between sessions could vary. During each session, two to three research assistants
were present in the room within the field of view of the radar sensor. Furthermore, for
older adults with more severe frailty, a research assistant walked behind the individual
during their walk across the Zeno Walkway for safety.

3.2. Home Setup

For in-home step length measurement, participants were directed to install Chirp
sensors in their bedroom, living room, and kitchen. Guidelines were provided to position
the Chirp sensor between 121 cm (48 inches) and 132 cm (52 inches) above the floor, which
corresponds to the typical height of residential wall switches (see Figure 3a). Participants
were further instructed to place the Chirp sensor as centrally as possible on the wall,
ensuring full coverage of the room (see Figure 3b). Following installation, participants
utilized the Chirp Labs App to connect the Chirp sensor to their WiFi and assigned the
names bedroom, kitchen, and living room to each respective sensor.

(a) (b)
Figure 3. Placement of Chirp sensor in the room. (a) Elevation at switch height. (b) Possible locations
of the Chirp sensor at center of wall covering entire room.

For inter-device test–retest reliability within the home between week 1 and week 2,
participants were requested to remount all Chirp sensor devices after the first week of data
collection (e.g., relocating the kitchen device to the bedroom, the bedroom device to the
living room, and the living room device to the kitchen).

The installation and setup process was left to the discretion of the user, and the authors
did not modify or validate the device placement. Consequently, the placement reflects how
families might set up the devices in a consumer setting.

4. Proposed Approach

The overall approach for step length measurement in a home setting and clinical setting
is illustrated in Figure 4. The TI signal processing software development kit (SDK) [30]
is used to produce radar point clouds at 10 frames per second (FPS). The point clouds
are used to detect and track individuals moving in the scene as outlined in [31]. A novel
track filtering method is presented in this paper to identify tracks that can be used for step
length measurement in the home or in the clinical setting. Once viable tracks are identified,
a novel outlier rejection-based torso speed analysis is presented to measure the average
step length.
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Figure 4. Step length measurement methodology: Radar signal processing generates 3D point clouds
with speeds, enabling detection and tracking of individuals. In the home, linear track segments
along the radar’s radial axis are isolated, while in the clinic, track segments along Zeno Walkway’s
linear path are extracted. Step length is determined as the peak-to-peak distance of torso speed. The
contributions of this paper are highlighted by the dashed rectangle (cyan).

4.1. Radar Point Cloud

The Texas Instruments radar processing tool chain [30] consisting of signal processing,
static clutter removal, and constant false alarm rate (CFAR) detection is used to obtain a
radar point cloud at time t. The point cloud is formed by a set of moving points detected
by the radar (Figure 5a), where each point consists of a location and speed.

Pt = {p1
t , . . . , pi

t, . . . , pn
t } (1)

where t is the current time, and the ith point is pi
t = (xi, yi, zi, si). Location x, y, z is in meters,

and speed s is in meters per second.

(a) Radar point cloud. (b) Detection (DBSCAN). (c) Tracking (Kalman filtering).

Figure 5. Tracking illustration: Radar point clouds are clustered to form detections, which are
associated to tracks through the Hungarian algorithm and tracked using Kalman filtering. The floor
is depicted with a 1 m by 1 m checkerboard pattern, while Zeno Walkway is represented by a cyan
rectangle. The blue rectangular prism represents observations of people or tracked location of people.

4.2. Detection and Tracking

Using the radar point cloud Pt, a detection and tracking approach based on DBSCAN
clustering for detection (Figure 5b), data association via Hungarian assignment and Kalman
filtering for tracking (Figure 5c) as outlined in [31] is used for tracking people in the scene.

This results in a set of tracks:

T = {T1, . . . , Ti, . . . , TN} (2)

Each track is defined as
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Ti = {(xt0 , yt0 ,St0), . . . , (xtj , ytj ,Stj), . . . , (xtN , ytN ,StN )} (3)

where Stj ⊆ Ptj (P is defined in (1)) and (xtj , ytj) is the track location in the room at time tj.
As in [31], we track moving objects’ location only in the x − y plane, ignoring elevation z.
Stj is formed by DBSCAN clustering from radar point cloud Ptj at time tj and assigned to
track Ti during data association via Hungarian assignment.

