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Abstract: In recent years, the development of image super-resolution (SR) has explored the capabilities
of convolutional neural networks (CNNs). The current research tends to use deeper CNNs to improve
performance. However, blindly increasing the depth of the network does not effectively enhance
its performance. Moreover, as the network depth increases, more issues arise during the training
process, requiring additional training techniques. In this paper, we propose a lightweight image
super-resolution reconstruction algorithm (SISR-RFDM) based on the residual feature distillation
mechanism (RFDM). Building upon residual blocks, we introduce spatial attention (SA) modules
to provide more informative cues for recovering high-frequency details such as image edges and
textures. Additionally, the output of each residual block is utilized as hierarchical features for global
feature fusion (GFF), enhancing inter-layer information flow and feature reuse. Finally, all these
features are fed into the reconstruction module to restore high-quality images. Experimental results
demonstrate that our proposed algorithm outperforms other comparative algorithms in terms of both
subjective visual effects and objective evaluation quality. The peak signal-to-noise ratio (PSNR) is
improved by 0.23 dB, and the structural similarity index (SSIM) reaches 0.9607.

Keywords: super-resolution; spatial attention; residual feature distillation; image processing; global
fusion

1. Introduction

Image super-resolution (SR) reconstruction refers to the process of recovering a high-
resolution (HR) image with more high-frequency information from one or multiple de-
graded low-resolution (LR) images. As an important means to improve image resolution,
it solves the problem of obtaining high-resolution images in practical situations due to
insufficient performance of acquisition devices or interference from external environments.
It has been widely applied in fields such as intelligent surveillance [1], medical imag-
ing [2], and target tracking [3]. However, the hardware devices for image acquisition have
limitations and are expensive [4]. In contrast, signal processing-based super-resolution
reconstruction algorithms are more flexible and cost-effective. There are two main cate-
gories of image super-resolution reconstruction algorithms: single-image super-resolution
(SISR) and multi-image super-resolution (MISR). This study focuses on SISR reconstruction
algorithms. However, SISR is a highly ill-posed inverse problem with a non-unique solution
space. This is because a significant amount of high-frequency information is lost during
the down-sampling process from the original image to obtain the LR image, resulting in
insufficient usable information for the recovery process.

To address this inverse problem, numerous super-resolution reconstruction methods
have been proposed. Currently, SISR (single-image super-resolution) algorithms can be
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broadly classified into three categories: interpolation methods [5–8], reconstruction meth-
ods [9–12], and learning-based approaches [13,14]. Interpolation-based methods utilize
surrounding pixel information to predict unknown pixels based on the assumption of
image continuity. Although easy to implement, these methods have limited linear model
fitting capabilities, often resulting in blurry edges, contours, and inadequate texture restora-
tion. Reconstruction-based methods primarily constrain the reconstruction results using
image prior information, improving the blurring effect. However, they introduce computa-
tional complexity and still provide suboptimal performance for complex-structured images.
Learning-based methods learn the mapping relationship between high- and low-resolution
images from samples. In recent years, deep learning-based approaches have demonstrated
remarkable achievements in the field of image super-resolution.

Despite the significant success achieved by CNN-based methods, most of them are
unsuitable for mobile devices. Furthermore, the majority of current algorithms blindly
increase the depth of the network, resulting in an excessive number of parameters and
increased training difficulty. With the popularity of mobile devices and the development of
edge computing, there is an increasing demand for efficient computation and processing in
resource-constrained environments. In this context, lightweight models can offer several im-
portant advantages: saving computational resources and energy consumption, accelerating
inference speed, reducing model storage space, and providing real-time edge intelligence.

To meet the aforementioned requirements, we propose a lightweight single-image
super-resolution reconstruction network based on the residual feature distillation mech-
anism, aiming to achieve superior SISR reconstruction results with minimal network
parameters and computational burden. The network is primarily composed of a residual
feature distillation block (RFDB). Within each RFDB, we design a novel feature distillation
method, mainly implemented by the residual feature distillation layer. Additionally, local
residual learning (LRL) is added to each residual block to facilitate capturing fine-grained
feature changes. Finally, a customized spatial attention module (SA) is added to the end
of the RFDB to provide more available information for recovering high-frequency details
such as image edges and textures. After multiple rounds of residual feature distillation,
global feature fusion (GFF) is performed to adaptively maintain hierarchical features at a
global scale.

In summary, the contributions of this paper can be summarized as follows:

1. We propose a single-image super-resolution network (SISR-RFDM) based on the
residual feature distillation mechanism. It achieves fast and accurate image super-
resolution, demonstrating competitive results with a moderate number of parameters
in the SISR task.

2. We design an attention module (SA) that focuses on spatial regions, treating areas
containing abundant information such as boundaries and textures differently. This
allows the network to concentrate more on these regions, providing more useful
information for image detail recovery.

3. We introduce the global feature fusion (GFF) structure, which globally fuses the output
features of each residual block. Using hierarchical feature fusion, we reduce feature
redundancy and enhance inter-layer information flow and feature reuse.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 presents the details of each module used in the proposed model. The experiment
results and analysis are discussed in Section 4, and conclusions are presented in Section 5.

