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Abstract: Federated learning (FL) is a machine learning (ML) technique that enables collaborative
model training without sharing raw data, making it ideal for Internet of Things (IoT) applica-
tions where data are distributed across devices and privacy is a concern. Wireless Sensor Net-
works (WSNs) play a crucial role in IoT systems by collecting data from the physical environment.
This paper presents a comprehensive survey of the integration of FL, IoT, and WSNs. It covers
FL basics, strategies, and types and discusses the integration of FL, IoT, and WSNs in various do-
mains. The paper addresses challenges related to heterogeneity in FL and summarizes state-of-the-art
research in this area. It also explores security and privacy considerations and performance evaluation
methodologies. The paper outlines the latest achievements and potential research directions in FL,
IoT, and WSNs and emphasizes the significance of the surveyed topics within the context of current
technological advancements.

Keywords: Internet of Things; wireless sensor networks; federated learning; heterogeneity; machine
learning; security and privacy; energy efficiency

1. Introduction

The growing data generated by billions of connected IoT devices are causing challenges
in traditional machine learning (ML) approaches. Centralised approaches, like those used
by major tech companies such as Facebook and Google, can potentially compromise user
privacy by sending personal data to a central data centre. However, FL can train models
without sharing data but may face unique challenges in communication, computation,
privacy, storage, power, and energy utilisation. The IoT paradigm is effective in managing
these challenges, but it also raises issues including network attacks, data theft, and energy
consumption. The rise in wireless communication technology has significantly increased
the need for intelligent computing, leading to extensive research on network learning using
artificial intelligence algorithms [1].

Recent advances in deep learning (DL) and ML in particular have brought about a
radical shift in our relationship with modern digital devices. Even a few years ago, we
would never have imagined that deep learning applications would lead to the creation of
virtual assistants such as Alexa, Siri, and Google Assistant, or that self-driving cars would
be a reality. But today, these innovations are a regular part of our existence. Massive training
infrastructures and training data sets must be readily available for this to be successful in
large part. However, as ML users and service providers become more aware of the privacy
consequences of this data-hungry process, government regulators and service providers
have developed several initiatives to safeguard citizens’ privacy. Aside from the privacy
implications, with regard to data locality, data must be processed at the original location
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of collection and storage due to energy efficiency and climate change considerations.
This is evolving into a key element of ML. FL is a rapidly developing field of ML that
enables model training without transferring data from users’ devices. This approach has the
potential to overcome these challenges. On the other hand, FL moves the computation to
the clients’ devices so that multiple users can collaborate on training a single model, and it
has long been thought that computation should be moved to a dispersed edge device [2].

The integration of billions of IoT and WSN devices has led to a significant increase
in their usage. These devices, such as robots, drones, and smartphones, have limited
computational and storage capacities but can communicate with distant entities through
wide-area networks (WAN). As a result, the amount of data produced by these devices at the
network edge is growing exponentially. However, due to bandwidth and privacy concerns,
it is not practical to send all this data to the server. Many IoT and WSN applications
require data prediction and classification, which necessitates training ML models using
data from multiple devices. The challenge is how to use decentralised data from resource-
constrained IoT devices to train ML models without transferring raw data between client
devices. To address this challenge, FL has gained much attention, which is a method that
allows learning to occur without transferring raw data. FL enables each device to gain a
global perspective and predict events observed by other devices. However, implementing
FL in the presence of heterogeneity poses difficulties. To overcome these difficulties,
an FL framework is proposed that considers heterogeneous edge clients. This framework
utilises a soft-training optimisation method that dynamically masks neurons based on
model updates. Additionally, an aggregation scheme is suggested to expedite collaborative
convergence and address issues with straggler clients. However, there is a lack of thorough
analysis of FL problems and challenges in the context of heterogeneity and integration
with WSNs and IoT. In order to implement FL on heterogeneous systems and integrate it
with IoT and WSNs, it is crucial to analyse the fundamental problems, viable solutions,
and future directions [3].

We believe that there is a gap in the literature regarding the architecture and systems
of the IoT, WSNs, and FL that are already implemented and that motivate developers to
create solutions that combine all three. This paper offers several notable contributions
compared to previous surveys:

1. We conduct a comprehensive analysis of the integration of IoT, WSNs, and FL from
various angles, such as system components, classification, and design.

2. We introduce a refined taxonomy to deal with heterogeneity in five different di-
mensions: statistical heterogeneity, device heterogeneity, architectural heterogeneity,
model heterogeneity, and network and communication heterogeneity. This new taxon-
omy will help understand the current state-of-the-art in heterogeneous FL methods.

3. We discuss the heterogeneity issues that are essential for successful FL and thoroughly
examine each case.

4. We review existing studies in different domains to provide a handy reference for
researchers and developers.

5. We perform a complete analysis of security and privacy issues.
6. We suggest performance evaluation methods that use various metrics to assess system

performance, such as latency, energy consumption, scalability, accuracy, and commu-
nication overhead.

7. We identify important research topics and challenges for future FL generations.

This paper is organised as follows. Besides the introduction, we sketch an overview of
FL, which includes the basic knowledge, principles, and categories of FL based on strategies
and types in Section 2. In Section 3, we present the integration of FL, IoT, and WSNs as well
as discuss IoT, WSNs, and the opportunities and challenges of implementing FL in IoT and
WSNs. Also, the realistic applications that integrate all three applications were discussed
in various domains, including healthcare, smart cities, agriculture, industrial automation,
and environmental monitoring. Additionally, we have addressed the integration of FL with
sixth generation (6G) and digital twins. In Section 4, we discuss heterogeneity challenges
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in FL based on statistical heterogeneity, device heterogeneity, architectural heterogeneity,
model heterogeneity, and network and communication heterogeneity, with a brief summary
of the state-of-the-art research in heterogeneity. In Section 5, we point out security and
privacy considerations in relation to threats and vulnerabilities and techniques for ensuring
data confidentiality, integrity, and availability. We also draw conclusions on the use of
current privacy-preserving measures and indirect information leaking in FL. In Section 6,
we present the performance evaluation methodologies which help to assessing the effec-
tiveness and efficiency of the integrated system involving the use of various metrics to
measure system performance, including latency, energy consumption, scalability, accuracy,
and communication overhead. In order to provide direction for future study, some frontier
achievements are provided as the future research directions in Section 7. These discussions
are centered around several promising FL, IoT, and WSN directions. Finally, Section 8
concludes the paper.

2. A Basic Knowledge of FL

In this section, we discussed how FL originated, how it works, and its classification
based on different categories.

2.1. Background

The Google research team was the first to introduce FL. Their goal was to develop
ML models that could be applied to the vast amounts of data that are available on mobile
devices. FL was created to allow users to maintain control over their data and privacy.
The device itself can be used to directly train the ML models in FL. The approach of
applying the model to the data may be more appropriate in many cases, since the data
may be sensitive and large in quantity. FL is the term coined to describe this decentralised
method combined with collaborative learning [4].

Within the field of artificial intelligence, FL has grown quickly and gained promi-
nence as a research area. Three important elements are responsible for this development.
First and foremost, the widespread and effective use of ML technologies has facilitated the
development of FL. Furthermore, the massive growth of big data has driven the demand for
FL. Learning a global model while managing privacy concerns has become more difficult
as large amounts of data are being stored on distinct devices by different organisations.
FL is a growing alternative to traditional ML techniques, which are losing their effectiveness.
Legislative constraints on data privacy have significantly benefited FL’s quick development.
A major risk to user data privacy has emerged in the form of multiple data breaches in
recent years. Several legislative laws have been created to address this, including the
California Privacy Rights Act in the United States, the Singapore Personal Data Protection
Act in Singapore, and the General Data Protection Regulation in the European Union.
Particularly for privacy-preserving FL (PPFL), these regulations have significantly aided in
the development of FL [5].

2.2. Brief Introduction to FL

A decentralised ML approach called FL allows a group of edge devices or nodes to
collectively train a common model. With FL, the model can be trained locally on any device
using local data instead of sending massive amounts of raw data to a central server for
training, as shown in Figure 1. Only the model updates are sent back to the central server,
ensuring privacy and reducing communication costs. FL is particularly useful in scenarios
where data privacy is crucial or where there are limitations in terms of network bandwidth
or latency [4,6–8].
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Figure 1. Federated learning concept and workflow.

In a FL system, the main participants are the clients that handle their local datasets,
and the server that oversees the training process and updates the global model without
accessing the client datasets. The model trained on each individual client is called the
local model, while the model aggregated by the FL server is called the global model [5,9].
FL operates in the following manner:

Step 1. A central server initialises a baseline model weight M0
W and distributes it to the

clients.
Step 2. Each client x trains the model Mk

x in round k on its own local data and com-
putes the model updates (such as the gradients or the weights). Obtaining the
ideal local model parameters Wk∗

x that decrease the loss function ls f
(

Mk
x

)
, where

Mk∗
x = arg min ls f

(
Mk

x

)
, is the aim of the client x in round k.

Step 3. The clients send their model updates to the server.
Step 4. The server aggregates the model updates from the clients using some algorithm

such as averaging ls f
(

Mk+1
W

)
= 1

N ∑N
x=1 ls f

(
Wk

x

)
, where N is the number of clients

and updates the global model.
Step 5. The server sends the updated global model Mk+1

W back to the clients and repeats
the process until convergence.

Examples of well-known FL algorithms are Federated Averaging (FedAvg), Federated
Stochastic Gradient Descent (FedSGD), and FL with Dynamic Regularization (FedDyn).
Additionally, a FL framework called FedCV was specifically created for computer vision
applications, bridging the gap between research and practical application. It offers a unified
library with a range of easy-to-use functionalities. FedCV has practical applications in the
manufacturing, transportation, and healthcare sectors [10–13]. The detailed description
and working principles of the FedAvg, FedSgD, and FedDyn are presented as follows:

The FedAvg algorithm is designed for distributed training with a large number of
clients. Each client maintains its data locally to ensure privacy, while a central parameter
server facilitates communication. The server distributes parameters to clients and collects
model updates, requiring frequent communication between the server and clients as
outlined in Algorithm 1 [5,9]. The algorithm in [5] works as follows: The input parameters
are R (the maximum number of rounds), m (the number of clients selected in each round),



Sensors 2024, 24, 968 5 of 48

Nepoch (the number of local epochs), η (the local learning rate), and w0
G (the initial global

model parameters). R determines how many times the global model is updated by the
server, m controls how many clients participate in the FL process, Nepoch specifies how
many times each client iterates over its local dataset, η regulates how much the client model
parameters are updated based on the local gradient, and w0

G is randomly initialised in a
suitable range. Then it iterates for R rounds, where each round consists of the following
steps. The server randomly selects a subset of m clients from the network and broadcasts
the current global model parameters wt

G to them. Each selected client i performs the
following operations in parallel: It divides its local dataset Di into batches and denotes the
set of the batches by Bi. It performs Nepoch local epochs, where in each epoch it iterates
over all the batches in Bi, and updates its model parameters w by taking a step in the
direction of the negative gradient of the loss function L(w; b) evaluated on each batch b.
It returns the updated model parameters wt

i and the size of its local dataset Ni to the server.
The server collects the model parameters and the dataset sizes from all the selected clients
and computes the weighted average of the model parameters as the new global model
parameters wt+1

G , where the weights are proportional to the dataset sizes.The algorithm
outputs the final global model parameters wG after R communication rounds.

Algorithm 1: FedAvg Algorithm [5]

1 Input:
2 R : Maximum number of rounds.
3 m : the number of clients selected in each round.
4 Nepoch : the number of local epochs.
5 η : the local learning rate.
6 Output: Global model wG
7 Processing:
8 [Server-side]
9 Initialize w0

G
10 for each round t from 1 to R do
11 St contains m clients randomly selected from the n clients
12 for each client i ∈ St in parallel do
13 wt

i , Ni ← LocalTraining
(
i, wt

G
)

14 end
15 wt+1

G = 1
∑m

j=1 Nj
∑m

i=1 Niwt
i [5]

16 end
17 [Client-side]
18 LocalTraining (i, w) :
19 Divide local dataset Di into batches; Bi denotes the set of the batches.
20 for each epoch j from 1 to Nepoch do

21 for each batch b ∈ Bi do
22 w← w− η∇L(w; b)
23 end
24 end
25 return the weights w and Ni = |Di|

Federated Stochastic Gradient Descent (FedSGD) is a distributed optimisation tech-
nique that trains a ML model on multiple local datasets without sharing data samples.
The main idea is to perform stochastic gradient descent (SGD) on each local node using
its own dataset, and then periodically average the model parameters across all nodes as
depicted in Algorithm 2 to obtain a global model. FedSGD can handle heterogeneous and
non-IID data, as well as unreliable and resource-limited nodes [14]. The algorithm in [15]
shows that running SGD in a federated setting can be viewed as adding a momentum-like
term to the global aggregation process, and analyses the convergence rate of the algorithm
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by accounting for the effects of parameter staleness and communication resources. The al-
gorithm works as follows. The input parameters are H (the number of local steps per
communication round), η (the step size for SGD), and w0 (the initial global model parame-
ters). H determines how many times each client updates its local gradient estimation based
on a randomly sampled data point from its own dataset; η controls how much the global
model parameters are updated in each round based on the aggregated gradient from all
clients; and w0, which are randomly initialised in a suitable range. The algorithm iterates
for T rounds, where each round consists of the following steps: The server randomly selects
a St of N clients and broadcasts the global parameter wt to them. Each selected client k per-
forms the following operations in parallel: It initialises its local gradient estimation gt,0

k = 0;
It performs H local steps, where in each step it samples a data point (xi, yi) uniformly at
random from its own dataset Dk, where Dk is the local dataset of client k; and updates
its local gradient estimation gt,s

k by adding the gradient of the loss function ∇ℓ
(
wt; xi, yi

)
evaluated at the current global model parameters wt and it sets its final local gradient to
the average of its local gradient estimations over the H steps

(
gt

k = gt,H
k /H

)
, and sends it

back to the server. The server collects the local gradients from all the selected clients and
assigns the previous local gradient gt−1

j to the unselected clients j. The server updates the

estimation of the gradient gt = ∑K
k=1

nk
n gt

k, where nk is the size of the local dataset of client
k and n is the total number of data points. Also, the server updates the global model wt+1

by taking a step in the direction of the negative aggregated gradient, scaled by the step size
η : wt+1 = wt − ηgt. The algorithm outputs the final global model parameters WT after
T rounds.