4.3. Tracks in the Clinic

In the clinic, the radar is set up in front of a Zeno Walkway (Figure 2). For fair
comparison, radar-based step length measurement must be conducted over the track
segment starting and ending on the Zeno Walkway. The clinic setting is reproduced for each
participant such that the Zeno Walkway starts and ends at the coordinates gs = (0, 6.03)
and ge = (0, 2.03), respectively. Furthermore, for each walk w by participant i, a start time
tw
i and Zeno Walkway average step length gw

i was recorded.
Given all the tracks T (defined in (2)) obtained during participant testing, the track

segment associated with the in-clinic walks are

L′ = {L1
1, L2

1, . . . , LW
1 , . . . , Lk

i , . . . , LW
P } (4)

where P is the number of participants, and W is the number of walks for each participant.
The track segment Lk

i is obtained as the track segment starting near gs and ending near ge
and is closest in starting time to tw

i .

4.4. Tracks in the Home

The Doppler radar is most sensitive to speed changes along the radial axis. As a
result, the best way to isolate small fluctuations in torso speed, which are caused during
the normal gait cycle, is to look at the torso speed when a person is traveling along the
radial axis of the radar. To this end, given all the tracks T from a home setting, the track
segments that are in a relatively straight line going along the radial axis is isolated for step
length measurement. First, all tracks are segmented into linear segments (Section 4.4.1),
and then the linear segments are classified as valid segments traveling along the radar’s
radial axis (Section 4.4.2).

4.4.1. Track Segmentation

To isolate instances where individuals are walking towards or away from the radar
(i.e., along the radar’s radial axis), we segment all tracks into linear segments. The x − y
locations of the track Ti are treated as a polyline, which is decimated using the Ramer–
Douglas–Peucker (RDP) algorithm [32]. The RDP algorithm has a single parameter ε
that controls the decimation and is the maximal distance allowed between a point on the
polyline and the linear representation of that polyline.

The points selected by the RDP decimation are used to segment the track Ti into linear
track segments. If the RDP algorithms select Mi + 1 points along track Ti to keep, then
track Ti will be segmented into Mi linear segments as illustrated in Figure 6. We represent
the linear segments as f

Ti = {L1
i , . . . , Lk

i , . . . , LMi
i } (5)

The set of all linear track segments becomes:

L = {L1
1, . . . , LM1

1 , . . . , L1
i , . . . , Lk

i , . . . , LMi
i , . . . , LMN

N } (6)

where N is the number of tracks as defined in (2), Mi is the number of linear segments
in track i and the cardinality of the set, |L| = ∑N

i=1 Mi = m, is the number of linear track
segments from the home.
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Figure 6. Track Ti is segmented into linear track segments L1
i , . . . , L4

i using the Ramer–Douglas–
Peucker algorithm. ε = 0.5 m for this figure. The segments of track Ti corresponding to L1

i , L2
i , L3

i ,
and L4

i are indicated by the colors magenta, red, blue and cyan respectively.

4.4.2. Track Filtering

Given linear track segments, the segments along the radial axis of the radar must be
isolated. Because of the radar’s sensitivity along the radial axis, the robust way to measure
instantaneous changes in torso speeds is in the radial direction. To this end, given a linear
track segment

Lk
i = {(xt0 , yt0 ,St0), . . . , (xtj , ytj ,Stj), . . . , (xtN , ytN ,StN )} (7)

we define

rt0 =
√
(xt0)

2 + (yt0)
2 (8)

rtN =
√
(xtN )

2 + (ytN )
2 (9)

dk
i =

√
(xt0 − xtN )

2 + (yt0 − ytN )
2 (10)

θk
i = arccos

(
(max(rt0 , rtN ))

2 + (dk
i )

2 − (min(rt0 , rtN ))
2

2dk
i max(rt0 , rtN )

)
(11)

As illustrated in Figure 7, θk
i is the rotation angle needed about the radially furthest

track endpoint to rotate the track directly towards (away from) the radar. The classification
of track segment Lk

i is

ck
i =

{
1 if dk

i ≥ D and θk
i ≤ γ

0 otherwise
(12)

where ck
i = 1 indicates valid linear tracks segment along radar’s radial axis that is suffi-

ciently long enough to detect step lengths and its relative orientation to radar’s radial axis
is small.