2. Related Work
2.1. Single-Image Super-Resolution Based on Deep Learning

With the rapid development of deep learning, numerous methods based on convo-
lutional neural networks (CNNs) have become mainstream in SISR. Dong et al. [15] first
introduced the use of CNNs for image super-resolution reconstruction and proposed the
Super-Resolution Convolutional Neural Network (SRCNN), which utilizes three convolu-
tional layers to achieve a nonlinear mapping between LR and HR image pairs. However,
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the network is shallow, extracting only limited local features. Additionally, the entire
reconstruction process is performed in the HR space, as the network is trained on LR
images upsampled to the target size using bicubic interpolation [7]. This results in high
computational complexity and a slow training speed. To address this issue, Dong et al. [16]
proposed the Fast Super-Resolution Convolutional Neural Network (FSRCNN), which
directly takes LR images as inputs and uses deconvolution layers for upsampling at the end
of the network. This significantly reduces the computational complexity and accelerates the
network training speed, with a reconstruction time of only 1/38 compared with SRCNN.
Shi et al. [17] introduced an efficient Sub-Pixel Convolutional Neural Network (ESPCN),
which first convolves the input features to expand the feature channels to obtain r2 feature
maps. These maps are then rearranged along the channel axis to obtain feature maps
enlarged by a factor of r, greatly improving the reconstruction efficiency compared with
deconvolution layers. As a result, many current algorithms use sub-pixel convolutional
operations for upsampling.

As the network depth increases, the residual network (ResNet) proposed by He et al. [18]
mitigates the problem of gradient vanishing or explosion caused by the increase in convo-
lutional layers. Inspired by ResNet, Kim et al. [19] introduced a very deep super-resolution
reconstruction algorithm called VDSR. By simply stacking 20 convolutional layers and us-
ing skip connections, the algorithm not only learns high-frequency residuals layer by layer
but also accelerates network convergence, further improving the reconstruction perfor-
mance. Subsequently, even deeper models emerged. For example, Lim et al. [20] proposed
an enhanced deep super-resolution network (EDSR) that improved reconstruction per-
formance by removing batch normalization layers in each residual block and adding a
residual scaling layer to stabilize network training. However, excessively deep network
layers result in a large number of parameters and make it difficult to extract deep features.
To address this issue, Tai et al. [21] proposed a deep recursive residual network (DRRN)
that achieves parameter sharing through recursive learning of multiple residual units, effec-
tively controlling the number of network parameters. Nevertheless, increasing the number
of network layers leads to feature redundancy. Tong et al. [22] proposed a super-resolution
dense network (SRDenseNet) that alleviates feature redundancy by introducing dense skip
connections that concatenate all layers in the network, enabling low-level and high-level
feature reuse. Considering the interdependence and interaction of feature representations
between different channels, Zhang et al. [23] proposed a very deep residual attention net-
work (RCAN) that adaptively learns more useful channel features by introducing channel
attention mechanisms. However, it does not take into account the differences in importance
across different spatial positions. Features extracted by networks at different levels have
information with varying receptive field sizes. To fully utilize these hierarchical features,
Zhang et al. [24] proposed a dense residual network (RDN) that enhances information
transmission between layers by fusing the input and output features of each layer within
each residual dense block. However, this stacking-based local fusion method significantly
increases computation. Li et al. [25] designed a multi-scale feature fusion network (MSRN)
that extracts local features of different scales using convolutional kernels of different sizes.
The reconstructed HR image obtained with global feature fusion contains more texture
details but also slows down network operation.

In recent years, more and more research has focused on designing more efficient
lightweight models. Kong et al. [26] introduced a classifier into the original SR model
to classify the difficulty levels of restoring input image blocks into three categories: easy,
medium, and difficult complexity levels, corresponding to different complexity SR net-
works. Song et al. [27] pioneered the use of additive networks for image super-resolution
learning, avoiding a large number of multiplicative operations during the convolution
process, thus significantly reducing floating-point computations. Hui et al. [28] proposed
an Information Distillation Network (IDN), which captures features in the distillation
block (DBlock), merges some features with the input features, and then passes them to
the module’s tail through skip connections. Although this can reduce subsequent feature
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channels, network parameters, and computational complexity, the module only performs
single-time information distillation and cannot accurately distinguish the features to be
refined from the features that need to be transmitted across layers. Based on the IDN frame-
work, the research team proposed a fast and lightweight Information Multi-distillation
Network (IMDN) [29]. It gradually extracts hierarchical features within the Information
Multi-distillation Block (IMDB) and aggregates them based on the importance of candi-
date features using an adaptive pruning method. Building upon this, Cheng et al. [30]
introduced recursive cross-learning to enhance feature extraction, resulting in improved
performance. Inspired by ordinary differential equations, He et al. [31] developed the
OISR-RK2 network (ODE-inspired network design for single-image super-resolution) for
SR reconstruction. In the DID structure (a nested Dense In Dense structure), Li et al. [32]
proposed the fusion of feature information using nested dense structures. Gao et al. [33]
combined convolutional neural networks with Transformer and presented the lightweight
and efficient LB-Net (Lightweight Bimodal Network). Furthermore, Choi et al. [34], based
on the Transformer architecture, used a sliding window technique to expand the receptive
field, enabling the network to better restore degraded pixels. LatticeNet [35] adopted a
reverse sequential connection strategy for feature fusion across different receptive fields.
RFDN [36] applied residual feature distillation blocks, which are a variant of IMDB and
are more powerful and flexible. DLSR [37] introduced a differentiable neural architecture
search method to find more powerful fusion blocks based on RFDB.

It can be seen that feature fusion has played a crucial role in recent advancements.
However, the aforementioned feature fusion strategies suffer from significant memory
consumption since multiple relevant feature maps need to be stored in memory before ag-
gregation. To accelerate inference speed and reduce memory consumption, we optimize our
network backbone by designing a new residual feature distillation mechanism and enhance
the feature representation of the model by incorporating spatial attention mechanisms.