Algorithm 2: Federated SGD Algorithm [15]

1 Input:
2 H : number of local steps per communication round.
3 η : step size for stochastic gradient descent.
4 Initialize: w0 ∈ Rd

5 for t = 0, 1, 2, . . . , T − 1 do
6 The server randomly selects a set St of N clients and broadcasts the global

parameter wt to them
7 for each client k ∈ St in parallel do
8 Initialize gt,0

k = 0
9 for s = 0 to H − 1 do

10 Sample i ∈ Dk uniformly at random, and update the local estimation of
the gradient, gt,s

k , as follows:
11 gt,s+1

k = gt,s
k +∇ℓ

(
wt; xi, yi

)
[15]

12 end
13 Set gt

k = gt,H
k /H and send the parameter back to the server

14 end
15 The server collects all the updates of

{
gt

i
}

i∈St
and assigns gt

j = gt−1
j for all

j ̸= St.
16 Then, the server updates both the estimation of gradient gt and parameter

wt+1 as follows:
17 gt = ∑K

k=1
nk
n gt

k,
18 wt+1 = wt − ηgt

19 end
20 Output: wT

FL with Dynamic Regularization (FedDyn) is a novel FL method that trains a neural
network model on multiple local datasets without sharing data samples. The main idea
is to introduce a dynamic regulariser for each local node at each round so that the local
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and global solutions are aligned in the limit. FedDyn can handle heterogeneous and
non-IID data, as well as unreliable and resource-limited nodes. The procedure of FedDyn
is shown in Algorithm 3, and it works as follows: The input parameters are: T (total
number of rounds), which determines how many times the global model is updated by the
server; θ0 (the initial global model parameters), which are randomly initialised in a suitable
range; α > 0 (the regularisation parameter), which controls the trade-off between the local
and global objectives; and ∇Lk

(
θ0

k

)
= 0 (the initial gradient at each client), which is set to

zero. The parameters of the neural network, denoted as θ, are anticipated to be identical
for both the client and the server. All client devices are denoted by k ∈ [m]. The server
randomly samples a subset of m clients from the network and transmits the current global
model parameters θt−1 to them. Each selected client k performs the following operations
in parallel: It minimises its local objective function Lk(θ) with a dynamic regulariser that
depends on the previous gradient ∇Lk

(
θt−1

k

)
and the previous global model parameters

θt−1, and obtains the updated model parameters θt
k. It updates its gradient ∇Lk

(
θt

k
)

by
subtracting a term proportional to the difference between the updated model parameters θt

k
and the previous global model parameters θt−1. It transmits its updated model parameters
θt

k to the server. For each unselected client k, the server sets its model parameters θt
k

and gradient ∇Lk
(
θt

k
)

to be the same as the previous round. The next two steps are to
update the server’s auxiliary variable ht based on the difference between the aggregated
selected client models and the previous global model, and then update the global model θt

using a combination of the average of the selected client models and the auxiliary variable.
The algorithm continues this process for T rounds, adapting the regularisation dynamically
and aggregating information from selected clients in each round.The final global model
parameters, θt, will be output by the algorithm at completion of T rounds.

FedDyn combines elements of FL, dynamic regularisation, and model aggregation to
collaboratively train a global model across the decentralised set of clients. The dynamic
regularisation allows the model to adapt to local variations, and the aggregation process
ensures collaborative learning while addressing staleness in the model updates. FedDyn
addresses the challenge of achieving convergence in a neural network with identical
structures across multiple clients and a central server. The proposed FedDyn in [16] method
operates in rounds, where a subset of active clients receives the server’s current model and
optimises a local empirical risk objective. This objective includes the local empirical loss
and a dynamically updated penalised risk function based on both the local client model
and the received server model. The local models are updated according to a minimisation
process involving the penalised risk function. The key insight is that stationary points
for client losses may not align with global losses due to data heterogeneity among clients.
The method aims to reconcile the dual objectives of model convergence to a consensus and
local updates optimising empirical losses, providing an intuitive justification for its design.

In conclusion, the FedAvg, FedSGD, and FeDyn algorithms are examples of FL tech-
niques that enable multiple IoT devices to collaboratively train a shared model without
sharing their raw data. FL is a distributed machine learning approach that allows each
device to perform on-device training based on its local data and then communicate the
model updates to a central server or other devices. In this way, FL can preserve the privacy
of the data and reduce communication overhead and latency.

Some of the challenges of implementing FL on IoT devices are resource constraints,
trust issues, and convergence problems. Different FL algorithms have different strategies to
address these challenges. For example, FedAvg is a simple and widely used FL algorithm
that runs a number of SGD steps on a small subset of devices and then averages the
resulting model updates via a central server. FedSGD is a variant of FedAvg that reduces
the communication frequency by sending the model updates after each SGD step. FeDyn is
an FL algorithm that uses a trust mechanism and a reinforcement learning-based selection
strategy to choose the devices that participate in the training process.
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Algorithm 3: FedDyn Algorithm [16]

1 Input:
2 T : Total number of rounds.
3 Initialize:
4 θ0 : Initial global model parameters.
5 α > 0 : Regularization parameter.

6 ∇Lk

(
θ0

k

)
= 0 : Initial gradient at each client.

7 for t = 1, 2, . . . T do
8 Sample clients Pt ⊆ [m] and transmit θt−1 to each selected client,
9 for each client k ∈ Pt in parallel do

10 Set θt
k = argmin

θ

Lk(θ)−
〈
∇Lk

(
θt−1

k

)
, θ
〉
+ α

2

∥∥∥θ− θt−1
∥∥∥2

[16]

11 Set ∇Lk
(
θt

k
)
= ∇Lk

(
θt−1

k

)
− α

(
θt

k − θt−1
)

12 Transmit client model θt
k to server

13 end
14 for each client k /∈ Pt, and in parallel do
15 Set θt

k = θt−1
k ,∇Lk

(
θt

k
)
= ∇Lk

(
θt−1

k

)
16 end

17 Set ht = ht−1 − α 1
m

(
∑k∈Pt θt

k − θt−1
)

Set θt =
(

1
|Pt | ∑k∈Pt θt

k

)
− 1

α ht

18 end

2.3. Basic Principles of FL

The primary goal FL is to leverage the collective intelligence of the edge devices
without compromising user privacy or requiring data transfer to a central server [6,8,17].
The basic principles of FL can be summarised as follows.

2.3.1. Model Aggregation

In FL, each edge device trains a local model using its own local dataset.
These local models are then aggregated to create a global model that represents the knowl-
edge learned from all participating devices. Model aggregation can be performed using
various techniques such as averaging, weighted averaging, or more advanced methods
such as secure multi-party computation (SMC) or homomorphic encryption [18,19].

2.3.2. Privacy Preservation

One key advantage of FL is its ability to preserve user privacy by keeping the data
on edge devices. Instead of sending raw data to a central server, only model updates or
gradients are exchanged during the training process. This ensures that sensitive information
remains on the device and reduces the risk of data breaches or unauthorised access [20–22].

2.3.3. Communication Protocol

FL requires efficient communication protocols to exchange model updates between
edge devices and the central server to minimise communication overhead and not to incur
excessive delays in training. These protocols should be designed to minimise commu-
nication overhead while ensuring security and reliability. Commonly used communica-
tion protocols in FL include Secure Socket Layer (SSL), Transport Layer Security (TLS),
and lightweight protocols like Message Queuing Telemetry Transport (MQTT) [23].
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2.4. Categorisations of FL

There are different ways to categorise FL based on various criteria, such as the data dis-
tribution, the communication protocol, the learning objective, and the privacy level. In this
paper, we presented categories of FL based on strategies, client settings, and data partition.

2.4.1. Based on Strategies of FL

The three main strategies to perform FL are centralised aggregation-based FL, distributed
aggregation-based FL, and hierarchical aggregation-based FL, as discussed below [13].

Centralised Aggregation-Based FL

Centralised aggregation-based FL is a type of FL that uses a centralised server to
aggregate the local models from multiple clients, as shown in Figure 2. The server sends
the global model to all or a subset of clients in each round, and the clients update the
model locally using stochastic gradient descent (SGD) or other optimisation methods.
Then, the clients send their updated models back to the server, and the server aggregates
them to obtain a new global model. This process is repeated until convergence or a
predefined criterion is met. Centralised aggregation-based FL has some advantages over
traditional centralised ML, such as reducing communication overhead, enhancing data
privacy, and enabling distributed learning on heterogeneous devices [24–27]. However, it
also faces some challenges, as follows:

1. The need for a reliable and secure server that can coordinate communication and
aggregation among clients.

2. The vulnerability to malicious attacks or faulty clients that can compromise the global
model or the aggregation process.

3. The difficulty of dealing with data heterogeneity and non-IIDness across clients can
affect the convergence and accuracy of the global model.

4. The trade-off between communication efficiency and model performance which de-
pends on the frequency and size of model updates.

Dataset

Train

Local Model

Client 1

Dataset

Train

Local Model

Client N

Server

Global model

...

Figure 2. Centralised aggregation-based FL.

Distributed Aggregation-Based FL

Distributed aggregation-based FL is a type of FL that does not rely on a centralised
server to aggregate the local models from multiple clients as depicted in Figure 3. The fun-
damental concept is to divide the clients into groups and assign each group an aggregator
that is responsible for collecting and aggregating the local models of the clients in that
group. Then, the group aggregators communicate with each other in a peer-to-peer fashion
to exchange and aggregate their models. The group aggregators then broadcast their aggre-
gated models to the clients in their groups. This process is repeated until the global model
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converges. Distributed Aggregation-Based FL can achieve higher scalability, robustness,
and privacy than centralised aggregation-based FL, as it eliminates the single point of
failure and the bottleneck of communication [28–31]. However, it also introduces new
challenges, such as:

1. There is a need for a reliable and secure distributed protocol that can coordinate
communication and aggregation among clients.

2. Vulnerability to malicious attacks or faulty clients that can compromise the distributed
protocol or the aggregation process.

3. The difficulty of dealing with data heterogeneity and non-IIDness across clients can
affect the convergence and accuracy of the distributed model.

4. The trade-off between communication efficiency and model performance depends on
the frequency and size of model updates.

Dataset

Train

Local Model

...
Client 1-1

Dataset

Train

Local Model

Client 1-N

Server 1

Global model

Dataset

Train

Local Model

Client N-1

Dataset

Train

Local Model

Client N-N

Server N

Global model

Model
sharing

...

Figure 3. Distributed aggregation-based FL.

Hierarchical Aggregation-Based FL

Hierarchical aggregation-based FL is a type of FL that leverages a hierarchical structure
to aggregate the local models from multiple clients as shown in Figure 4. In hierarchical
aggregation-based FL, there are multiple levels of aggregation, such as client–edge–global,
where the clients communicate with the edge servers, and the edge servers communicate
with the global server. The basic idea is to divide the clients into clusters and assign
each cluster an aggregator that is responsible for collecting and aggregating the local
models of the clients in that cluster. Then, the edge aggregators send their aggregated
models to a global aggregator, which further aggregates them to obtain the global model.
The global aggregator then broadcasts the global model to the edge aggregators, which in
turn distribute it to the clients in their clusters. This process is repeated until the global
model converges. Such an approach can reduce the communication overhead and latency,
as well as improve the scalability and robustness of the system [28,32,33]. The basic steps
of hierarchical aggregation-based FL are as follows:

1. The global server initialises a global model and sends it to a subset of edge servers
that are selected randomly.

2. Each edge server updates the model locally by aggregating the models from a subset
of clients that are connected to it.

3. Each edge server sends its updated model back to the global server.
4. The global server aggregates the received models, for example, by taking their

weighted average, where the weights are proportional to the number of data points
on each edge server.

5. The global server updates the global model with the aggregated model and repeats
from step 1 until convergence.
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Figure 4. Hierarchical aggregation-based FL.

2.4.2. Based on Clients Setting

There are two different types of FL systems depending on the clients setting/scale
of federation.

Cross-Silo FL Model

When there are fewer participating devices that are available for every round, cross-
silo FL is employed. Both vertical and horizontal FL formats are possible for the training
set. Cross-silo is primarily utilised in situations involving organisations or data centres as
shown in Figure 5.