This results in a set of valid radially aligned linear track segments:

L′ = {Lk
i ∈ L : ck

i = 1} (13)



Sensors 2024, 24, 1056 9 of 22

Figure 7. Linear track segment Lk
i has a length dk

i (10) and an orientation θk
i (11) that is needed to

orient the track along radar’s radial axis.

4.5. Step Length Measurement

Given a linear track segment along radar’s radial axis, Lk
i ∈ L′, from the home (13)

or at the clinic (4), the average step length needs to be measured. Similar to [18,22], step
length measurement is obtained as the peak-to-peak distance of the torso speed.

4.5.1. Torso Speed

Each linear track segment Lk
i ∈ L′ has a set of tracked locations:

Lk
i = {(xt0 , yt0 ,St0), . . . , (xtj , ytj ,Stj), . . . , (xtN , ytN ,StN )} (14)

where

Stj = {(x1, y1, z1, s1), . . . , (xa, ya, za, sa), . . . , (xN , yN , zN , sN)} (15)

represents the set of radar points on the person being tracked, which includes points on
the torso, arms, legs, etc. From this, points on the torso S torso

tj
∈ Stj are isolated based on

elevation data and direction of travel.
The radar is placed 121 cm (48 inches) to 132 cm (52 inches) above the floor, as such we

conservatively estimate torso points to be in the range −Ztorso ≤ za ≤ Ztorso. Furthermore,
if the person is traveling towards the radar, we expect the Doppler speed of the torso to be
−ve and if the person is traveling away from the radar, we expect the Doppler speed of
the torso to be +ve. This distinction is important, because the arms can be traveling in the
opposite direction to the torso.

Specifically, given linear track segment Lk
i in (14), the radial distance to the start rt0 (8)

and end rtN (9) locations, the radar points on the torso S torso
tj

⊆ Stj is defined as

S torso
tj

= {(xa, ya, za, sa) ∈ Stj : −Ztorso ≤ za ≤ Ztorso and αsa > 0} (16)

α =

{
−1 if rtN < rt0

+1 if rtN > rt0

(17)
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The torso speed at each time step tj is vtj and is computed as the average of speeds
in S torso

tj
.

vtj =
∑a sa ∈ S torso

tj

|S ′
tj
| (18)

Given a set of torso speed vtj the linear track segment Lk
i becomes

Lk
i = {(xt0 , yt0 , vt0), . . . , (xtj , ytj , vtj), . . . , (xtN , ytN , vtN )} (19)

where x, y is the location of the person and v is the Doppler torso speed of the person.
Acquiring torso speed from radar points linked to a track offers a benefit. In situations

with multiple individuals within the radar field of view, as depicted in Figure 5c, it enables
the determination of accurate torso speeds for each person. This enhances the reliability of
torso speed estimation, particularly in noisy conditions.

4.5.2. Average Peak-to-Peak Distance

The torso speeds from (19) are used to find peaks as illustrated in Figure 8. Given the
torso speeds on the linear track segment, a center surrounded window of 0.4 s (5 points
given a 10 FPS) is used for non-maximum suppression (NMS). After NMS, all peaks are
found and sorted in descending order of speed. Starting at the fastest speed (highest peak),
peaks are kept as valid peak if the peak-to-peak time is at least R seconds. Once all valid
peaks are found, the peak-to-peak distance and peak-to-peak time are obtained as potential
step length and step time.

Figure 8. Control (normal speed) walk by a participant: On the left, the tracked location overlaid
with the expected location of the Zeno Walkway. On the right, the Doppler torso speed, featuring
detected torso speed spikes. Notably, the speed trend is non-constant due to the acceleration and
deceleration effects of starting and stopping.