2.2. Attention Mechanism

Attention mechanisms in deep networks originated from studies on human visual
perception. Selective focus on specific portions of available information while disregard-
ing others is referred to as attention in cognitive science. Attention mechanisms were
initially applied in the visual domain in the 1990s and were subsequently reintroduced
by Mnih et al. [38] in the field of deep learning. They have garnered increasing attention
in computer vision in recent years. Human visual attention enables us to concentrate on
regions with high resolution or discernibility in images, even when low-resolution back-
grounds are present. Gradually, attention is dispersed across the entire image, enabling
information inference. In computer vision, attention mechanisms are crucial for deep
networks to learn the distribution patterns of key information, disregarding irrelevant
details and focusing more on the inherent characteristics of the data.

Attention mechanisms can be categorized as strong attention mechanisms and soft
attention mechanisms, with the latter being more commonly used. Soft attention mecha-
nisms consist of two types. The first type is spatial attention, which focuses on different
positions of the feature map with varying degrees of intensity. Mathematically, for a feature
map of size H × W × C, spatial attention is represented by a h × w matrix, where each
position’s value serves as a weight for the corresponding position in the original feature
map. Multiplying element-wise yields the attention-enhanced feature map. The second
type is channel attention, which operates primarily on channels. This attention mechanism
assigns different levels of attention to various image channels. Mathematically, for a feature
map of size H × W × C, channel attention is represented by a 1 × 1 × C matrix, with each
position corresponding to a weight for the respective channel in the original feature map.
Element-wise multiplication generates the attention-enhanced feature map. Low-frequency
and high-frequency information are distributed differently across spatial locations in an
image. Some regions, characterized by smooth textures, are relatively easy to restore, while
others contain high-frequency details such as edges and textures, making restoration more
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challenging. Therefore, incorporating attention mechanisms in SISR enables the network to
assign higher learning weights to regions containing high-frequency information during
the learning process.

3. Methods
3.1. Network Overview

We propose an adaptive single-image super-resolution reconstruction algorithm, called
SISR-RFDM (single-image super-resolution reconstruction algorithm based on the residual
feature distillation mechanism), which uses an end-to-end approach to learn the mapping
relationship between low-resolution and high-resolution images. The network consists of
three main modules: a shallow feature extraction module, a deep feature extraction module,
and a reconstruction module. The shallow feature extraction module uses a 3 × 3 convo-
lutional layer to extract shallow features from the input low-resolution image. The deep
feature extraction module consists of three cascaded RFDBs (residual feature distillation
blocks). The concatenation of RFDB modules facilitates the extraction of deep hierarchical
features. Within each RFDB, a multi-stage residual feature distillation mechanism is used
to further extract deep features. To address information loss during the training of deep
networks, the layered features outputted by the RFDBs are aggregated and dimensionally
reduced using a 1 × 1 convolutional layer. Finally, global feature fusion (GFF) is applied
to connect shallow and deep features to promote network convergence. Additionally, a
spatial attention module is applied before obtaining these layered features to focus more on
regions carrying high-frequency information. The reconstruction module comprises two
3 × 3 convolutional layers and a sub-pixel convolutional layer. At the end of the network,
the sub-pixel convolutional layer is used for upsampling, enlarging the aggregated features
to the target size, and improving the reconstruction efficiency of the model. The final output
is the reconstructed image. The specific network architecture is illustrated in Figure 1.
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Figure 1. The architecture of a single-image super-resolution network based on the residual feature
distillation mechanism.

3.2. Residual Feature Distillation Block

The designed RFDB is presented in Figure 2. To improve the quality of image recon-
struction and make the model more lightweight and efficient, we introduce a series of
lightweight and optimization strategies. Specifically, we incorporate the residual feature
distillation mechanism and spatial attention module on top of the regular deep convolution.

In detail, we first perform channel separation on the input Fi−1
RFDB and fuse all the

distilled features to obtain Fdistilled. Then, we calculate the spatial attention value MSA
using the designed spatial attention module (SA) and weigh the different spatial positions
of Fdistilled to obtain FSA. This allows for better utilization of the spatial information of
the input features, thereby further enhancing the accuracy and robustness of the model.
Additionally, to smoothly propagate the features from the previous layer to the next layer, a
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short skip connection is introduced. Finally, the output Fi
RFDB of the i-th RFDB is obtained

using residual learning, further optimizing the performance of the model. This process can
be represented as follows:

MSA = SA(Fdistilled) (1)

FSA = Fdistilled ⊗ MSA (2)

Fi
RFDB = FSA + Fdistilled + Fi−1

RFDB, i = 1, 2, 3 (3)
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By incorporating such lightweight and optimization strategies, we successfully re-
duced the complexity and parameter count of the model to a lower level while maintaining
high reconstruction quality and performance. This not only enhances the versatility of
the model but also makes it more suitable for a wide range of applications. Addition-
ally, in resource-constrained scenarios, where computational resources are limited, these
strategies allow for the model to be applied more effectively. The reduction in complexity
and parameter count enables faster computations and the efficient utilization of available
resources. Therefore, by introducing these lightweight and optimization strategies, we
not only improved the model’s performance but also expanded its applicability in various
practical settings.

3.2.1. Residual Feature Distillation Mechanism

In the Information Multi-level Distillation Network (IMDN), we found that the in-
formation distillation operation is achieved using a 3 × 3 convolution, which compresses
the feature channels at a fixed ratio. However, we discovered that using a 1 × 1 convolu-
tion to reduce the channels is more effective, as performed in many other CNN models.
Inspired by the information distillation mechanism (IDM), in this section, we introduce a
new residual feature distillation mechanism (RFDM).