Global Server: This server is responsible for coordinating the training process and
aggregating the results from the different clients. Model 1 to Model N clients: These are the
different organisations that are participating in the training process. Each client has its own
data silo, which contains its own private data. Continuous Learning: The process of local
model training, parameter updates, and global model aggregation continues iteratively
until the desired level of accuracy is achieved for the overall model. In general, the working
principle is as follows: The global server sends a copy of the current model to each client.
Each client trains the model on its own data. Each client sends its model updates back to
the server. The server aggregates the model updates from all of the clients. The server
sends the aggregated model back to all of the clients. This process is repeated until the
model converges.

Cross-silo FL has a number of advantages over traditional machine learning. (i) Data
Privacy: Participating organisations retain control over their own data, never having to
share it directly with other participants. (ii) Collaboration: Multiple organisations can
pool their data and expertise to train a more accurate and generalisable model than any
individual organisation could achieve alone. (iii) Reduced Costs: Organisations do not
need to invest in the computational resources required to train the model from scratch,
as the training is distributed across all participants.

However, there are also a number of challenges associated with cross-silo FL.
(i) Communication Overhead: The constant communication between participants and the
central coordinator can be computationally expensive and bandwidth-intensive.
(ii) Data Heterogeneity: Data across different organisations might not be identically dis-
tributed, which can lead to challenges in model training and convergence. (iii) Incentivi-
sation: Ensuring fair and equitable participation among organisations can be difficult,
as some might contribute more data or resources than others.

In general, cross-silo FL is a promising approach that has the potential to revolutionise
the way we train machine learning models. However, there are still a number of challenges
that need to be addressed before it can be widely adopted. The cross-silo systems have low
scalable federation. If stabilised, it is high; they also has a high-performance computation
and storage capacity. Usually, the data distribution is non-IID [34,35].
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Figure 5. Cross-silo FL model.

Cross-Device FL

Cross-device FL is used in scenarios where a large number of devices participate,
as illustrated in Figure 6. The design of incentives and client selection are two important
strategies required to support this kind of FL. They are always able to be enabled and
disabled. Typically, these are IoT and mobile devices.

The illustration depicts a central server communicating with multiple client devices
(Client 1 to Client N), which are various IoT devices. The objective is to collaboratively train
a machine learning model without directly sharing the data from each individual device.
In the FL system, the central server acts as the coordinator, overseeing the entire cross-
device FL process. It provides the initial global model to all client devices and aggregates
updated local model parameters from clients to form a new, improved global model. Then,
it sends the updated global model back to all client devices for the next training round.
Regarding the client devices (IoT Gadgets), each device possesses its own local data and
trains a local model (Model 1, . . . , N) based on its data. A device sends updated local model
parameters to the central server after each training round and then receives the newly
aggregated global model from the server for the next training round. For the global model,
the initial model was distributed to all devices for local training. It continuously improves
with each round of aggregation, incorporating knowledge from all participating devices.
Each local model (Model 1, . . . , N) is trained on each device’s individual data, capturing
unique insights and patterns. The updated parameters are sent to the central server for
global model aggregation.

Key advantages of cross-device FL are as follows. (i) Data Privacy: Individual de-
vice data stays on the device, preserving privacy while enabling collaborative learning.
(ii) Scalability: can involve a vast number of diverse IoT devices, leading to richer and more
generalisable models. (iii) Resource Efficiency: The training burden is distributed among
devices, reducing resource requirements for individual units.

The challenges of cross-device FL are as follows. (i) Communication Overhead: Fre-
quent communication between devices and the server can strain bandwidth and battery
life. (ii) Device Heterogeneity: Differences in device capabilities and data distributions can
pose challenges for efficient aggregation. (iii) Incentivisation Mechanisms: Ensuring fair
participation and contribution from all devices can be complex.

In conclusion, cross-device FL presents a promising approach for utilising the collective
power of numerous IoT devices in machine learning tasks while addressing data privacy
concerns and resource limitations. Based on stability, computation, and storage capacity,
it is low, whereas based on scale, it is larger, and data distribution is usually IID [34,35].
As research and development in this area progresses, we can expect to see advancements
in addressing the current challenges and unlocking the full potential of cross-device FL for
various applications.
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Figure 6. Cross-device FL model.

2.4.3. Based on Data Partition

FL systems are generally classified as horizontal, vertical, or federated transfer learning
systems, based on the distribution of data [5,12,34].

Horizontal FL

Horizontal FL is a type of FL that is suitable for scenarios where the data sets have
the same feature space but different sample ID spaces, as shown in Figure 7a. This type
of learning is applied in FL’s first application, the Google keyboard, where the partic-
ipating mobile phones have distinct training data but share the same characteristics.
The corresponding data and feature characteristics can be formally defined as follows:
Xi

feature = X j
feature and X i

ID ̸= X
j
ID for ∀Di,Dj, i ̸= j. Where, Xi

ID is the set of unique
identifiers of the samples in the ith party’s dataset Di and Xi

feature is the set of features of

the samples in the ith party’s dataset Di. Xi
feature = X j

feature signifies that the feature spaces
employed for training the ML model across different clients Di and Dj are identical, ensur-

ing consistency in the representation of data features. Concurrently, Xi
ID ̸= X j

ID imposes
the condition that the sample or data IDs from one client are distinct from those of another
client, preserving the privacy of individual data. The entire equation is encapsulated within
the scope of the universal quantifier ∀Di,Dj, i ̸= j emphasising that these conditions univer-
sally apply to all pairs of distinct clients involved in the FL process. Therefore, Horizontal
FL involves collaboratively training a model across multiple clients, where the features are
shared, but the actual data samples are unique to each client, promoting both consistency
and privacy in the learning process [36].
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Figure 7. Horizontal and vertical federated learning. (a) Horizontal FL where sample spaces are
the same but with different feature spaces among the devices; (b) Vertical FL where devices have
different feature spaces but with the same sample spaces.
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Vertical FL

As seen in Figure 7b, vertical FL is used when each device contains datasets with
distinct feature spaces but the same sample ID spaces. For example, Vertical FL can be used
to build a shared ML model when two organisations have data about the same population
but different feature sets. In this regard, the characteristics of the dataset can be stated
as follows: X i

ID = X j
ID and X i

feature ̸= X
j
feature for ∀Di,Dj, i ̸= j. The Xi

ID = X j
ID asserts

that the sample or data IDs from different clients Di and Dj are equal, indicating a shared

identity space among clients. Meanwhile, Xi
feature ̸= X j

feature specifies that the feature
spaces used for model training across clients are distinct, reflecting variations in the data
characteristics. Therefore, this framework involves collaborative learning across clients
with shared data identities but differing feature spaces, allowing for the integration of
complementary information without exposing the raw data, thus preserving privacy and
promoting collaborative model training [37].

Federated Transfer Learning

Federated transfer learning (FTL) is a combination of FL and transfer learning (TL) that
allows knowledge to be shared and transferred among different parties without compro-
mising user privacy. FL is a technique that enables multiple entities to collaboratively train
a ML model without sharing their raw data. TL is a technique that enables an ML model to
leverage the knowledge learned from one domain (the source) to improve its performance
on another domain (the target). An ideal illustration of FTL would be to use a more compre-
hensive ML model that can learn from more data samples than each participating entity has
access to. For example, suppose there are three parties, A, B, and C, that want to train a ML
model for image classification. However, each party has a different set of images that do
not have many overlapping features or labels. If they use FL alone, they may not be able to
achieve good accuracy because of the data heterogeneity. If they use TL alone, they may not
be able to preserve their data privacy because they have to share their data with the source
domain. Therefore, they can use FTL to transfer the knowledge learned from each party
to the others, while keeping their data local and secure, as seen in Figure 8. In this way,
they can improve the ML model’s performance by leveraging the rich labels and features
from each party. Formally speaking, the characteristics of federated transfer learning can be
stated as follows: Xi

ID ̸= X
j
ID and X i

feature ̸= X
j
feature for ∀Di,Dj, i ̸= j. The Xi

ID ̸= X
j
ID de-

clares that the sample or data IDs from distinct clients Di and Dj are not equal, signifying

diverse data sources with unique identities. Simultaneously, Xi
feature ̸= X j

feature specifies
that the feature spaces utilised for model training across clients differ, capturing variations
in the data characteristics. FTL enables collaborative knowledge transfer across clients with
disparate data identities and feature spaces, facilitating the development of a more robust
and generalised model that leverages collective intelligence from diverse sources while
preserving data privacy [38].
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Figure 8. Federated Transferred Learning (FTL).



Sensors 2024, 24, 968 15 of 48

3. Integration of FL with IoT and WSNs

In this section, we discuss the integration of IoT, WSNs, and FL. We have explored the
opportunities and challenges involved in implementing FL in IoT and WSNs, as well as the
application of the integrated systems. Additionally, we have addressed the integration of
FL with 6G and digital twins.

3.1. IoT

IoT is a concept that describes how different physical objects, such as cars, buildings,
and other machinery, are connected to one another through network connectivity, software,
and sensors. This interconnectedness allows for the seamless integration of the physical
and digital worlds, leading to numerous potential applications and benefits across various
domains, as depicted in Figure 9a. These connected devices collect and exchange data over
the Internet, enabling them to interact with each other and with humans. IoT has gained
significant attention in recent years due to its potential to revolutionise various industries
and improve efficiency, productivity, and quality of life. The significance of IoT lies in
its ability to connect various devices and systems, enabling seamless communication and
data exchange. This connectivity opens up numerous possibilities for applications across
various domains [39–41].

FL has been successfully applied in heterogeneous IoT environments. Here are some
recent case studies and real-world applications:

• PervasiveFL is a framework that enables efficient and effective FL among heteroge-
neous IoT devices with different types of neural network models. It uses a lightweight
model called Modellet on each device, which can learn from the local model and the
global model using deep mutual learning and entropy-based decision gating. Per-
vasiveFL can improve the inference accuracy of heterogeneous IoT devices with low
communication overhead. It has been applied to image classification, face recognition,
and natural language processing tasks [42].

• Model-heterogeneous FL is a method that allows clients to train models with vary-
ing complexities based on their hardware capabilities. It uses a novel aggregation
scheme called model-aware federated averaging, which assigns different weights
to different clients based on their model architectures and local data distributions.
Model-heterogeneous FL can reduce the communication cost and improve the model’s
performance in heterogeneous IoT environments. It has been applied to image classifi-
cation and object detection tasks [43].

• ART4FL is an agent-based architectural approach for trustworthy FL in open, dis-
tributed, and heterogeneous IoT environments. It uses a multi-agent system to coordi-
nate the FL process among different IoT devices and objects, which can dynamically
join and leave the network. ART4FL can enhance the trustworthiness, security, and ro-
bustness of FL in heterogeneous IoT environments. It has been applied to smart cities
and smart health scenarios [44].

These applications demonstrate the feasibility and effectiveness of FL in heterogeneous
IoT environments, where devices can have different types of models, data, and resources.
They also show the potential benefits of FL in terms of privacy preservation, data utilisation,
and model generalisation. However, these applications also face some common challenges,
such as how to deal with the non-IIDness, imbalance, and dynamicity of the data and
devices, how to optimise the communication and computation trade-off, and how to ensure
the security and reliability of the FL process. Some of the practical insights for future
implementations should include:

• Consider the specific characteristics and requirements of the IoT applications, such as
the type, size, and quality of the data and models, the availability and capability of
the devices, and the communication and computation constraints.

• Explore the use of advanced techniques, such as compression, quantisation, sparsifica-
tion, and encryption, to reduce the communication overhead and enhance the security
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and privacy of FL in heterogeneous IoT environments. Also, leverage the existing FL
frameworks and platforms, such as TensorFlow Federated, PySyft, and FedML, to fa-
cilitate the development and deployment of FL in heterogeneous IoT environments.

(a) (b)
Figure 9. Illustration of IoT and WSN use cases. (a) Illustration of the IoT-based smart city with
intelligent things; (b) Wireless technologies connecting diverse devices.

3.2. WSNs

WSNs are an integral part of the IoT infrastructure. In order to monitor environmental
or physical conditions, a vast number of inexpensive, small sensor nodes are placed
in a particular area to form WSNs. These nodes communicate wirelessly, as shown in
Figure 9b, with each other and with a central base station or gateway. WSNs enable
real-time data collection from the environment and provide valuable insights for decision-
making processes [45,46].

3.3. IoT and WSNs

In an IoT system, WSNs play a vital role in data collection and transmission.
These networks consist of numerous sensor nodes that are distributed across a specific
area or environment. Each sensor node is equipped with various sensors to measure
physical parameters such as temperature, humidity, pressure, light intensity, and more.
These nodes are typically battery-powered and have limited computational capabili-
ties [47,48]. One major role of WSN in IoT is to collect sensed reading from the en-
vironment. Such data can then be used to train the intelligent service applications to
be running on top of the IoT systems. The underlying physical sensors in WSN have
a particular influence on FL and IoT, which is related to (i) which types of data can
be collected by the sensors, and (ii) the reliability of the data collected by the sensors.
The type of collectable data limits the coverage of the intelligent services to be offered,
and the reliability of the sensed readings affects the accuracy of the FL model to be used
as the basis of the intelligent service. The architecture of an IoT system involves multiple
layers that facilitate the seamless integration of WSNs. At the bottom layer, we have the
physical layer, which consists of the sensor nodes deployed in the environment. The upper
layer is the network layer, responsible for managing communication between the sensor
nodes and gateway devices. The gateway devices act as intermediaries between the sensor
nodes and the higher-level layers of the IoT system [45,49].