The peak detection algorithm may skip a step due to noise or the irregular gait of frail
older adults, leading to inaccuracies in measuring peak-to-peak distances and resulting
in larger step lengths. To account for potential missed steps, any step lengths exceeding
1 m or step times exceeding 3 s are excluded as outliers. Subsequently, if the linear track
segment has a minimum of two measured step lengths, the average of these step lengths is
calculated and considered as the average step length for the linear line segment Lk

i .
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5. Experiment Setup

The study included individuals aged 60 years and older who met the following inclu-
sion criteria: (1) frailty, indicated by a score of 3 or more on the FRAIL Scale, (2) lived alone,
(3) had a home WiFi connection, and (4) had access to a smartphone or tablet for device
setup. Exclusion criteria encompassed individuals who required a wheelchair for indoor
mobility, needed prolonged sitting due to a medical condition, or lacked independent
mobility. Participants with travel plans or commitments missing more than 30% of the
study period were excluded. Participants were recruited from regional specialized geriatric
clinics, community groups, and newspaper advertisements. This study was approved by
Hamilton Integrated Research Ethics Board (HIREB Project# 15237) and was performed in
accordance with the Declaration of Helsinki. Written informed consent was obtained from
all participants.

Participants’ demographic information (Table 2) was collected regarding age, sex,
and education. Physical performance was assessed with the Short Physical Performance
Battery (SPPB) [33]. An SPPB score of <9 points indicates poor physical performance and is
predictive of hospitalization and mortality [34]. The Falls Efficacy Scale International (FES-I)
is a standardized questionnaire that assesses concerns about falling within 16 physical and
social activities at home and the community. FES-I items are rated on a four-point scale
(1 (not at all concerned) to 4 (very concerned)), and total scores range from 16–64. FES-I total
scores can be further classified based on the severity of the fear of falling with clinical cutoff
points of no to low (score = 16–19) and moderate to high (score = 20–64) concern about
falling [35]. Cognition was assessed with the Montreal Cognitive Assessment (MoCA) [36].
Total MoCA scores range from 0–30, and a score >26 points is considered normal cognitive
function [36].

Table 2. Demographics of the participants. M—mean, SD—standard deviation, SPPB—Short Physical
Performance Battery, FES—Fall Efficacy Scale, and MoCA—Montreal Cognitive Assessment.

Demographics All Participants (N = 35)

Age, M (SD) 75.49 (6.56)
Age, Range 60 to 89
Sex, % female 30/35 (85.71%)
Education, n more than high school 23/35 (65.71%)
Living arrangement, n lives alone 35/35 (100%)
Physical function, SPPB total score, M (SD) 8.53 (2.74)
Physical function, n SPPB < 9 12/34 (35.29%)
Fear of falling, FES-I total score, M (SD) 24.97 (6.62)
Fear of falling, n FES-I moderate to high severity 26/34 (76.47%)
Cognition, MoCA total score, M (SD) 23.38 (3.64)
Cognition, n MoCA total score < 25 20/34 (58.82%)

5.1. Clinic Setup

Using the InCIANTI protocol [37], participants walked along the 4 m path during
normal [control] and adaptive locomotion experimental conditions (walking while talking
[dual task], reciting animal names from a given letter; obstacle crossing of two 4.5-inch-
high obstacles; narrow walking along a 25 cm wide path; fast walking). Each of the
five experimental conditions was conducted twice in a randomized order except for the
fast walking trials, which were consistently performed last in each experimental block
to avoid any influence on the speed of the preceding trials. Two blocks of walks were
conducted within a participant session separated by approximately 30 min for intra-session
reliability testing.

Participants commenced their walks at the beginning of the Zeno Walkway, proceeded
to the end, and then came to a stop. Notably, unlike existing works [18,21–23], this ap-
proach encompasses the acceleration and deceleration effects associated with walking. This
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methodology aligns with testing in home environments, as the limited space within homes
makes it unfeasible to omit the acceleration and deceleration segments of the walks.