As shown in Figure 2, we used a series of lightweight strategies to enhance the
computational efficiency of the model while simultaneously reducing the parameter count.
One of these strategies involves replacing the original 3 × 3 convolution operation on
the left with 1 × 1 convolutions, which effectively compress feature channels during
information distillation. This improvement significantly reduces the parameter count of
the model while maintaining high reconstruction quality. The convolution on the far right
still uses a 3 × 3 kernel, as it is located in the main body of the RFDB and needs to consider
the spatial context for better feature refinement. Furthermore, we proposed a new residual
feature distillation mechanism, utilizing two processing layers, namely, the distillation
layer (DL) and the refinement layer (RL), to distill and refine input features, respectively.
With this design, we can better utilize input features and further optimize the model’s
performance. With the implementation of these lightweight strategies, we successfully
improved the model’s computational efficiency and reduced its parameter count. This
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broadened the model’s potential applications and enhanced its performance, particularly
in resource-constrained scenarios.

Specifically, we first use a 3 × 3 convolutional layer to extract the input features for
subsequent distillation steps. For each distillation operation, we divide it into a distillation
layer (DL) and a refinement layer (RL) to process the previous features. The DL is responsi-
ble for generating distilled features, while the RL further refines the features. This results
in two parts of features, one preserved after the DL and the other sent to the next computa-
tional unit after the RL. Given the input feature Fi−1

RFDB, this process in the i-th RFDB can
be described as follows: first, input feature Fi−1

RFDB is passed through a 3 × 3 convolution
layer to obtain DL1 and RL1, which yield the first-level distilled feature Fdistilled_1 and the
feature to be refined, Fcoarse_1. Before Fcoarse_1 enters the next distillation unit, the feature to
be refined undergoes channel expansion using a 1 × 1 convolution (to match the channel
number of the input features) and further refinement of deep features using a residual
block containing two convolutional layers. Finally, these refined features are separately
passed through DL2 and RL2 to obtain the second-level distilled feature, Fdistilled_2, and
the feature to be further refined, Fcoarse_2. Similarly, third-level distilled feature Fdistilled_3
and the feature to be refined Fcoarse_3 can be obtained. It is worth noting that a direct 3 × 3
convolution is applied to Fcoarse_3 to obtain the fourth-level distilled feature Fdistilled_4. This
process can be expressed as

Fdistilled_1 = Conv1×1
{

LReLU
[
Conv3×3

(
Fi−1

RFDB

)]}
(4)

Fcoarse_1 = LReLU
[
Conv3×3

(
Fi−1

RFDB

)]
(5)

Fdistilled_2 = Conv1×1
{

Conv3×3[LReLU
{

Conv3×3[Conv1×1(Fcoarse_1)
]}]

+Conv1×1(Fcoarse_1)

}
(6)

Fcoarse_2 =

{
Conv3×3[LReLU

{
Conv3×3[Conv1×1(Fcoarse_1)

]}]
+Conv1×1(Fcoarse_1)

}
(7)

Fdistilled_3, Fcoarse_3 = DL3(Fcoarse_2), RL3(Fcoarse_2) (8)

Fdistilled_4 = Conv3×3(Fcoarse_3) (9)

In the above equation, DLj(•) represents the j-th layer of the distillation operation,
RLj(•) represents the j-th layer of the refinement operation, Conv1×1(•) denotes the convo-
lution operation with a 1 × 1 kernel, and Conv3×3(•) represents the convolution operation
with a 3 × 3 kernel.

Finally, all distilled features Fdistilled_1, Fdistilled_2, Fdistilled_3, and Fdistilled_4 are fused
along the channel dimension using a 1 × 1 convolution. This process can be described
as follows

Fdistilled =

{
W1×1

distilled × Concat(Fdistilled_1, Fdistilled_2, Fdistilled_3, Fdistilled_4)
+Bdistilled

}
(10)

3.2.2. Spatial Attention Mechanism

The distribution of low-frequency and high-frequency information in various spatial
positions of LR images does not align uniformly. Certain regions exhibit smoothness,
making them comparatively easier to restore, while others entail numerous high-frequency
details such as boundaries and textures, resulting in relatively challenging restoration.
Hence, it becomes imperative to differentiate these regions and prioritize attention on
areas carrying high-frequency information. Consequently, a spatial attention module, as
illustrated in Figure 3, is devised to concentrate on specific spatial regions.
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The spatial attention module first conducts average and standard deviation pooling
separately on feature Fdistilled along the channel axis

X(i, j) =
1
C

C

∑
c=1

Xc(i, j) (11)

σ(i, j) =

√√√√ 1
C

C

∑
c=1

[
Xc(i, j)− X(i, j)

]
(12)

In the above equation, X(i, j) represents the result of channel-wise average pooling at
spatial position (i, j); σ(i, j) represents the result of channel-wise standard deviation pooling
at spatial position (i, j); Xc(i, j) denotes the feature value at position (i, j) in channel c; and
C represents the total number of channels. The two pooling results are then concatenated
along the channel dimension, resulting in two sets of spatial feature descriptors, Favg and
Fstd. Next, a convolution layer (with a 5 × 5 kernel and stride of 1) is utilized to fuse the
feature values at different positions within the feature descriptors and compress them
into a single channel. Finally, the spatial attention map, MSA, is obtained by applying the
sigmoid activation function to normalize the output values between 0 and 1. These designs
contribute to the light weight of the model. Specifically, applying pooling operations to
the features reduces their dimensionality, thereby decreasing computational complexity.
Moreover, the use of convolutional kernels for feature fusion helps prevent an excessive
number of network parameters, further reducing the model size. Therefore, our SA module
enhances both the reconstruction effectiveness and computational efficiency of the model
while preserving its light-weight advantages. This process can be represented as follows

MSA = Sigmoid
{

Conv1×1
{

LReLU
{

Conv5×5[Concat
(

Favg, Fstd
)]}}}

(13)

In the above equation, Sigmoid(•) and LReLU(•) represent the activation functions
of sigmoid and Leaky ReLU, respectively. They are defined as

Sigmoid(x) =
1

1 + exp(−x)
(14)

LReLU(x) =
{

x, x ≥ 0
alpha ∗ x, x < 0, 0 < alpha < 1

(15)

In the Leaky ReLU activation function, we set the initial slope alpha to 0.05.