The gateway devices in an IoT system are responsible for aggregating data from multiple
sensor nodes and transmitting them to higher-level layers for further processing. They act
as a bridge between the WSNs and other networks, such as local area networks (LANs)
or wide area networks (WANs). The gateway devices can be connected to the internet or
other communication networks to enable remote access and control of the IoT system [50].
To enable efficient communication within WSNs, various communication protocols are used.
These protocols define how data is transmitted between sensor nodes and gateway devices.
Some commonly used protocols in WSNs include Zigbee, Bluetooth Low Energy (BLE),
Z-Wave, Wi-Fi, and Long Range Wide Area Network (LoRaWAN) [19,23,24,51].
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Zigbee is a low-power wireless communication protocol created especially for WSNs.
It offers dependable and secure communication between sensor nodes and gateway de-
vices and runs on IEEE 802.15.4 standard [52]. Numerous industries, including healthcare,
industrial monitoring, dand home automation, use Zigbee [53,54] Another well-liked com-
munication protocol for WSNs is BLE. It is intended for short-range communication with
minimal power consumption. Applications including wearable technology, asset tracking,
and smart home systems frequently use BLE [55]. Z-Wave is a wireless communication
protocol that operates in the sub-GHz frequency range. It is primarily used for home
automation applications and provides reliable and secure communication between sensor
nodes and gateway devices [56,57].

Wi-Fi, although not specifically designed for WSNs, can also be utilised in IoT sys-
tems. Wi-Fi provides high-speed data transmission over a relatively long range, making it
suitable for applications that require real-time data processing and high bandwidth [58–60].
LoRaWAN is a low-power wide area network protocol that enables long-range communica-
tion between sensor nodes and gateway devices. LoRaWAN is well-suited for applications
that require long-range connectivity, such as smart agriculture, smart cities, and asset
tracking [61,62].

In addition to these wireless communication protocols, other protocols, such as MQTT
and Constrained Application Protocol (CoAP), are used for efficient data transmission
in IoT systems. These protocols are designed to minimise network overhead and power
consumption while ensuring the reliable delivery of data [39,51,63]. IoT applications
frequently employ MQTT, a lightweight publish–subscribe communications protocol.
It makes it possible for sensor nodes and the gateway or cloud server to communicate
effectively. MQTT uses a publish–subscribe model where sensor nodes publish data to
specific topics and subscribers receive data from those topics [64,65]. Another low-power
network protocol that is intended for devices with limitations is called CoAP. It makes it
possible for devices with limited resources to communicate with the internet effectively.
Sensor nodes act as clients in CoAP’s client–server model, transmitting and receiving data
to and from servers [66].

In conclusion, the relationship between IoT and WSNs is symbiotic, with WSNs play-
ing a crucial role in data collection and transmission within IoT systems. The architecture
of IoT systems incorporates WSNs at the physical layer, with gateway devices acting as
intermediaries between the sensor nodes and higher-level layers. Various communication
protocols, such as Zigbee, BLE, Z-Wave, Wi-Fi, and LoRaWAN, are used to enable efficient
communication within WSNs. Additionally, protocols like MQTT and CoAP are used for
efficient data transmission in IoT systems.

3.4. FL in IoT

FL has gained significant attention in IoT environments due to its potential to address
privacy concerns and scalability issues. In this section, we will explore the basic principles
of FL, including model aggregation, privacy preservation, and communication protocols.
Additionally, we will discuss the challenges and opportunities of implementing FL in
IoT systems [19,51,67]. The general FL process includes the following key steps: system
initialisation and device selection, where the aggregator chooses an IoT task such as human
activity recognition and sets up learning parameters, e.g., learning rates and communication
rounds; distributed local training and updates, where after the training configuration,
the server initialises a new model and transmits it to the IoT clients to start the distributed
training; finally, model aggregation and download, where after collecting all model updates
from local clients, the server aggregates them and calculates a new version of the global
model. The FL process is iterated until the global loss function converges or a desired
accuracy is achieved [12].
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3.4.1. Opportunities of Implementing FL in IoT Systems

Despite the challenges to be introduced shortly, implementing FL in IoT systems
presents several opportunities, such as:

Privacy Preservation: FL enables the training of models on sensitive data without
compromising user privacy. This is particularly important in healthcare applications where
personal health data needs to be protected [67,68]. To be specific, FL clients do not need to
upload their data to the central server, and thus the vulnerabilities to security threats can
be minimised, since the model updates are ephemeral and anonymous.

Reduced Communication Overhead: By keeping the data on edge devices and ex-
changing only model updates, FL reduces the amount of data transferred over the network.
This leads to lower communication overhead and reduced latency, making it suitable for
real-time applications in IoT environments [8]. Considering the general cases where the
model size is much smaller than the entire dataset size, FL can save network bandwidth
by exchanging the model updates only. However, if the model is complex and there
are a large number of IoT devices participating in the same FL system and/or a large
number of communication rounds are required for convergence, the FL system can also con-
sume the network bandwidth significantly. Recent approaches, including local updating,
compression schemes, and decentralised training, can effectively reduce communication
overheads [69].

Scalability: FL allows for distributed training on a large number of edge devices
simultaneously. This scalability makes it well-suited for IoT systems with a massive
number of connected devices, such as smart cities or industrial IoT deployments [17].
For example, Bonawitz et al. [70] proposed a scalable TensorFlow-based production system
for FL where FL clients are mobile devices. Also, Lee et al. [71] proposed a scalable FL
system leveraging layer-wise adaptive model aggregation.

3.4.2. Challenges of Implementing FL in IoT Systems

FL shows potential for training ML models in IoT environments, but there are several
challenges that must be addressed. These challenges include limited resources, heterogene-
ity, and data imbalance [4,11,72]:

Limited Resources: IoT devices often have limited computational power, memory,
and energy resources. Training complex ML models on these resource-constrained devices
can be challenging. Optimising model architectures and developing lightweight algorithms
are essential to overcome these limitations [73].

Heterogeneity: IoT systems are made up of a variety of devices with various operating
systems, hardware configurations, and communication protocols. For FL to be implemented
successfully, it is essential that these devices be compatible and are able to work together.
Standardisation efforts such as the Open Connectivity Foundation (OCF) and the Thread
Group aim to address these challenges [74–77].

Data Imbalance: In FL, the distribution of data across edge devices may not be
uniform, leading to data imbalance issues. Some devices may have more representative or
diverse datasets than others, which may have an impact on the global model’s performance.
Techniques such as weighted aggregation or adaptive sampling can be employed to mitigate
this problem [78].

3.5. FL in WSNs

Integrating WSNs with FL techniques can offer several advantages in terms of en-
hanced data analysis and decision-making in IoT systems. This integration allows for the
efficient utilisation of resources, improved scalability, reduced communication overhead,
and increased privacy and security. As expected, WSNs play an important role and have
a significant influence on FL. In general, training a FL model requires multiple commu-
nication rounds among FL clients and the central server. If FL clients are heterogeneous
with respect to the available set of sensors, the conventional FL approach cannot be applied.
In addition, if FL clients are equipped with different types of communication modules or
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protocols, allowing all FL clients to participate in the same communication round can be
challenging. In this section, we will discuss different approaches for combining WSNs and
FL, including edge computing, data fusion, and resource allocation [11,50].

Edge computing is a paradigm that brings computation and storage capabilities closer
to the edge of the network, where the data are generated. By deploying FL algorithms
on edge devices within WSNs, it becomes possible to perform distributed learning tasks
locally without transmitting raw sensor data to a central server. This reduces the communi-
cation overhead and improves response time, making it suitable for real-time applications.
Edge computing also enables privacy-preserving FL by keeping sensitive data within the
local network [18,19,79].

Data fusion is another approach for integrating WSNs with FL techniques. Data fusion
involves combining information from multiple sensors to obtain a more accurate and
reliable representation of the physical environment. By applying FL algorithms to fused
sensor data, it becomes possible to train models that capture the collective intelligence of
the sensor network. This can lead to improved accuracy in data analysis tasks, such as
anomaly detection, classification, and prediction [80].

Resource allocation is an important aspect when integrating WSNs with FL techniques.
Since WSNs typically operate under resource-constrained environments with limited en-
ergy, memory, and processing capabilities, efficient resource allocation becomes crucial.
FL algorithms can be designed to adaptively allocate resources among sensor nodes based
on their capabilities and the importance of the data they collect. This ensures that the
most relevant and valuable data is used for training the models, while minimising resource
consumption [81].

To summarise, integrating WSNs with FL techniques offers several benefits for data
analysis and decision-making in IoT systems. Edge computing enables local and privacy-
preserving FL, reducing communication overhead and improving response time.
Data fusion allows for combining information from multiple sensors to obtain more ac-
curate representations of the physical environment. Resource allocation ensures efficient
utilisation of resources in resource-constrained WSNs.

3.5.1. Opportunities of Implementing FL in WSNs

FL ensures data security and privacy by allowing learning tasks to be completed
without requiring the sharing of raw sensor data. It also avoids sending a lot of data
to a central server, which lowers communication overhead and energy consumption in
WSNs. Furthermore, it leverages rich and diverse data from multiple WSNs to improve
the robustness and accuracy of ML models. Moreover, by allowing WSNs to cooperate
and share knowledge, it advances the creation of ubiquitous artificial intelligence in 6G
communications [82–84].

3.5.2. Challenges of Implementing FL in WSNs

Due to noise, interference, and bandwidth constraints in wireless channels, FL neces-
sitates effective and dependable communication between WSNs, which can be difficult.
Furthermore, due to the heterogeneous and asynchronous nature of WSNs, FL may en-
counter problems with model staleness and convergence. Different data distributions,
computing power, and update rates may exist in these networks. Ferocious or compro-
mised WSNs have the ability to introduce false data, alter model parameters, or deduce
sensitive information from updates to the model, which raises security and privacy con-
cerns in FL. In addition, the multitude and variety of WSNs, each with potentially different
hardware, software, and communication protocols, can pose challenges for scalability and
compatibility [69,85,86].

3.6. FL in 6G

FL is a crucial technology for 6G wireless networks, which aim to achieve widespread
artificial intelligence (AI) in large-scale and diverse networks. The focus on FL in the
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context of 6G is justified for several reasons. Firstly, FL can improve the performance and
efficiency of 6G networks by utilising distributed data and computation resources at the
network edge. Secondly, FL can address the privacy and security concerns of 6G networks
by avoiding the centralised collection and processing of sensitive data. Lastly, FL can
enable the development and deployment of AI solutions for 6G networks by facilitating
collaborative learning and inference among multiple devices [82,87]. FL can support various
AI applications in 6G, including intelligent physical layer, intelligent edge computing,
zero-touch network management, and intelligent resource management. Additionally,
FL can also enable 6G use cases such as smart grid 2.0, Industry 5.0, and connected and
autonomous systems [88].

3.7. FL in Digital Twins

A digital twin (DT) is a digital representation of a physical device or system, used for
simulation, optimisation, and decision making. By integrating DTs with FL, a new architec-
ture for IoT can be created. This allows DTs to capture the characteristics of IoT devices and
assist FL in constructing a shared model. This integration offers several benefits, including
reducing communication and computation overheads, adapting FL frequency and param-
eters based on the dynamic IoT environment, clustering IoT devices for asynchronous
FL, and supporting industrial IoT use cases. FL and DT are complementary technologies
that enhance the functionality and performance of IoT devices in various domains and
scenarios [89–93].

3.8. Applications of Integrated IoT, WSNs, and FL

IoT, WSNs, and FL are interconnected technologies that have gained significant atten-
tion in recent years with applications in healthcare, smart cities, agriculture, industrial au-
tomation, and environmental monitoring. This section provides a comprehensive overview
of their applications in these domains, discussing benefits and challenges [6,40,47,94].

Healthcare: The ability to monitor patients remotely via IoT, WSNs, and FL has revo-
lutionised personalised medicine and efficient healthcare delivery. Wearables and medical
sensors are examples of IoT devices that are used in remote patient monitoring to collect
real-time health data from patients and transmit them to healthcare providers for analysis.
This makes it possible to identify health problems early and take appropriate action. WSNs
play a crucial role in healthcare by providing connectivity between medical devices and
enabling seamless data transmission. FL techniques can be applied to analyse medical
data collected from multiple sources while preserving data privacy. Yet, before these
technologies are widely used in healthcare, issues including data security, interoperability,
and regulatory compliance must be resolved [40,63,67].

Smart Cities: IoT, WSNs, and FL have immense potential for transforming cities into
smart and sustainable environments. In smart cities, IoT devices are deployed to monitor
various aspects, such as traffic flow, air quality, waste management, energy consumption,
and public safety. WSNs play a critical role in collecting data from sensors deployed
throughout the city and transmitting it to a central control system for analysis. FL tech-
niques can be employed to analyse this vast amount of data collected from different sources
while ensuring privacy and scalability. The integration of these technologies can lead to
improved urban planning, resource optimisation, and enhanced quality of life. However,
challenges related to data privacy, network scalability, and infrastructure deployment need
to be addressed for successful implementation [18,23,40,41,95].