As shown in Table 3, of the 700 walks (35 participants × 2 blocks × 2 repetition × 5 types
of walks), 47 walks (across 6 participants) were not collected because the participants was
too frail to complete the walks. A further 28 walks (across four participants) were not
collected due to technical issues. The remaining 625 walks were collected with the Chirp
sensor and the Zeno Walkway. The collected step lengths have a robust variation with a
mean of 57 cm (12 cm), as shown in Figure 9.

Table 3. Of the 700 walks (35 participant × 20 walks), data are missed due to technical difficulties
and participants unable to complete the walks due to frailty.

Control Fast Narrow Obstacle Dual Task All

Tech. Difficulty 6 4 6 5 7 28 (4.0%)
Unable 1 4 17 24 1 47 (6.7%)
Collected Walks 133 132 117 111 132 625 (89.3%)

Figure 9. Ground truth step length distribution as measured by the Zeno Walkway Gait Analysis
System. Overall average step length is 57 cm (12 cm).

5.2. Home

Participants installed the devices in their living room, bedroom, and kitchen for a
two-week duration. Out of the 35 participants, 21 successfully set up the devices in their
homes. Among these 21 participants, 3 have data for only one week, 1 participant has data
for 10 days, and the remaining 17 have data for the full two weeks.

All participants reside alone. To ensure that the in-home evaluation of step length
pertains solely to the participant, step length is reported only when a single person is
being tracked within the home. Some participants have small pets, such as cats, which are
excluded from tracking based on their size.

6. Algorithm Parameters

In-home track selection for step length measurement is dependent on three parameters:
RDP threshold ε (Section 4.4.2), length of linear track segment D (12), and orientation
threshold γ (12). Both ε and γ are set empirically as ε = 0.5 m and γ = 15◦. Minimum
length of track D must be selected to ensure at least two step lengths are present within the
linear track segment (Section 4.5.2). Per [38], the average male step length for a walking
speed of 1.6 m/s is 0.84 m. This requires a track length of at least 1.7 m for two steps. Based
on this upper bound, D is set as D = 2 m.

The torso location cutoff, as defined in (16), must be defined based on known radar
configuration. Participants were given instructions to set up the radar approximately at
a height of 121 cm. Based on that, Ztorso is conservatively set as Ztorso = 0.25 m. This
assumes that the torso radar points are within 0.25 m below to 0.25 m above the radar. This
is empirically set based on the male average torso length of 46 cm to 52 cm.
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Finally, the minimum peak-to-peak time R (Section 4.5.2) is set as small as possible.
Given 10 FPS radar data and a center-surrounded non-maximum suppression window of
0.4 s (Section 4.5.2), the lower bound on R is R > 0.4/2 = 0.2 s. Based on this, the minimum
peak-to-peak time is set as R = 0.3 s.

7. In-Clinic Step Length Evaluation

The study gathered data from 625 walks conducted in a clinic, with step length
measurements simultaneously obtained from both the Chirp sensor and Zeno Walkway.
This dataset serves as the basis for several evaluations. Firstly, an analysis of step length
detection rate is conducted using the proposed method. Secondly, the concurrent validity
of the proposed method is assessed against the gold-standard measurement obtained from
the Zeno Walkway. Finally, a comparison of the proposed method with existing methods
is undertaken.

7.1. Step Length Detection Rate

Over the 4 m walk, it is required to detect at least two step length measurements
(i.e., three consecutive torso speed peaks) to generate an average step length measurement
for the walk (refer to Section 4.5.2). Consequently, there are instances where the proposed
method does not provide a step length measurement. Out of the 625 walks, the proposed
method successfully detected step length in 599 walks, yielding a detection rate of 96%.
The distribution of missed walk types is detailed in Table 4.

Table 4. Step length detection rates for the proposed approach on the 625 walks.