3.3. Loss Function

To minimize the reconstruction error, we optimize the network using a loss function.
There are various definitions of loss functions in the field of image super-resolution. We
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have considered the two most commonly used loss functions that are widely employed in
most algorithms. The first one is a mean squared error (MSE), which is defined as

lMSE =
1
N

N

∑
i=1

∥Ii − Îi∥
2
2 (16)

However, experiments conducted by Lim et al. [20] indicate that training with MSE
loss is not a good choice because it penalizes large errors more and tolerates small errors
better, resulting in over-smoothed images with a lack of high-frequency details. The second
one is mean absolute error (MAE), defined as

lMAE =
1
N

N

∑
i=1

∥Ii − Îi∥1 (17)

Compared with MSE loss, MAE loss exhibits higher reconstruction performance and
convergence. Therefore, we ultimately chose to optimize the model parameters using the
MAE loss function. The optimization objective can be formulated as

lMAE
(

IHR, ÎHR
)
=

1
N

N

∑
i=1

∥I(i)HR − Î(i)HR∥1 (18)

θ̂ = argmin
θ

lMAE
(

IHR, ÎHR
)

(19)

In the above equation, Î(i)HR and I(i)HR represent the reconstructed image and the corre-
sponding ground-truth high-resolution image for the i-th sample, respectively; N represents
the number of samples in the dataset; θ represents the parameters of the network that need
to be learned; and θ̂ represents the parameters of the network after iterative updates.

4. Experimental Results and Analysis
4.1. Datasets and Metrics

Regarding the training process, there are various datasets available for single-image
super-resolution. The most widely used ones are the 291-image set by Yang et al. [39] and
the Berkeley Segmentation Dataset [40]. However, these datasets do not provide enough
imagery to adequately train deep neural networks. Therefore, we opted to utilize the
publicly available DIV2K dataset [41]. The DIV2K dataset consists of 800 training images,
100 validation images, and 100 testing images, all of which are high-quality. Due to its
rich content, many SR models use DIV2K. For the testing phase, we evaluated our model’s
performance on four widely used benchmark datasets: Set5 [42], Set14 [43], BSD100 [40],
and Urban100 [44]. To assess the image reconstruction quality, we used the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM) [45] as objective evaluation
metrics. PSNR measures the pixel value error between the SR image and the corresponding
HR image based on mean squared error (MSE). It is measured in decibels (dB) and defined
as follows

CPSNR = 10•lg
(

x2
max

EMAE

)
= 20•lg

(
xmax√
EMAE

)
(20)

EMAE =
1
N

N

∑
i=1

∥xi − x̂i∥2 (21)

In the above equation, xi represents the pixel value at the i-th position in the HR image,
x̂i represents the pixel value at the i-th position in the SR image, N represents the total
number of pixels in the image, and xmax represents the maximum possible pixel value.
The PSNR solely focuses on pixel differences without taking into account human visual
perception. Therefore, we introduced the SSIM as a complementary evaluation metric. The
SSIM quantifies the similarity between the SR image and the HR image, considering factors
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such as brightness, contrast, and structural information. It ranges from 0 to 1 and is defined
as follows

SSSIM(x, x̂) =
(2µxµx̂ + c1)(σxx̂ + c2)(

µ2
x + µ2

x̂ + c1
)(

σ2
x + σ2

x̂ + c2
) (22)

In the above equation, x represents the HR image, x̂ represents the SR image, µx
and µx̂ denote the mean pixel values of the HR and SR images, σx and σx̂ represent the
standard deviations of the pixel values in the HR and SR images, and σxx̂ corresponds
to the covariance between the HR and SR images. To maintain stability, we set constants
c1 = (k1L)2, c2 = (k2L)2, and L to 255. Additionally, k1 and k2 are set to 0.01 and 0.03,
respectively. The values of CPSNR and SSSIM are calculated in the Y channel of the YCbCr
color space, which is derived from the RGB color space.

In addition to the PSNR and SSIM, we also introduced LPIPS (Learned Perceptual
Image Patch Similarity) and FID (Fréchet Inception Distance) as additional evaluation
metrics. LPIPS is a learned perceptual image patch similarity index that uses a pre-trained
deep neural network to measure the perceptual difference between two images. A lower
LPIPS value indicates a higher perceptual similarity between the SR (super-resolution)
image and the HR (high-resolution) image. On the other hand, FID is a metric used to
compare the similarity of two image distributions. It measures the difference between the
feature distributions of generated and real images using a pre-trained inception network. A
lower FID value indicates a higher distribution similarity between the SR and HR images.

By considering these evaluation metrics including the PSNR, SSIM, LPIPS, and FID,
we can comprehensively evaluate the performance of super-resolution models in image
reconstruction tasks.