Agriculture: IoT, WSNs, and FL have the potential to revolutionise agriculture by
enabling precision farming, crop monitoring, and livestock management. IoT devices such
as soil sensors, weather stations, and drones can collect real-time data on soil moisture,
temperature, humidity, and crop health. WSNs provide connectivity between these devices
and enable seamless data transmission. FL techniques can be applied to analyse this
data and provide insights for optimising crop yield, reducing resource consumption,
and improving overall farm management. However, challenges such as limited network
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coverage in rural areas, power constraints for IoT devices, and data interoperability need
to be addressed for widespread adoption in agriculture [96,97].

Industrial Automation: IoT, WSNs, and FL have transformed industrial automa-
tion by enabling real-time monitoring, predictive maintenance, and process optimisation.
In industrial settings, IoT devices are deployed to collect data from various sensors and
machines. WSNs provide connectivity between these devices and transmit the collected
data to a central control system. FL techniques can be employed to analyse this data and
provide insights for optimising production processes, reducing downtime, and improving
overall efficiency. However, challenges such as network reliability, cybersecurity threats,
and integration with legacy systems need to be addressed for successful implementation in
industrial automation [98,99].

Environmental Monitoring: IoT, WSNs, and FL play a crucial role in environmental
monitoring by enabling real-time data collection and analysis for better understanding of
natural resources and ecosystems. In environmental monitoring applications, IoT devices
such as weather stations, water quality sensors, and wildlife trackers collect data on various
parameters such as temperature, humidity, pollution levels, and animal behavior. WSNs
provide connectivity between these devices and transmit the collected data to a central
control system for analysis. FL techniques can be applied to analyse this vast amount of data
collected from different sources while ensuring privacy and scalability. This enables better
decision-making for environmental conservation efforts. However, challenges related to
power constraints for IoT devices in remote areas, data accuracy, and data integration need
to be addressed for successful implementation in environmental monitoring [41,100,101].

In conclusion, IoT, WSNs, and FL have a wide range of applications in domains such as
healthcare, smart cities, agriculture, industrial automation, and environmental monitoring.
These technologies offer numerous benefits, such as real-time data collection, predictive
analytics, and improved decision-making. However, challenges related to data security,
interoperability, network scalability, and infrastructure deployment need to be addressed
for successful implementation. The integration of these technologies has the potential to
transform various industries and improve the quality of life for individuals worldwide.

3.9. A Summary of State-of-the-Art Research in FL

In this section we present the state-of-the-art research articles in FL under three cat-
egories according to the key concept discussed or covered therein. The Table 1 shows
the summary of the related articles, and in this paper we classify these works into hetero-
geneity, security/privacy and other systems assisting FL such as IoT and WSN. Depend-
ing on the depth of the discussion regarding the aforementioned concept in each paper,
the following three symbols, ✓, △, and ✗, are used to indicate comprehensive, partial,
and little/no discussions.

Table 1. A summary of state-of-the-art research in FL heterogeneity classified by H (Heterogeneity),
S (Security or privacy), and O (Other systems assisting FL such as IoT and WSN.), where ✓,△, and ✗

indicates comprehensive, partial, and little coverage, respectively.

Research (Year) Key Concept Main Findings LimitationH S O

[102] (2022) △ ✗ ✓

Present impact of heterogeneity causing
significant degradation in performance,
fairness, and test accuracy in models
trained in FL compared to uniform settings.

Strategies for addressing
heterogeneity are not provided,
and analysis on FedAvg, FedProx,
and Q-FFL is limited.

[103] (2019) △ ✓ ✓

Highlights case studies and data security
issues while discussing the many
components of the FL system, e.g., data
distribution, ML models, privacy
protections, and communication
architecture.

Does not effectively address the
issue of heterogeneity.
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Table 1. Cont.

Research (Year) Key Concept Main Findings LimitationH S O

[1] (2022) △ ✓ ✓

Survey of FL for the management of
resources of IoT networking system with a
possible solution and previous limitations.
Importance of FL for IoT-based devices
with limited resources.

Security attacks in IoT networking
systems are a major concern that
requires thorough discussion.
Furthermore, the issue of
heterogeneity has not been
effectively addressed.

[13] (2022) △ ✓ ✓

Explores the use of FL in IoT networks,
addressing issues such as communication
cost, robustness, and privacy, while also
highlighting challenges and taxonomies.

Inadequate categorisation and
examination of the difficulties
posed by heterogeneity in FL.

[104] (2020) △ ✓ ✓

Emphasises the importance of reducing
communication overhead, addressing
statistical and structural heterogeneity,
and enhancing privacy within the FL
framework. It also highlights the
significance of incentive mechanisms,
detecting malicious participants, secure
aggregation, and protection methods.

Outlined the statistical and
structural heterogeneity in FL
without providing a comprehensive
classification and synopsis of
current approaches.

[5] (2021) ✗ ✓ ✓
Examine possible privacy leakage issues in
FL and improve knowledge about
privacy-preserving FL.

Heterogeneity issues were
not discussed.

[35] (2021) △ ✓ ✓
Covers recent developments and a general
overview of FL applications and security
concerns in multiple domains.

Does not effectively address the
issue of heterogeneity.

[69] (2019) △ ✓ ✓

They analyse the difficulties of FL from the
perspectives of efficiency, heterogeneity,
and privacy, and outline some potential
approaches for the future.

Does not provide a comprehensive
detailed classification and
discussion of the challenges
of heterogeneity.

[12] (2021) △ ✓ ✓
The applications of FL in IoT networks are
surveyed and examined.

Instead of addressing all potential
FL scenarios, this work concentrates
on the characteristics and
requirements of IoT networks.

[105] (2022) △ ✓ ✓

Provides an overview of FL, including its
technologies, architectures, system issues,
privacy-preserving techniques and
applications. It also explores current and
anticipated technological trends.

The heterogeneity problem was not
effectively addressed.

[106] (2021) △ ✓ ✓
Explores the concept and research of FL,
specifically its application in confidential
healthcare datasets.

The heterogeneity problem was not
effectively addressed.

[107] (2022) △ ✓ ✓

Covers the recent advancements of FL in
smart healthcare. It introduces various
designs including resource-aware, secure,
privacy-aware, incentive-based,
and personalised FL.

The topic of heterogeneity was not
adequately addressed.

[9] (2020) △ ✓ ✓

Provides the applications of mobile edge
network optimisation, explains FL,
analyses implementation challenges,
evaluates existing solutions, reviews
implementation difficulties, and considers
potential future research paths.

Focuses on FL in mobile edge
network optimisation, but does not
explore it from a
broader perspective.



Sensors 2024, 24, 968 23 of 48

Table 1. Cont.

Research (Year) Key Concept Main Findings LimitationH S O

[108] (2022) ✗ ✓ ✓
Focuses on image processing programs that
ensure the safety and confidentiality of
model training data.

The heterogeneity problem was
not addressed.

[109] (2022) △ ✓ ✓

Proposes a functional architecture for FL
systems. The architecture includes
components for parallelism, aggregation
algorithms, data communication,
and security. Additionally, the paper
presents an overview of four widely used
FL systems and summarises
their limitations.

The issue of heterogeneity was not
addressed effectively.

[110] (2022) △ ✓ ✓
Propose novel applications of
privacy-preserving FL.

Concentrated on addressing the
mechanism for privacy preserving;
it did not include a thorough
taxonomy and discussion of the
difficulties presented
by heterogeneity.

[87] (2022) ✗ ✓ ✓

In-depth information about FL-based
wireless communications applications is
provided, emphasising key prerequisites,
prospective uses, and difficulties in wireless
networks.

The heterogeneity problem was
not addressed.

[72] (2022) △ ✓ ✓

In this work, they define and analyse
non-IID data issues and offer a thorough
investigation for resolving the issue, which
poses significant statistical heterogeneity
hurdles for FL.

Focuses on the challenges posed by
statistical heterogeneity while
ignoring other issues.

[4] (2022) ✗ ✓ ✓
Explores the research conducted to
overcome communication constraints in a
FL setting.

Does not effectively address the
issue of heterogeneity.

[111] (2023) △ ✓ ✓

Presents a complete survey of recent FL
research, encompassing fundamentals,
privacy and security procedures,
communication overhead issues,
heterogeneity issues, and practical
applications.

The issues of heterogeneity were
discussed from both a data and
model perspective. However,
a comprehensive classification and
discussion of the challenges of
heterogeneity were not provided.

[20] (2023) ✗ ✓ ✓
Thoroughly examines the challenges,
solutions, and future directions of
blockchain-empowered FL (BlockFed).

Does not effectively address the
issue of heterogeneity.

[112] (2023) ✗ ✓ ✓

Explores the advantages of FL in medical
applications, analysing security risks and
attacks, and introducing standard privacy
protection methods and discussed that
when FL, combined with blockchain, edge
computing, can enhance security and
computational efficiency in healthcare
applications.

Does not effectively address the
issue of heterogeneity

4. Heterogeneity Challenge in FL

Heterogeneity in FL refers to the differences and diversity among participants or
devices that collaborate to train a shared model without sharing their local data. FL faces
the challenge of training on diverse data sets, devices, and networks that are beyond the
control of the centralised FL server. This heterogeneity can cause the model to diverge,
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making the learning process ineffective. The heterogeneity in FL can stem from factors such
as imbalanced data distribution, different hardware and network characteristics of client
devices, unstable network connectivity, and limited device resources. In this paper, we
present a taxonomy of the heterogeneity in FL by classifying it into five types, these being
statistical, device, architectural, network and communication, and model heterogeneity, as
shown in Figure 10.

Communication

Network Resource

Type

Manufacturer

Generation

Model
Heterogeneity

Network
Heterogeneity 

Non-IID

Architectural 
Heterogeneity

Device
Heterogeneity

Statistical
Heterogeneity

Complete

Mixed

3-tier

2-tier Partial

Heterogeneity

Figure 10. Proposed taxonomy of heterogeneity classifications in FL.

4.1. Statistical Heterogeneity

Statistical heterogeneity in FL is a challenge that occurs when the data distributions
of different clients are not identical and independent (non-IID). This can lead to bias in
the global model or hinder convergence. As a result, it is critical for FL approaches to
address statistical heterogeneity and create robust and efficient methods for aggregating
local models or gradients from several clients [113,114]. Form distribution perspective
statistical heterogeneity classified into label distribution skew, label preference skew, feature
distribution skew, feature condition skew, label noise skew, sample noise skew and quantity
skew. In FL, the data heterogeneity between two clients, i and j, can be measured by
comparing their respective local data distributions, ci and cj. When conducting a supervised
task in FL, a client is chosen randomly, and its local data distribution, ci(x, y), is used to
extract feature-label pairs from (x, y) [68,72,115,116].

Label distribution skew: This implies that while the ci(x|y) scenario is the same,
the label ci(y) distribution of various clients varies. For instance, in the distribution of client
i on the MNIST dataset, 90% of the digits are 7 and 10% are other digits. In total, 95% of the
values in the client j distribution are 7, and 5% of the numbers are other numbers. That is,
there are differences in the distribution of ci(y). However, the comparable characteristic x
has approximately the same likelihood of being 7 if y = 7. In other words, the distributions
of ci(x|y) are identical.

Label preference skew: This suggests that the label distribution may vary for distinct
clients, i.e., ci(y|x) ̸= cj(y|x) , even in cases where the feature distribution is uniform across
clients, i.e., ci(x) = cj(x). Label preference skew, or different labels for the same features,
can result from horizontal overlap across local training datasets belonging to distinct clients.
That is, due to varying annotation preferences, multiple clients may annotate the same data
samples with different labels. For instance, in a task involving the perception of visual
intent, an individual user may choose to label the same image differently.

Feature distribution skew: This is the case when each client’s distribution of the
feature ci(x) differs from the distribution of ci(y|x). Client j prefers and uses the number
9 in bold, while client i likes the number 9 and writes it down in thin font on the MNIST
dataset. The probability that the data distribution for client j will display the number 9 in
bold is higher. But in the data distribution for client i, ci(x) is different because there is
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a higher probability that the number 9 will be typed in an extremely thin font. However,
since ci(y|x) is constant, all of the typefaces are 9.

Feature condition skew: This indicates that although ci(y) = cj(y),the distribution of
functions may differ amongst clients, i.e., ci(x|y) ̸= pj(x|y). Data properties: Clients may
not completely overlap, and this is mostly connected to vertical FL, which is frequently
utilised in medical applications. This is helpful if individual clients link regions, for instance,
there are many Shiba Inus in the Japan region and numerous Husky samples in the Siberian
region, but all of their tags are dog-related [115].

Label noise skew: This shows that the included noise label percentage varies for each
client. Due to differences in input costs and levels of expertise, clients’ data labels differ
significantly, producing data with different levels of label noise. When the participating
clients have different architectures, the challenge becomes even more difficult because the
decision boundaries are inconsistent.

Sample noise skew: This indicates that the quality of each client’s private data
varies and that varying levels of sampling noise are inherently introduced during the data
collection process. Due to differences in clients’ capacities for data synthesis and collection,
data collected by different clients may contain noisy or redundant information, which can
complicate and confuse communication between clients

Quantity skew: A significant variation in the quantity of distinct client data ci(x, y) is
referred to as quantity skew. For instance, client i has 10,000,000 data samples, whereas
client j has 100 data samples. In other words, ci(x, y) has significantly different data.

In conclusion, the data distribution across clients is non-IID, meaning that different
clients may have different data sizes, labels, features, or quality. This can lead to poor per-
formance, slow convergence, or divergence in the global model. To address this challenge,
some possible solutions are: (i) data augmentation to generate synthetic data to increase
the diversity and balance of the data across clients; (ii) personalisation to adapt the global
model to the local data of each client using techniques such as fine-tuning, meta-learning,
or multi-task learning; and (iii) clustering to group similar clients based on their data
characteristics and training separate models for each cluster.