Control Fast Narrow Obstacle Dual Task All

Alg. Missed 2 18 6 0 0 26/625 (4.2%)
Alg. Detected 131 114 111 111 132 599/625 (95.8%)

As indicated in Table 4, the majority of missed step length measurements are associated
with fast walks. This can be attributed primarily to the set minimum peak-to-peak time
threshold of R = 0.3 s. The distribution of detected step length peak-to-peak times (i.e., step
times) is illustrated in Figure 10. Notably, the distribution of step times for fast walks crosses
the R = 0.3 s threshold. Consequently, the peak-to-peak measure for fast walks becomes
undetectable in certain cases. To enable step length measurement at higher walking speeds,
generating radar point clouds at a higher frame rate than 10 FPS and lowering the minimum
peak-to-peak distance threshold from R = 0.3 s is necessary.

Figure 10. Distribution of step times as measured by torso speed peak-to-peak times.

In the context of in-home monitoring, there is no need for adjustments to the radar
frame rate and peak-to-peak distance threshold. The step length measured at home typically
appears smaller than what is observed in the clinic, as discussed in Section 8.2.
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7.2. Concurrent Validity

Figure 11 displays all step length measurements obtained through the proposed
radar-based method in comparison to those from the Zeno Walkway. Concurrent validity
is evaluated by considering the absolute difference between Zeno Walkway step length
measurements and those obtained using the proposed radar-based method. The analysis
involves a total of 599 walks, where the proposed algorithm reported a step length. To
address variations in individuals’ step lengths (ranging from 26 cm to 97 cm, as illustrated
in Figure 9), step length errors are further expressed as a percentage of the Zeno Walkway
step length measurement. The comprehensive step length errors, along with a breakdown
by different walk types, are presented in Table 5 and Figure 12.

Figure 11. Proposed radar-based step length measurement vs. Zeno Walkway. Data include all
599 walks (4 m each) by 35 frail older adults.

In the control walk (i.e., normal walking speed), the average error is 4.5 cm, which, on
average, is less than 10% of the true step length. Both narrow walkway walks and obstacle
walks exhibit comparable absolute and relative errors. Fast walks and dual-task walks
share the same absolute average error of 6.5 cm. However, the relative error for the dual
task is 4% higher. This discrepancy arises from the fact that dual-task walks have shorter
step lengths (refer to Figure 9) compared to fast walks. This underscores the significance of
considering both absolute and relative step length errors in the assessment of step length
measurement methods.

(a) Error distribution in cm. (b) Error distribution % of step length.

Figure 12. Step length error distribution by walk type in cm and as a percentage of the true step
length measured by Zeno Walkway.
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Table 5. Average (standard deviation) error in step length in cm and percentage of Zeno Walkway
step length (%).

Control Fast Narrow Obstacle Dual Task All

cm 4.5 (4.3) 6.5 (5.9) 5.0 (4.3) 5.0 (4.4) 6.5 (6.4) 5.5 (5.2)
% 8.3 (8.0) 10.4 (9.3) 9.3 (9.2) 8.5 (7.4) 14.3 (13.4) 10.2 (10.1)

7.3. Intra-Session Reliability

To evaluate the reliability of the proposed method, we conducted an intra-session
test–retest reliability analysis by comparing walks from block one to those in block two.
The participants underwent an equivalent number and type of walks in both blocks to
ensure consistency in measured step length. The reliability assessment is conducted using
a two-way random effect, absolute agreement, and the multiple raters/measurement intra-
class correlation (ICC) measure [39]. The measured step length between blocks is depicted
in Figure 13, revealing ICC(2,k) = 0.83 (95% confidence interval (CI) 0.77 to 0.87). This
indicates a strong level of reliability for the proposed approach in intra-session assessments
within a clinical setting.

Figure 13. Intra-session reliability. Block 1 to block 2 step lengths measured in the clinic.
ICC(2,k) = 0.83 (95% CI 0.77 to 0.87).

7.4. Comparison to Existing Methods

Although a direct comparison to existing radar-based step length measurement meth-
ods is not feasible, Table 6 provides a comparison based on the reported magnitude of error.
The comparison utilizes the average from 131 control (normal) walks by frail older adults.