4.2. Implementation Details

We randomly crop the LR images of size 48 × 48 from the DIV2K training set that
have been interpolated by bicubic interpolation. To avoid overfitting, we perform data
augmentation by randomly rotating the input image block by 90◦, 180◦, and 270◦, as well
as horizontally flipping it. During the training phase, we use the Adam algorithm [46]
to update the model parameters with the following settings β1 = 0.9, β2 = 0.999, and
ε = 10−8. We initialize a learning rate of 5 × 10−4 and train the model for 1000 epochs,
halving the learning rate every 200 epochs. We set the model width to 64, and each batch is
set to 8 inputs. The experimental conditions for our network include an 11th Gen Intel(R)
Core(TM) i7-11800H @2.30GHz CPU (Santa Clara, CA, USA), an NVIDIA GeForce RTX
3060 GPU (Santa Clara, CA, USA), the Windows 10 operating system, and the PyTorch 2.0.1
deep learning framework.

4.3. Ablation Study
4.3.1. Impact of the Residual Feature Distillation Module on the Network

To investigate the universal effectiveness of the RFDB module under different datasets
and magnification conditions, experiments were conducted on the Set5 test set with a
magnification factor of 2, the Set14 test set with a magnification factor of 3, and the BSD100
test set with a magnification factor of 4, while keeping other variables constant. The
maximum PSNR values of the models without the RFDB module structure and the original
network were compared, as shown in Figure 4.

The orange line in Figure 4 represents the PSNR value variation curve of the model us-
ing the RFDB module, while the blue-green line represents the PSNR value variation curve
of the model without the RFDB module. Although the model without the RFDB module
exhibited a fast convergence speed, it encountered overfitting as the training progressed,
whereas the model using the RFDB module did not experience such a phenomenon. The ex-
perimental results indicate that compared with the network without the RFDB module, the
network using the RFDB module demonstrated significant improvement in the maximum
PSNR values under different test sets and magnification factors, leading to a noticeable
enhancement in the overall performance of the network. Furthermore, the maximum SSIM
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values were also recorded simultaneously during the experiment for the three conditions,
and the comparative results revealed an enhancement in SSIM values for the network using
the RFDB module.
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4.3.2. Impact of Global Feature Fusion and Spatial Attention on the Network

To investigate the impact of the employed global feature fusion structure and spatial
attention module on the final reconstruction results, relevant ablation experiments were
conducted. Figure 5 illustrates the performance of the four models on the validation set
during the training process. Here, “Base” refers to the base module, “GFF” represents the
global feature fusion module, and “SA” represents the spatial attention module.
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From the figure, it can be observed that with an increase in the number of training
iterations, the corresponding PSNR (peak signal-to-noise ratio) values of the four models
steadily improve. The final experimental results demonstrate that GFF and SA can further
enhance the model’s performance, and coupling the use of SA and GFF maximizes the
effectiveness of the model. It is worth mentioning that during the initial training stage,
it is evident that the Base + GFF model achieves a leading advantage. This is mainly
because it uses the global feature fusion structure, which allows for the rapid transmis-
sion of low-frequency features in the image to the network’s end, thereby expediting the
reconstruction process.

Subsequently, the four obtained models were quantitatively analyzed on the Set5,
Set14, BSD100, and Urban100 test sets, as shown in Table 1.
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Table 1. Results of ablation experiments on GFF and SA (test set).

Scale Base GFF SA
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×4

√
× × 32.2029/0.8927 28.6432/0.7826 27.5460/0.7341 26.1329/0.7842√
×

√
32.2160/0.8943 28.6571/0.7840 27.5622/0.7357 26.1523/0.7858√ √

× 32.2190/0.8946 28.6590/0.7841 27.5631/0.7360 26.1541/0.7861√ √ √
32.2341/0.8958 28.6729/0.7843 27.5913/0.7362 26.1842/0.7864

Note: Bold is the best result. “
√

” indicates that the module has been added, and “×” indicates that the module
has not been added.

The results demonstrate that the inclusion of either GFF or SA on the Base module
leads to improvements in the PSNR values. However, the network achieves the best
performance when both modules are used together, exhibiting the most significant increase
in the PSNR value of approximately 0.08 dB. These quantitative analyses provide evidence
for the effectiveness of incorporating the global feature fusion module and the spatial
attention module.

4.4. Comparison with State-of-the-Art Methods

To evaluate the image reconstruction effectiveness of our algorithm in this study,
we compared it with other lightweight super-resolution (SR) methods, including Bicubic,
SRCNN [15], FSRCNN [16], ESPCN [18], VDSR [20], DRRN [22], IMDN [29], RFDN [36],
LBNet [33], NG-swin [34], and SwinIR-light [47]. Among them, the results of SRCNN,
FSRCNN, ESPCN, VDSR, and DRRN were obtained by retraining using the same training
data and techniques as our study. The results of IMDN, RFDN, LBNet, NG-swin, and
SwinIR-light were obtained by testing with pre-trained models provided officially.

4.4.1. Objective Quantitative Analysis

Table 2 presents the PSNR and SSIM values of the reconstructed images using our
proposed algorithm and the comparative algorithms on four benchmark datasets for ×2,
×3, and ×4 upscaling factors. Higher PSNR and SSIM values indicate better reconstruction
performance. The red text represents the best performance, while the blue text represents
the second-best performance.

By comparing the data in the table, it can be observed that our proposed algorithm
outperforms the other methods for most of the datasets, especially for scaling factors of
×3 and ×4. The PSNR values improved up to 0.14 dB compared with NG-swin, and
the highest SSIM value reached 0.9613. These experimental results demonstrate the sig-
nificant advantage and improved reconstruction performance of our algorithm in image
super-resolution.

Table 2. Average PSNR/SSIM for scale factor ×2, ×3, and ×4 on datasets Set5, Set14, BSD100, and
Urban100.