4.2. Device Heterogeneity

In a decentralised FL setting, client performance can vary. Client devices in federated
networks have different computational capabilities, network connectivity, storage, and com-
munication abilities. This variability is due to differences in hardware (CPU and memory),
network connectivity (3G, 4G, 5G, and WiFi), and/or power (battery level). The training
phase of FL can involve multiple devices from different products, the generations of the
device, the manufacturer of the device, and the type of the device, resulting in a network of
heterogeneous devices with varying computational abilities, memory sizes, and battery
capacity. As a result, the training period can vary significantly across clients, and it is not
effective to treat all participants equally. To achieve optimal training results, FL needs to
consider heterogeneous hardware configurations [1,69,105,110,117]. In what follows, we
introduce the device heterogeneity challenges and their implications on FL.

4.2.1. Generation of the Device

The generation of a device refers to its release year or technological era. In FL, devices
from different generations may have varying capabilities, processing power, memory
capacity, and network connectivity. These differences can impact their performance and
ability to participate in FL tasks. Newer generations of devices often come with more
advanced hardware components, such as faster processors, larger memory capacities,
and improved network capabilities. These advancements enable them to handle more
complex ML tasks and contribute more effectively to FL models. On the other hand, older
generations of devices may have limited resources and outdated hardware components.
They might struggle with processing power or have lower memory capacities, which can
affect their ability to perform computationally intensive tasks required in FL. However, it is
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important to note that even older devices can still contribute valuable data to FL models.
If the system includes devices from different generations, such as older Android devices
and newer iPhone devices, the data collected and transmitted may differ in terms of format,
resolution, and quality. This can lead to issues in model training and convergence, as the
system may struggle to handle the differences in data formats and quality.

Smartphones provide a clear example of heterogeneity based on the generation of the
device. Newer generations of smartphones are equipped with more advanced hardware,
including faster processors, larger memory, and enhanced ML capabilities. This hardware
diversity can lead to the following issues and opportunities:

Performance Variability: Newer smartphones can execute complex ML tasks more
quickly and efficiently compared to older models. For instance, running a deep learning
model for image recognition may be significantly faster on a flagship smartphone released
in 2023 than on a budget smartphone from 2018.

Compatibility Challenges: The ML framework used for FL must be compatible with a
wide range of smartphone generations. Developers may need to optimise their algorithms
to ensure that older devices can still participate effectively.

Potential for Specialisation: Newer smartphones may support hardware acceleration
for specific ML operations, such as on-device AI chips. FL algorithms can take advan-
tage of these capabilities, potentially offloading some computation to improve model
training efficiency.

4.2.2. Manufacturer of the Device

The manufacturer of a device plays a significant role in determining its heterogeneity
in FL. Different manufacturers produce devices with varying specifications, architectures,
and optimisation techniques. These differences can impact how devices handle FL tasks
and interact with the overall system. Manufacturers often have their own proprietary
technologies and optimisations that are specific to their devices. For example, some manu-
facturers may focus on optimising power consumption, while others prioritise performance
or security features. These variations can result in different trade-offs between compu-
tational efficiency and accuracy during FL. Furthermore, manufacturers may also have
different levels of support for ML frameworks or libraries used in FL. This can affect the
ease of integration and compatibility of devices with FL systems. If the system includes
devices from different manufacturers, such as Samsung and Apple, the data collected and
transmitted may differ in terms of format, resolution, and quality. This can lead to issues in
model training and convergence, as the system may struggle to handle the differences in
data formats and quality. Devices from different manufacturers can exhibit heterogeneity
due to variations in hardware architecture and software ecosystems. Let us consider the
case of Android devices and iPhone operating system (iOS) devices:

Hardware Differences: Android devices are manufactured by a variety of com-
panies, leading to diverse hardware configurations, while iOS devices are exclusively
manufactured by Apple. This diversity can result in different processing capabilities and
available memory.

Software Ecosystem: Android and iOS have distinct software ecosystems, each with
its development tools, app stores, and APIs. This can affect the way FL applications are
developed and deployed on these platforms.

Privacy and Security: iOS devices are known for their strict privacy and security
policies, which may limit the extent to which FL can access and share data on the device.
Android devices offer more flexibility but may have varying degrees of security enforcement
based on the manufacturer and model.

4.2.3. Type of the Device

The type of device refers to the category or form factor of the device participating
in FL. This can include smartphones, tablets, laptops, IoT devices, edge servers, or even
specialised hardware like accelerators or dedicated ML devices. Different types of de-
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vices have distinct characteristics and capabilities that influence their heterogeneity in FL.
For example, smartphones and IoT devices typically have limited computational resources
and battery life compared to laptops or edge servers. This limitation may require specific
optimisation techniques to ensure efficient participation in FL tasks. Specialised hardware,
such as accelerators or dedicated ML devices, may offer enhanced performance for certain
ML workloads. However, their availability and compatibility with FL frameworks need to
be considered when designing a heterogeneous FL system. Let us consider a scenario where
a FL system is trained on data collected from wearable devices. If the system includes
devices of different types, such as smartwatches and fitness trackers, the data collected
and transmitted may differ in terms of format, resolution, and quality. This can lead to
issues in model training and convergence, as the system may struggle to handle the dif-
ferences in data formats and quality. Different types of devices can participate in FL, such
as smartphones and IoT devices. This introduces heterogeneity in terms of computational
capabilities, data collection, and communication:

Computational Power: Smartphones typically have more computational power than
IoT devices, enabling them to perform more complex ML tasks. IoT devices may have lim-
ited processing capabilities, making it necessary to adapt the FL algorithm to accommodate
these constraints.

Data Collection and Transmission: IoT devices are often resource-constrained and
may have sporadic network connectivity. FL algorithms must be designed to handle these
limitations while ensuring data synchronisation and model updates.

Application-Specific Considerations: The type of device also influences the choice
of FL use cases. For example, IoT devices are commonly used in industrial settings for
predictive maintenance, while smartphones are employed for applications like personalised
recommendation systems.

For instance, suppose there are three devices that want to participate in FL: a smart-
phone, a tablet, and a laptop. Each device has its own data, model, network, and hardware
characteristics, which can be summarised as follows, assuming a particular scenario:

Smartphone: The smartphone is a fourth-generation device from Samsung. It is a
mobile device that can collect data from various sensors, such as a camera, microphone,
GPS, and accelerometer. The data is non-IID and imbalanced, meaning that it does not
follow the same distribution as the other devices and has different proportions of classes
or labels. The smartphone has a small and shallow model, such as a convolutional neural
network (CNN) with few layers and filters, to fit its limited memory and computation
resources. The smartphone has a wireless and unstable network connection, which can vary
depending on the signal strength, bandwidth, latency, and interference. The smartphone
has a low and variable hardware capacity, which depends on the battery level, CPU usage,
and temperature.

Tablet: The tablet is a fifth-generation device from Apple. It is a semi-mobile device
that can collect data from some sensors, such as a camera, microphone, and touch screen.
The data is moderately non-IID and balanced, meaning that it follows a similar but not
identical distribution as the other devices and has roughly equal proportions of classes or
labels. The tablet has a medium and moderate model, such as a recurrent neural network
(RNN) with several layers and units, to balance its memory and computation resources.
The tablet has a wireless and stable network connection, which can maintain consistent
signal strength, bandwidth, latency, and interference. The tablet has a medium and stable
hardware capacity, which does not vary much depending on the battery level, CPU usage,
and temperature.

Laptop: The laptop is a sixth-generation device from Dell. It is a stationary device that
can collect data from a few sensors, such as a keyboard, mouse, and webcam. The data is
IID and balanced, meaning that it follows the same distribution as the other devices and
has equal proportions of classes or labels. The laptop has a large and deep neural network
model, such as a transformer network with many layers and attention heads, to exploit its
abundant memory and computation resources. The laptop has a wired and stable network
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connection, which can guarantee high signal strength, bandwidth, latency, and interference.
The laptop has a high and stable hardware capacity, which does not depend on the battery
level, CPU usage, or temperature.

Let us illustrate heterogeneity in FL by using examples based on IoT and WSN devices.
These devices are usually distributed, resource-constrained, and linked together via wireless
networks. They can collect and process various types of data, such as images, audio, video,
text, temperature, humidity, pressure, etc. Some examples of heterogeneous FL scenarios
involving IoT and WSN devices are:

Smart home: In a smart home environment, different IoT devices, such as smart
speakers, smart TVs, smart cameras, smart thermostats, smart lights, etc., can collaborate
to learn a shared model for tasks such as voice recognition, face recognition, activity
recognition, etc. However, these devices may have different data distributions, depending
on the location, usage, and preference of the users. For example, the smart speaker in the
living room may have more data on music and entertainment, while the smart camera
in the bedroom may have more data on security and privacy. Moreover, these devices
may have different model architectures, depending on the type and size of the data they
process. For example, the smart TV may have a large and deep model for high-resolution
video processing, while the smart light may have a small and shallow model for low-power
control. Furthermore, these devices may have different network environments, depending
on the wireless protocol, channel quality, and interference level they use. For example,
the smart thermostat may have a stable and reliable network connection via Wi-Fi, while
the smart camera may have an unstable and noisy network connection via Bluetooth.
Additionally, these devices may have different hardware capacities, depending on the
memory, computation, and battery resources they have. For example, the smart speaker
may have a high and stable hardware capacity with a plug-in power supply, while the
smart light may have a low and variable hardware capacity with a battery-powered supply.

Smart city: In a smart city scenario, different WSN devices, such as traffic cameras,
air quality sensors, weather stations, etc., can cooperate to learn a shared model for tasks
such as traffic management, pollution monitoring, weather forecasting, etc. However, these
devices may have different data distributions depending on the geographic, temporal,
and spatial factors that affect the data they collect. For example, the traffic camera in a busy
intersection may have more data on congestion and accidents, while the air quality sensor
in a remote park may have more data on freshness and cleanliness. Moreover, these devices
may have different model architectures, depending on the complexity and diversity of the
data they analyse. For example, the weather station may have a complex and heterogeneous
model for multi-modal data fusion, while the air quality sensor may have a simple and
homogeneous model for single-modal data processing. Furthermore, these devices may
have different network environments, depending on the wireless technology, bandwidth,
and latency they experience. For example, the traffic camera may have a high-speed and
low-delay network connection via 5G, while the weather station may have a low-speed and
high-delay network connection via LoRa. Additionally, these devices may have different
hardware capacities, depending on the storage, communication, and energy resources they
consume. For example, the air quality sensor may have a large and efficient hardware
capacity with a solar-powered supply, while the traffic camera may have a small and
inefficient hardware capacity with a battery-powered supply.

FL can improve computational power, data collection, and mobile device performance
by reducing communication overhead, enhancing data privacy, and adapting to device
heterogeneity. Some of the recent researchers who have contributed to improving the
FL algorithms include [118–120]. The authors in [118] propose a spectrum allocation opti-
misation mechanism and a device selection method for enhancing FL over a wireless mobile
network. The optimisation problem for the FL algorithm aims to minimise time delay
by considering the energy constraints of local devices. The problem is divided into two
sub-problems: spectrum allocation and device selection. An energy-efficient spectrum allo-
cation optimisation method is proposed, minimising computation and transmission delay
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while meeting energy constraints. The K-means algorithm is trained using model weights,
enhancing clustering performance and reducing training time. A weight divergence-
based device selection method is proposed to overcome non-IID datasets. The proposed
method outperforms other baseline approaches and achieves the fastest convergence in the
FL framework. FedNAS [119,120] is a federated neural architecture search algorithm that
can optimise the model architectures for different devices. It can improve the performance
and efficiency of FL. One possible way to improve FedNAS is to combine it with the
spectrum allocation optimisation and device selection methods proposed in [118]. The op-
timisation of spectrum allocation can minimise the time delay of FL while considering
the energy consumption of individual devices. Additionally, device selection can enable
FL to achieve faster convergence on non-IID datasets. By integrating these methods with
FedNAS, FL can benefit from both the optimal model architectures and the optimal resource
management. This can enhance the accuracy and efficiency of FL over a wireless mobile
network. Some practical considerations for future implementations should include the
following: (i) to design highly adaptive and robust algorithms that can handle non-IID
and dynamic data distribution among the devices, (ii) to explore more efficient and secure
encryption schemes that can protect the model parameters and gradients during the com-
munication, and (iii) to incorporate more advanced machine learning techniques, such as
meta-learning, transfer learning, and reinforcement learning, into FL.

In general, when clients have different hardware capabilities, such as computing
power (CPU), memory, battery or storage, it results in device heterogeneity, which leads to
resource constraints, computation bottlenecks, or energy consumption issues. To address
this challenge, some potential solutions are:

• Compression: Reducing the size or complexity of the model or the communication
using techniques such as quantisation, pruning, or sparsification.

• Adaptation: Adjusting the model or the communication based on the device condi-
tions using techniques such as adaptive learning rate, adaptive aggregation, or adap-
tive communication.

• Selection: Choosing the most suitable or available devices for participation using
techniques such as incentive mechanisms, reputation systems, or active learning.