The errors reported in this study are two to four times larger in magnitude when
compared to existing reported figures. However, it is crucial to acknowledge the specific
focus of this work on step length measurement for frail older adults. Unlike healthy subjects
with a consistent gait cycle, frail older adults exhibit variability due to factors such as health
conditions. This is underscored by instances where some participants were unable to
complete all 20 walks due to frailty reasons. Additionally, the distance traveled is shorter,
and the walks include acceleration and deceleration components, factors expected in a
home setting but not accounted for in previous works.
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Table 6. Comparison to existing methods for normal walking in a controlled setting.

Method Avg. Error (cm) Total No. of
Walks

No. of
Participants Distance (m) Type

[21] 1.1 (0.8) 3 3 4 Young Fit
[22] 2.3 4 4 25.2 Young Fit
[18] 2.6 (1.5) 5 5 56 Young Fit
[23] 2.2 (1.4) 100 10 10 Young Fit

Ours 4.5 (4.3) 131 35 4 Older Frail

8. In-Home Step Length Evaluation

The measurement of step length in the home exclusively relies on the proposed radar-
based system, preventing the possibility of concurrent validity assessment. Nevertheless,
following literature on in-home gait speed analysis [15], we address the reliability of
in-home step length measurement using a week-over-week test–retest framework and
establish validity by correlating it with in-clinic step length measurements.

8.1. Reliability

Reliability is assessed through the test–retest framework, measuring step length from
week one to week two within each room of the homes. This evaluation gauges the consis-
tency of the proposed approach for step length measurement over the two weeks, assuming
no significant change in step length occurs for the participants during this period. This
assumption is corroborated by an end-of-study survey where participants reported no
adverse outcomes such as falls. Additionally, the use of two different devices to obtain
step length in each room between week one and week two introduces a test of inter-device
reliability within the test–retest framework.

Figure 14 illustrates the average week-over-week step length measurements by the proposed
approach for each room. Out of the 21 participants who set up the devices in their homes,
18 collected data over two weeks, resulting in a total of 18 participants × 3 rooms = 54 rooms.
However, some rooms did not have suitable tracks for measuring step lengths each week.
Consequently, data from only 35 rooms across the 18 participants with reported average
step lengths for the two weeks are presented in Figure 14.

Figure 14. Average step length measurement, obtained by the proposed method, between week 1
and week 2 for each room. ICC(2,k) = 0.91 (95% CI 0.82 to 0.96), indicates excellent reliability.

Two-way random effect, absolute agreement, and multiple raters/measurement intra-
class correlation (ICC) [39] are employed to quantify the absolute agreement between
week 1 and week 2 step length measurements. Computed using the R software package
v4.3.1, the ICC(2,k) = 0.91 (95% CI 0.82 to 0.96). This high ICC value indicates excellent
reliability [39] for the proposed radar-based step length measurement in a home setting.
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Figure 15 plots the test–retest reliability, as measured by ICC(2,k), against the step
length averaging interval. The averaging interval goes from 2 days to 7 days in each week
and as seen in Figure 15 and converges to an excellent reliability (ICC(2, k) ≥ 0.9) for
intervals of 5 days or greater.

Figure 15. Test–retest reliability of in-home step length as a function of aggregation interval. Reliability
is measured using inter-class correlation (ICC).

8.2. Validity

Validation of step length measurement in a home setting lacks ground truth. Neverthe-
less, the clinical assessment of each participant incorporates the measurement of step length
during normal (control) walking. Although the step length measured during the clinical
control walk may not precisely align with the average step length measured at home, a
substantial correlation is anticipated. As a result, two-way random effects, consistency, and
multiple raters/measurements inter class correlation (ICC) [39] are employed to evaluate
the consistency between in-home measured step length and the in-clinic control walk
step length.

In Figure 16, the control walk step length measurements in the clinic using the Zeno
Walkway are compared to the average in-home step length measurements based on the
proposed method for all 21 participants with in-home data. Computed using R v4.3.1,
ICC(3,k) = 0.81 (95% CI 0.53 to 0.92), giving good consistency between the in-home and
in-clinic measurements [39]. This affirms the validity of the proposed in-home step
length measurement.

Figure 16. In-home average radar step length compared to in-clinic average control (normal walk) step
length measured by Zeno Walkway. ICC(3,k) = 0.81 (95% CI 0.53 to 0.92), indicates strong consistency.