Algotithm Scale
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.69/0.9284 30.34/0.8675 29.57/0.8438 26.88/0.8438
SRCNN [13] ×2 36.31/0.9535 32.26/0.9053 31.13/0.8859 29.30/0.8939

FSRCNN [14] ×2 36.78/0.9561 32.57/0.9089 31.38/0.8894 29.74/0.9009
ESPCN [16] ×2 36.47/0.9544 32.32/0.9067 31.17/0.8867 29.21/0.8924
VDSR [18] ×2 37.16/0.9582 32.87/0.9126 31.75/0.8951 30.74/0.9146
DRRN [20] ×2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
IMDN [28] ×2 37.91/0.9594 33.59/0.9169 32.15/0.8987 32.12/0.9278
RFDN [30] ×2 38.05/0.9606 33.68/0.9184 32.25/0.9005 32.19/0.9283
LBNet [33] ×2 - - - -
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Table 2. Cont.

Algotithm Scale
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

NGswin [34] ×2 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324
SISR-RFDM (ours) ×2 38.11/0.9613 33.80/0.9193 32.26/0.9006 32.48/0.9317

Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
SRCNN [13] ×3 32.60/0.9088 29. 21/0.8198 28.30/0.7840 26.04/0.7955

FSRCNN [14] ×3 32.51/0.9054 29. 17/0.8181 28.24/0.7821 25.97/0.7917
ESPCN [16] ×3 32.56/0.9073 29. 19/0.8195 28.26/0.7834 25.98/0.7929
VDSR [18] ×3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRRN [20] ×3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
IMDN [28] ×3 34.32/0.9259 30.31/0.8409 29.07/0.8036 28.15/0.8510
RFDN [30] ×3 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525
LBNet [33] ×3 34.47/0.9277 30.38/0.8417 29.13/0.8061 28.42/0.8599

NGswin [34] ×3 34.52/0.9282 30.53/0.8456 29.19/0.8089 28.52/0.8603
SISR-RFDM (ours) ×3 34.55/0.9283 30.54/0.8463 29.20/0.8082 28.66/0.8624

Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
SRCNN [13] ×4 30.22/0.8597 27.40/0.7489 26.78/0.7074 24.29/0.7141

FSRCNN [14] ×4 30.44/0.8595 27.51/0.7507 26.85/0.7090 24.44/0.7188
ESPCN [16] ×4 30.25/0.8566 27.37/0.7487 26.77/0.7072 24.26/0.7114
VDSR [18] ×4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRRN [20] ×4 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638

SRDenseNet [21] ×4 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819
IMDN [28] ×4 32.21/0.8948 28.57/0.7803 27.54/0.7342 26.03/0.7829
RFDN [30] ×4 32.26/0.8960 28.63/0.7836 27.61/0.7380 26.22/0.7911
LBNet [33] ×4 32.29/0.8960 28.68/0.7832 27.62/0.7382 26.27/0.7906

NGswin [34] ×4 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963
SISR-RFDM (ours) ×4 32.43/0.8972 28.77/0.7858 27.69/0.7406 26.47/0.7980

Note: Red is the best result, while blue is the second-best result.

4.4.2. Comparison of Additional Performance Metrics

To further verify the effectiveness and superiority of our algorithm, we introduced
additional evaluation metrics LPIPS and FID. The LPIPS metric describes the perceptual
similarity between SR images and HR images, while the FID metric considers the global
feature distribution of the images. For different image distributions, smaller values of
these metrics indicate that the generated image distribution is closer to the real image
distribution, implying better image reconstruction quality. Table 3 presents the results of
our evaluation using these metrics on the test set, along with the parameter count and
average inference time for each algorithm, facilitating a comprehensive comparison.

Table 3. Comparison of LPIPS and FID among different algorithms (test set).

Method Parameters (M) LPIPS FID Time (s)

Bicubic - 0.602 56.89 0.005
SRCNN [15] 0.02 0.444 35.12 0.007

FSRCNN [16] 0.25 0.402 33.92 0.015
ESPCN [18] 0.17 0.376 32.84 0.004
VDSR [20] 0.66 0.362 31.92 0.027
DRRN [22] 1.98 0.341 30.72 0.077
IMDN [29] 0.63 0.315 29.67 0.027
RFDN [36] 2.27 0.307 28.89 0.086
LBNet [33] 11.8 0.298 28.41 0.161

NGswin [34] 4.45 0.297 28.38 0.049
SwinIR-light [47] 1.52 0.292 28.15 0.016

SISR-RFDM (ours) 0.77 0.281 27.38 0.017
Note: Bold is the best result.

From Table 3, we can see that our algorithm achieved outstanding results in all metrics,
demonstrating its effectiveness and superiority in the super-resolution task. Particularly
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noteworthy is that our algorithm still achieves the best performance, even with a relatively
small parameter count.

4.4.3. Subjective Visual Perception

Figures 6–8, respectively, illustrate the results of various algorithms (SRCNN, ESPCN,
VDSR, IMDN, RFDN, SISR-RFDM) for ×2, ×3, and ×4 image super-resolution (SR) re-
construction. Additionally, ground-truth high-resolution (HR) images are provided for
reference. To enable a more explicit comparison, we locally magnified the contents within
the rectangular boxes.

Figure 6. Image visual effects of different algorithms with scale factor ×2.
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From the figures, it is observable that the HR images obtained with Bicubic interpo-
lation appear blurry with poor visual quality. Compared with algorithms such as RFDN,
there is more severe distortion in the local details of the reconstructed images. In contrast,
our proposed algorithm effectively restores fine details such as edges and textures. For
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instance, as demonstrated in the reconstructed comparison figure within the rectangular
box for a magnification factor of ×3, our algorithm accurately recovers the shape of the
stripes, while RFDN reconstructs them in completely wrong directions. The experimental
results demonstrate that the proposed algorithm can better represent the HR feature space,
thereby recovering more high-frequency information in the reconstructed images and
bringing them closer to the original HR images.