4.3. Architectural Heterogeneity

The most suitable architecture for a specific FL application will depend on various fac-
tors, such as the type of device, data set size, and desired training time. FL also encounters
challenges such as architectural heterogeneity, communication overhead, and scalability.
In this section, we analyse the heterogeneity in FL when implemented using two-tier, three-
tier, and mixed architectures, which distribute the training process across different devices.

4.3.1. Two-Tier Architecture

A two-tier FL architecture consists of a server and clients. Clients communicate
directly with the server, which aggregates model updates from the clients and sends the
updated model back to them. Clients train the model on their local data and send updates
to the server. This architecture is simple and easy to implement, but may have high
communication costs, low scalability with a large number of clients, or limited network
bandwidth. It is best suited for applications with homogeneous devices and data. The direct
communication reduces latency, making it suitable for real-time applications. However, it
may struggle with heterogeneous devices and data types, and some devices may become
bottlenecks in a highly diverse network [121].

4.3.2. Three-Tier Architecture

A three-tier FL architecture consists of three levels: the server, the edge nodes, and the
clients. The server is responsible for aggregating the model updates from the edge nodes
and sending the updated model back to the edge nodes. The edge nodes are responsible
for aggregating the model updates from the clients and sending the model updates to the



Sensors 2024, 24, 968 30 of 48

server. The clients are responsible for training the model on their local data and sending
the model updates to the edge nodes. This architecture can reduce the communication cost
and improve the scalability by introducing an intermediate level of edge nodes, which can
act as local aggregators and coordinators for the clients. However, this architecture may
introduce additional complexity and latency in the learning process [122].

4.3.3. Mixed Architecture

A mixed FL architecture is a hybrid of the n-tier (n = 2, 3,. . . ) architectures. It allows
some clients to directly communicate with the server, while others communicate with
the edge nodes. This architecture can adapt to the heterogeneity of the clients, such as
their computation and communication capabilities, data distribution, and availability.
It can also balance the trade-off between communication cost and learning performance
by dynamically adjusting the communication pattern among the server, the edge nodes,
and the clients [123].

To handle the heterogeneity of devices in FL, including different tier characteristics,
careful strategies are needed to ensure successful collaboration and model convergence.
Below is the list of some potential solutions:

Tiered Aggregation and Model Customisation

• Two-Tier and Three-Tier Devices: Design specialised aggregation mechanisms that
cater to different tiers. For instance, a hierarchical aggregation approach could be
employed, where intermediate-tier devices aggregate models before sending them to
higher-tier devices or the central server.

• Mixed-Tier Devices: Implement adaptive algorithms that adjust aggregation strategies
based on the characteristics of each device. Weighted averaging or differential learning
rates can be used to incorporate updates from diverse devices effectively.

Model Compression and Adaptation

• Two-Tier and Three-Tier Devices: Employ model compression techniques (e.g., knowl-
edge distillation, pruning) to reduce the complexity of models on lower-tier devices,
allowing them to participate effectively despite resource constraints.

• Mixed-Tier Devices: Develop adaptive models that can adjust their complexity or
architecture dynamically based on the capabilities of different devices in the federation.

Dynamic Learning Rate and Model Personalisation

• Two-Tier and Three-Tier Devices: Utilise differential learning rates or personalised
updates for different tiers, allowing slower-learning or resource-constrained devices
to adapt their models more gradually.

• Mixed-Tier Devices: Incorporate personalised learning strategies that cater to indi-
vidual device capabilities, allowing for customisation of model updates based on the
device’s resources and data characteristics.

Transfer Learning and Federated Meta-Learning

• Two-Tier and Three-Tier Devices: Implement transfer learning techniques that lever-
age knowledge from higher-tier devices to facilitate learning on lower-tier devices,
enabling more efficient learning despite disparities in capabilities.

• Mixed-Tier Devices: Employ federated meta-learning approaches where models learn
how to learn across devices of different tiers, allowing for adaptation and knowledge
transfer between diverse devices.

Adaptive Communication and Resource Allocation

• Two-Tier and Three-Tier Devices: Develop adaptive communication protocols that
prioritise communication and model updates based on the hierarchy of devices, opti-
mising resource allocation.
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• Mixed-Tier Devices: Implement resource-aware algorithms to dynamically allocate
resources for model updates, allowing devices with varying capabilities to participate
optimally without being constrained.

FL Simulators and Benchmarking

• All Tiers: Create FL simulators to test and benchmark algorithms across heterogeneous
device tiers, enabling developers to assess performance and optimise algorithms under
different scenarios.

4.4. Network and Communication Heterogeneity

FL encounters challenges when used in diverse networking and communication
systems, including WiFi/cellular networks, WSNs, edge computing, and the IoT. These
challenges arise from variations in data distributions among devices or nodes, which can
affect the quality and convergence of the global model. Additionally, differences in model
architectures and parameters among devices or nodes can impact the compatibility and
communication efficiency of the global model. Variations in network environments and
communication resources among devices or nodes can impact the reliability and latency of
the global model. Lastly, differences in hardware devices and computational capabilities
among the participating nodes can affect the performance of the global model and the
energy consumption of the entire FL system [19,100,124].

4.4.1. Network Heterogeneity

Network heterogeneity refers to the variation in the network characteristics of the
devices participating in FL. This can include factors such as network speed, bandwidth,
latency, and reliability. Network heterogeneity can impact the performance of FL in a
number of ways. For example, devices with slow network connections may take longer
to download and upload model updates, which can slow down the training process.
Additionally, devices with unreliable networks may experience more errors during the
training process [116] due to the delayed or failed packet reception.

4.4.2. Communication Heterogeneity

Communication heterogeneity refers to the variation in the communication patterns
of the devices participating in FL. This can include factors such as the number of devices
participating in the training process, the frequency with which the devices communicate
with the server, and the amount of data that is transferred between the devices and the
server. Communication heterogeneity can impact the performance of FL in a number
of ways. For example, if a large number of devices are participating in the training
process, the server may become overloaded, which can slow down the training process.
Additionally, if the devices communicate with the server at different frequencies, it can be
difficult to coordinate the training process [125,126]. The limited number of devices that
can communicate concurrently can also be challenging.

In general, here are some potential strategies to address the challenges of heterogeneity
that arise in network and communication:

Communication cost: The communication cost refers to the amount of data or time
required to transmit the model parameters or gradients across clients. Communication costs
can vary depending on the communication protocol, the network bandwidth, the network
latency, or the network reliability. Communication costs can affect the performance and
efficiency of the global model, as well as the energy consumption and privacy of the clients.
To address this challenge, some possible solutions are:

• Compression: Compression techniques can reduce the size or complexity of the model
or the communication using methods such as quantisation, pruning, or sparsifica-
tion. Compression techniques can lower the communication cost, but they may also
introduce some errors or losses in the model or the communication.
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• Optimisation: Optimisation techniques can minimise the communication cost or
maximise the communication efficiency using methods such as gradient compression,
gradient sparsification, or gradient quantisation. Optimisation techniques can improve
the communication quality, but they may also require some trade-offs or assumptions
in the model or the communication.

Communication frequency: The communication frequency refers to how often or
when the clients communicate with the server or each other. Communication frequency
can vary depending on the communication protocol, the network availability, the network
stability, or the network congestion. Communication frequency can affect the convergence
and robustness of the global model, as well as the synchronisation and coordination of the
clients. To address this challenge, some possible solutions are:

• Synchronisation: Synchronisation techniques can coordinate the communication
frequency or timing using methods such as synchronous updates, asynchronous
updates, or periodic updates. Synchronisation techniques can ensure the consistency
and reliability of the global model, but they may also introduce some delays or
overheads in the communication.

• Adaptation: Adaptation techniques can adjust the communication frequency or timing
based on the network conditions or the client preferences using methods such as
adaptive learning rate, adaptive aggregation, or adaptive communication. Adaptation
techniques can enhance the flexibility and responsiveness of the global model, but they
may also require some feedback or monitoring in the communication.

Communication robustness: Communication robustness refers to how well the com-
munication can handle the errors or failures that may occur in the network or the clients.
Communication robustness can vary depending on the communication protocol, the net-
work reliability, the network security, or the network diversity. Communication robustness
can affect the accuracy and stability of the global model, as well as the fault tolerance and
resilience of the clients. To address this challenge, some possible solutions are:

• Error correction: Error-correction techniques can detect and correct the errors or
losses that may occur in the model or the communication using methods such as
checksums, parity bits, or error-correcting codes. Error-correction techniques can
improve communication quality, but they may also increase communication costs
or complexity.

• Recovery mechanisms: Recovery mechanisms can recover or restore the model or the
communication from the failures or attacks that may occur in the network or the clients
using methods such as checkpoints, backups, or replication. Recovery mechanisms
can improve communication reliability, but they may also consume some resources
or storage.

4.5. Model Heterogeneity

FL requires each client to use a local model with the same architecture, and then
it aggregates the received updates into a global model. In IoT applications, clients may
design unique local models due to individual requirements and hardware constraints.
Model heterogeneity requires learning knowledge without sharing private data and model
structure information. In such setting, transferring knowledge between heterogeneous
clients is challenging. Partial heterogeneity refers to the case where certain clients utilise
the same model structure while others do not. Partially heterogeneous models are those in
which a federated system is thought to have. FL models are used to train each isomorphic
client subset. Intra-cluster models can be aggregated using methods such as weighted aver-
aging, but inter-cluster models require knowledge distillation. When participant models’
network structures vary within a FL framework, this is known as complete heterogeneity,
a kind of partial heterogeneity. For every client, this produces a unique model, which could
result in high learning overheads and ineffective communication [115]. Following are a few
potential solutions to this model heterogeneity challenge:
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Alignment: Making the model architectures compatible or consistent using techniques
such as model conversion, model alignment, or model standardisation.

Generation: Creating the model weights or architectures dynamically using tech-
niques such as hypernetworks, neural architecture search, or meta-learning.

Evaluation: Measuring the model’s performance or quality using techniques such as
federated evaluation, federated testing, or federated validation.

4.6. Lessons Learnt

In general, the heterogeneity challenge in FL is a significant obstacle, involving various
aspects such as statistical, device, architectural, network and communication, and model
heterogeneity. These hurdles require tailored solutions to mitigate their impact on FL perfor-
mance. The challenge stems from the inherent diversity in the FL landscape, which can lead
to suboptimal performance, compromised model accuracy, and inefficient collaboration
among devices. To overcome this, the chapter provides a comprehensive and systematic
analysis of the heterogeneity challenge in FL and proposes a taxonomy of solutions for
each category of heterogeneity, such as data augmentation, personalisation, clustering,
adaptive learning rate, gradient compression, device selection, hierarchical aggregation,
edge computing, hybrid communication, asynchronous updates, and more.

In light of these insights, the next steps involve implementing some of the afore-
mentioned solutions, refining them, and continuously monitoring their efficacy. A holistic
framework is needed to overcome the heterogeneity challenge in FL and foster collaborative
learning across diverse environments, and this chapter can also serve as a valuable refer-
ence for researchers and practitioners who are interested in addressing the heterogeneity
challenge in FL and enhancing the performance and applicability of FL in various scenarios.

Careful system design and continuous system maintenance can help avoid certain
types of heterogeneity. For example, instead of allowing ad hoc formation of the
FL system, the system manager may constantly reform the system in such a way that
a particular system architecture is maintained. In this manner, the FL system may not
encounter architectural heterogeneity. On the other hand, certain types of heterogeneity
will emerge soon or later. For example, it is not practical to assume that all FL client
devices are homogeneous and their data distributions are perfectly IID. Luckily, many
aspects of heterogeneity are widely studied, and there are efficient solutions that minimise
performance degradation. Also, by carefully analysing the given FL system, the particular
intelligent application(s) running on the system, and the characteristics of the dataset, a cer-
tain level of heterogeneity of a particular type can be ignored. For example, considering
the fact that smartphones nowadays are getting richer in terms of computing power and
storage and that common network standards allow different devices to communicate with
each other, a certain level of device heterogeneity may not cause any noticeable effect on
the FL system.

5. Security and Privacy Considerations

Security and privacy concerns are one of the major issues in the field of IoT, WSNs,
and FL. These technologies involve the collection, processing, and sharing of vast amounts
of data, making them vulnerable to various threats. In this section, we address these
concerns and discuss threats and vulnerabilities that can compromise data confidentiality,
integrity, and availability associated with IoT and WSNs, as well as the convergence of the
FL model. We also explore different techniques and propose solutions for ensuring model
convergence, data confidentiality, integrity, and availability in IoT, WSNs, and FL systems.

5.1. Threats and Vulnerabilities
5.1.1. Unauthorised Access

One of the primary concerns in IoT, WSNs, and FL is unauthorised access to devices
or networks. Attackers may exploit vulnerabilities in the system to gain unauthorised
access and control over IoT devices or sensor nodes.Unauthorised access to the training
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data could lead to the exposure of sensitive information, such as personal data or propri-
etary information. This can lead to various malicious activities such as data theft, device
manipulation, or even physical harm [49,127].

5.1.2. Data Breaches

The vast amount of data generated by IoT devices and WSNs makes them attractive
targets for data breaches. If proper security measures are not in place, attackers can intercept
or manipulate the data during transmission or storage. This can result in the exposure
of sensitive information or the compromise of system integrityThere are several factors
that contribute to the risk of data breaches in FL. These include gradient information
leakage, non-IID data distribution, and a lack of robust security protocols. Gradient
information leakage occurs when the exchange of gradient updates during FL training
reveals information about the underlying data. Non-IID data distribution means that
FL often involves training on non-identically distributed data, making it more susceptible
to inference attacks. Additionally, FL systems may lack adequate security measures to
protect against data breaches [22].