While correlated with in-clinic measurement, the in-home measured step length tends
to be smaller than the assessment conducted in the clinic. This phenomenon aligns with
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findings from other studies on gait speed, where in-home gait speed tends to be slower
than that measured in a clinic setting [10].

A distinctive case worth highlighting is participant CHIRP024, who exhibited a signif-
icantly lower in-clinic step length measurement of 30 cm compared to other participants.
Consistently, the in-home step length measurement for CHIRP024 is notably smaller than
that of the other participants, as depicted in Figure 16. This observation further substanti-
ates the credibility of the proposed measurement method.

Finally, Figure 17 illustrates the distribution of individual step lengths measured
in the home, revealing distinct peaks corresponding to the averages identified in our
previous analysis.

(a) CHIRP001. (b) CHIRP019. (c) CHIRP022.

Figure 17. Distribution of all step lengths measured in the home over the full two-week data
collection period.

9. In-Home Tracks

The proposed method relies on the assumption that, for the in-home setups selected by
users, there are linear track segments that are at least D = 2 meters long and oriented within
a γ = 15◦ angle of the radar’s radial axis. In all 21 homes set up by participants, such tracks
were identified, although their frequency varies significantly among homes. Figure 18
depicts the percentage of valid linear track segments, where step length can be measured.
On average, valid track segments make up only a small percentage—17% (12%)—of the
total observed tracks. Additionally, three of the homes have less than 5% valid tracks.

Figure 18. Percentage of valid linear track segments where step length can be measured. Valid linear
track segments are linear track segments that are at least 2 m in length and within 15◦ of radar’s
radial axis direction.
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The percentage of valid tracks is directly influenced by the home layout. For instance,
consider CHIRP002, where only 2% of the tracks are suitable for step length measurement.
The heatmap displaying all tracks in the home over a day is depicted in Figure 19a. It is
evident that the long, frequently used pathways are nearly perpendicular to the radar’s
radial axis. In contrast, the heatmap of tracks in CHIRP007’s home is more conducive to
step length measurement (Figure 19b); with extended pathways aligned along the radar’s
radial axis, nearly 50% of the tracks are suitable for step length measurement.

(a) CHIRP002. (b) CHIRP007.

Figure 19. Heatmap of tracks in each room outlines the commonly used pathways in the home.
CHIRP007’s home has many commonly used pathways that lines up with radar’s radial axis (illus-
trated in white dotted lines). CHIRP002’s home’s commonly used pathways do not line up with
radar’s radial axis.

10. Conclusions

This paper presents the first ever assessment of radar-based step length measurement
for frail older adults in both clinical and home settings, confirming the feasibility of obtain-
ing reliable and accurate step length measurements using radar sensors. Unlike existing
publications, the proposed approach for step length measurement was evaluated using
35 frail older adults in a clinical environment and 21 frail older adults in a home setting.
Clinic results demonstrate that radar-based step length measurement for frail older adults
is within 4.5 cm of the gold-standard Zeno Walkway gait analysis system and exhibits
strong intra-session reliability (ICC(2,k) = 0.83). In-home results indicates excellent week-
over-week reliability (ICC(2,k) = 0.91) and a strong consistency (ICC(3,k) = 0.81) between
in-home and in-clinic step length measurements. Both in-clinic and in-home results with
frail older adults validates the real-time in-home step length measurement.

Having established the validity of the proposed radar-based step length measurement
for frail older adults in a clinical setting, it becomes plausible to apply existing step length
cutoffs [5] to anticipate adverse clinical events. Nevertheless, our findings indicate that
while in-home step length is consistent with in-clinic measurements, it does not exhibit a
one-to-one relationship. Specifically, in-home step length measurements tend to be smaller
than those in a clinic setting. Consequently, the direct application of established step length
cutoffs derived from clinical testing [5] may not seamlessly translate to in-home step length
measurement. Instead, recognizing the high week-over-week reliability of the presented
approach in measuring step length in the home, changes in step length in the home can be
monitored for health risk assessment, as previously explored in [40].
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