Furthermore, based on the comparative analysis, it is evident that SISR-RFDM out-
performs the other algorithms in terms of the local texture restoration, color saturation,
sharpness, and contrast of the reconstructed images. This superior performance can be
attributed to the more robust feature representation capability of SISR-RFDM, enabling the
extraction of more complex features from the LR space.

4.5. Network Parameter Quantity Visualization

To construct a lightweight SR model, the parameters of the network are crucial. We
compared our approach with the contrastive algorithms on the test dataset using ×2
magnification as an example and conducted a comparison between the parameter quan-
tity and the PSNR correlation. Additionally, we performed a trade-off analysis between
performance and model size, and the results are visualized in Figure 9.
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From the figure, it is evident that our algorithm achieves comparable or superior
performance while having fewer parameters compared with the other existing techniques.
The experimental results demonstrate that SISR-RFDM achieves a better balance between
performance and model size.

4.6. Comparison with Transformer-Based Algorithms

Compared to CNNs, researchers have attempted to use Transformers to accomplish
the task of image super-resolution reconstruction, as demonstrated in LBNet, SwinIR,
NGswin, and other models. In this study, our algorithm is compared with these models in
terms of parameter quantity and performance metrics, as shown in Table 4, with the test
set being ×4 Set5.

In comparison with SwinIR, which has a parameter count of 11.8 M, SISR-RFDM
achieves a reduction of 93.31% in parameters while only experiencing a minimal decrease
of 0.88% in performance metrics. When compared with the models with fewer parameters,
i.e., SwinIR-light and NGswin, SISR-RFDM achieves reductions of 10.23% and 21% in the
parameter count, respectively, with corresponding changes in performance metrics of only
a 0.03% decrease and a 0.32% improvement. Compared with the model with the fewest
parameters, i.e., LBNet, SISR-RFDM sacrifices a small portion of the parameter count to
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achieve a significant improvement in performance metrics, striking a balance between the
parameter count and performance metrics.

Table 4. Comparison with Transformer-based algorithms.

Model Parameters (M) PSNR (dB) SSIM

LBNet [33] 0.72 32.29 0.8960
SwinIR [47] 11.80 32.72 0.9021

SwinIR-light [47] 0.88 32.44 0.8976
NGswin [34] 1.00 32.33 0.8963

SISR-RFDM (ours) 0.79 32.43 0.8972
Note: Bold is the best result.

5. Conclusions

To achieve a better balance between performance and complexity, we propose a
lightweight, single-image, super-resolution reconstruction algorithm called SISR-RFDM,
which is based on a residual feature distillation mechanism.

The proposed algorithm includes the following key components:
By employing an information distillation structure, the reconstruction of texture in

individual images is ensured. This structure aids in extracting and capturing finer and
more diverse texture information, thereby enhancing the quality of texture reconstruction
in images. Specifically, the distillation layer (DL) and refinement layer (RL) within the
information distillation structure allow for a progressive feature extraction process, focusing
the model’s learning task more on the reconstruction of image texture details. Additionally,
it effectively captures finer and more diverse texture information, enabling the model to
better understand the texture information present in the images and improving its ability
to reconstruct image texture. Moreover, the exchange of information between the DL and
RL layers accelerates the convergence speed of the model and helps to mitigate issues such
as gradient vanishing or explosion.

By incorporating the global feature fusion (GFF) structure, our algorithm is capable of
enhancing performance while maintaining lightweight characteristics. Specifically, the GFF
structure enhances the flow of inter-layer information and promotes feature reuse, resulting
in a reduction in network parameters and computational complexity. This is achieved
by fusing features from different hierarchical levels, enabling the network to capture
information at various scales more effectively while avoiding the excessive computational
overhead associated with traditional multi-scale processing approaches. Therefore, with
the integration of the GFF structure, our algorithm achieves light weight by extracting
image texture details more efficiently while maintaining low computational requirements.

By incorporating a spatial attention (SA) module, it is possible to reduce the number
of parameters while retaining crucial spatial information. Specifically, the following en-
hancements are achieved: Dimension reduction of features: The spatial attention module
performs average pooling and standard deviation pooling on the features, extracting the
mean and standard deviation of the features, respectively. As these operations are carried
out along the channel axis, they lead to a reduction in the feature dimensions. By reducing
the feature dimensions, the quantity of model parameters can be significantly decreased,
thus achieving light-weighting. Parameter compression: by utilizing a single convolutional
layer, features from different positions in the feature descriptor are fused and compressed
into a single channel. This compression operation reduces the number of parameters
in the model, thereby decreasing the model’s storage requirements and computational
complexity and further achieving lightweight. Preservation of spatial information: before
feature fusion, the spatial attention module combines the two sets of spatial feature de-
scriptors obtained from average pooling and standard deviation pooling using channel
concatenation. This preserves the spatial information of the features, aiding the model
in better comprehending and utilizing the spatial structure within the image. As a result,
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the algorithm maintains high performance while being more efficient and applicable in
resource-constrained environments.

Objective quantitative analysis and subjective visual comparisons demonstrate that
our proposed algorithm achieves superior results in terms of both subjective visual quality
and objective quantification while maintaining relatively low computational complexity
compared with the other existing algorithms.

However, this still cannot meet the requirements of practical applications. In future
work, we will continue our research in the direction of lightweight models. Additionally,
the proposed algorithm only focuses on the super-resolution reconstruction of simple
images and does not consider the influence of noise and blur. In future work, we will
also explore how to further improve the robustness of the network model in complex
application scenarios that involve unknown noise and unknown blur.
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