5.1.3. Denial-of-Service (DoS) Attack

IoT systems and WSNs are vulnerable to DoS attacks, in which attackers flood the
network with a high volume of requests or malicious traffic. This can overwhelm the system
and make it unavailable for legitimate users, disrupting critical services or rendering the
entire system non-functional. DoS attacks can also overwhelm the FL server, consuming
resources, preventing user access, exposing sensitive data, and compromising privacy,
leading to inaccurate or unreliable models [128].

5.1.4. Malware and Botnets

Malware and botnets pose a threat to the integrity and availability of FL systems by
infecting IoT devices and launching malicious attacks. Malware refers to any software
intentionally designed to cause damage or harm to a computer, network, server, or client.
Botnets are networks of computers infected by malware and controlled by a single attacking
party, known as the bot-herder. Botnets can engage in various malicious activities, including
sending spam, launching distributed denial-of-service (DDoS) attacks, generating fake
Internet traffic, and stealing sensitive information. Another concern is model stealing,
where malicious participants attempt to infer or reconstruct the private data or model
parameters of other participants by observing the global model or the model updates.
This violates the data privacy and security of the FL system and its participants [129–131].

5.1.5. Physical Attacks

Physical attacks in FL target the hardware or devices of the participants, such as
tampering, stealing, or destroying them. These attacks can result in data loss, model
corruption, or privacy leakage. For instance, an attacker could physically access a device
to extract its local data or model parameters, or modify them to inject malicious behavior
into the global model. Physical attacks can also impact the availability and reliability of the
FL system, as some devices may become unavailable or unresponsive due to damage or
theft. Therefore, it is crucial to protect the devices and hardware involved in FL from
physical attacks [132].

5.1.6. Poisoning Attack

A poisoning attack in FL refers to a malicious act where participants in a distributed
learning system attempt to compromise the global model by sending corrupted updates
to the server. There are various methods and goals associated with poisoning attacks,
including backdoor attacks, label-flipping attacks, and targeted attacks. A poisoning attack
allows an attacker to manipulate a portion of the training data by assigning attacking labels.
This manipulation changes the model parameters of the target learning model during the
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training phase. As a result, the poisoned learning model will exhibit certain properties
desired by the attacker, causing the misclassification of selected inputs during the inference
stage [35,133–135].

5.1.7. Byzantine Attack

A Byzantine attack is a type of attack in a distributed system where machines up-
load malicious data instead of legitimate computational output. This attack specifically
targets user collusion in a distributed learning environment, such as FL. Byzantine users,
or multiple clients, can be controlled by a malicious attacker in FL. These users may upload
fraudulent data due to malicious attacks, faulty hardware, or unreliable communication
channels. The attacker’s manipulation can distort the global model and prevent it from
converging. As a result, these malicious models can severely hinder the training process
and the aggregation of the global model [136,137].

5.2. Techniques for Ensuring Data Confidentiality, Integrity, and Availability
5.2.1. Encryption

Encryption is a fundamental technique for ensuring data confidentiality in IoT systems.
By encrypting the data during transmission and storage, even if an attacker intercepts it, it
will not be able to decipher the information without the encryption key [138].

5.2.2. Access Control

Implementing robust access control mechanisms is crucial for preventing unauthorised
access to IoT devices or networks. This involves authentication and authorisation processes
to ensure that only authorised individuals or entities can access and control the devices or
networks [8,127,139].

5.2.3. Intrusion Detection and Prevention Systems (IDPS)

IDPS can help detect and prevent various types of attacks in IoT systems. These
systems monitor network traffic, analyse patterns, and identify any suspicious activities or
anomalies that may indicate an ongoing attack. They can then take proactive measures to
mitigate the attack and protect the system [49].

5.2.4. Secure Communication Protocols

Using secure communication protocols such as Transport Layer Security (TLS) or
Secure Shell (SSH) can ensure the integrity and confidentiality of data transmitted between
IoT devices or sensor nodes. These protocols provide encryption, authentication, and data
integrity checks to prevent eavesdropping, tampering, or spoofing attacks [4].

5.2.5. Regular Updates and Patch Management

Keeping IoT devices, WSNs, and FL frameworks up-to-date with the latest security
patches is essential for mitigating vulnerabilities. Regular updates help address known
security issues and protect against emerging threats [7,49].

5.2.6. Physical Security Measures

Implementing physical security measures such as tamper-proof seals, secure enclo-
sures, or biometric access controls can help prevent physical attacks on IoT devices or
sensor nodes. Using secure hardware modules or trusted execution environments to isolate
the computation and communication of FL from other applications or processes on the
device, and to prevent unauthorised access or tampering. Implementing authentication and
authorisation mechanisms to verify the identity and legitimacy of the devices and parties
involved in FL, and to reject any unauthorised or suspicious requests or updates [140,141].



Sensors 2024, 24, 968 36 of 48

5.2.7. Privacy-Preserving Techniques

Privacy-preserving techniques such as data anonymisation, pseudonymisation, or dif-
ferential privacy can be employed to protect the privacy of individuals whose data is
collected by IoT devices or WSNs. These techniques ensure that sensitive information can-
not be directly linked to specific individuals as discussed in the below [20,67,68,111,112].

Secure Multi-Party Computing

Secure multi-party computing (SMC) is a cryptographic technique that allows multiple
parties to jointly compute a function or a value without revealing their inputs to each other.
SMC can be used to enhance the privacy and security of FL. The parties retain total control
over the data they own throughout the computation process, knowing nothing more than
their individual inputs and outputs [142].

Differential Privacy

Differential privacy (DP) technology uses random noise to drown original data, pre-
venting attackers from reversing it. Implemented by adding noise to a query, DP protects
computational results, is independent of background knowledge, and can theoretically
resist attacks [143].

Homomorphic Encryption

In FL systems, homomorphic encryption (HE) is a privacy-preserving cryptographic
technique that enables certain computations on encrypted data without the need to first
decrypt it. HE types include partial, fully, and somewhat HE, providing security for
cross-silo FL by performing complex computation operations [144].

The choice of solution depends on specific use cases, regulatory requirements, and trade-
offs between security, privacy, feasibility, efficiency, and practicality. Organisations may
choose a combination of these solutions to effectively address heterogeneity, security,
and privacy concerns.

Heterogeneity

Solution 1: Standardisation
Feasibility: Standardisation involves implementing uniform protocols, which can be chal-
lenging due to the diverse systems and technologies in use. However, initiatives such as
industry-wide consortiums or the adoption of widely accepted protocols (e.g., HTTP for
web communication) could enhance feasibility.
Efficiency: Standardisation streamlines communication but may stifle innovation or impede
system-specific optimisations.
Practicality: Achieving full standardisation across diverse platforms may not be feasible
due to entrenched systems and varying requirements, although it may be achievable in
specific industries or regions.

Solution 2: Middleware
Feasibility: Implementing middleware can bridge the gap between heterogeneous sys-
tems, facilitating effective communication between them. However, integrating multiple
technologies into a unified middleware solution can be complex.
Efficiency: Middleware can improve efficiency by offering a standardised interface, but it
may also introduce latency or compatibility issues.
Practicality: Middleware is advantageous for specific use cases that require integration but
may not be suitable for highly specialised systems or applications.

Security

Solution 1: Encryption and Authentication Protocols
Feasibility: Implementing robust encryption and authentication protocols is feasible, but it
may require updates to address evolving threats.
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Efficiency: Strong encryption can slow down processes, impacting efficiency, but it en-
hances security.
Practicality: This approach is feasible for securing data transmission and storage, but it
requires ongoing updates and maintenance to stay ahead of vulnerabilities.

Solution 2: Multi-factor Authentication (MFA)
Feasibility: Implementing MFA is achievable with modern authentication frameworks,
but it may require user training and behavioral adjustments.
Efficiency: Enhancing security measures may result in minor delays in the user access process.
Practicality: This method is effective for securing access to sensitive systems, especially
where data security is paramount. However, users may resist the implementation.

Privacy

Solution 1: Data Minimisation and Anonymisation
Feasibility: Minimising and anonymising data is possible, but it may require significant
effort to redesign systems and processes.
Efficiency: Improving privacy measures may result in a decrease in the depth of data
analysis or its usefulness in certain situations.
Practicality: It is feasible to comply with privacy regulations and protect user data, but it
may pose challenges for data-driven features that rely on extensive data analysis.

Solution 2: Differential Privacy Techniques
Feasibility: Implementing differential privacy can be complex, requiring expertise and
careful implementation.
Efficiency: It effectively preserves individual privacy but may impact the accuracy of
aggregate data analysis.
Practicality: This approach is suitable for situations where ensuring individual privacy
is crucial. However, it may be necessary to strike a balance between accuracy and
privacy protection.

Comparative Analysis

Standardisation vs. Middleware: Standardisation can promote uniformity but may stifle
innovation, while middleware offers flexibility but can also introduce complexity.
Encryption vs. MFA: Encryption secures data transmission and storage, while MFA secures
access points, offering layered security.
Data Minimisation vs. Differential Privacy: Minimisation ensures less data exposure, while
differential privacy preserves individual privacy at the expense of some accuracy.

In conclusion, security and privacy concerns are significant challenges in IoT, WSNs,
and FL. Unauthorised access, data breaches, DoS attacks, malware, physical attacks,
and other threats pose risks to the confidentiality, integrity, and availability of data in
these systems. However, by implementing techniques such as encryption, access con-
trol, IDPS, secure communication protocols, regular updates, physical security measures,
and privacy-preserving techniques, it is possible to mitigate these risks and ensure the
security and privacy of IoT systems by using features of FL. Some instances where
FL significantly outperforms other methods for preserving privacy while training models
across distributed IoT devices are as follows: FL can use generative adversarial networks
(GANs) to generate synthetic data that preserves the statistical properties of the real data
but does not reveal any sensitive information [145]. FL can also use secret sharing or
split learning to divide the model or data into multiple parts and distribute them among
different parties so that no single party can access the complete model or data. Additionally,
FL can be integrated with the blockchain to achieve decentralised and secure learning
without relying on a central server or authority. Blockchain can ensure data integrity
and prevent single-point failure and poisoning attacks by using cryptographic techniques
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and consensus mechanisms [12]. Blockchain can also provide a personalised incentive
mechanism for clients to participate in FL [146,147].

5.3. Lessons Learnt

In general, security and privacy concerns emerge large in the domains of IoT, WSNs,
and FL, where the extensive collection, processing, and sharing of data expose these
technologies to a variety of threats and vulnerabilities. This section delves into the details
of these concerns, highlighting potential risks associated with unauthorised access, data
breaches, denial-of-service attacks, malware, physical attacks, and more. The exploration
encompasses the imperative need for robust security measures in the convergence of
FL models within the interconnected IoT and WSN frameworks.

The chapter unfolds with a comprehensive understanding of threats and vulnerabili-
ties, ranging from unauthorised access to Byzantine attacks. It then delves into techniques
for ensuring data confidentiality, integrity, and availability, covering encryption, access con-
trol, intrusion-detection systems, secure communication protocols, and privacy-preserving
techniques such as homomorphic encryption. Solutions proposed to address these security
and privacy challenges involve standardisation, middleware, encryption and authentication
protocols, multi-factor authentication, and privacy techniques such as data minimisation
and anonymisation. The section concludes with a comparative analysis of these proposed
solutions, offering insights into their effectiveness in mitigating the identified threats and
vulnerabilities. It also provides a comprehensive and systematic overview of the security
and privacy issues in IoT, WSNs, and FL, presents a taxonomy of techniques and solutions
for addressing these issues, and can serve as a useful guide for researchers and practi-
tioners who are interested in developing secure and privacy-preserving IoT systems and
FL applications.

It is worth noting that security threats can also affect the FL system’s performance. In a
general FL system, each trained model from the FL clients contributes to the completion
of the global model. That means if a client’s model is trained on a compromised dataset
or if the uploaded model is altered in an undesirable way, the global model may suffer
from low accuracy, delayed convergence, or even divergence. One may take different
approaches to tackle such threats than conventional security-related solutions. For example,
anomaly detection can be used to identify outlier models so that they do not participate in
the global model aggregation. Also, one may compare the models among the devices that
are expected to accumulate data samples from similar distributions to identify suspicious
FL clients. In sum, the security expert of a FL system should also pay attention to the
aspects that can affect the performance of the global models.

In addition, although FL can protect privacy by not uploading the dataset collected by
FL clients, it still requires FL clients to upload the trained model, meaning that the structure
of the model can be exposed to the eavesdropper. As a solution to the model exposure
issues, split learning [148] can be a solution, which is out of the scope of this paper.

6. Performance Evaluation

Performance evaluation methodologies play a crucial role in assessing the effectiveness
and efficiency of systems related to the IoT, WSNs, and FL. These methodologies involve
the use of various metrics to measure system performance, including latency, energy
consumption, scalability, accuracy, and communication overhead. By evaluating these
metrics, researchers can gain insights into the strengths and weaknesses of different systems
and make informed decisions regarding their design and optimisation [47,48,79,83].

Latency is a key metric used to evaluate the performance of IoT, WSNs, and FL systems.
It refers to the time delay between the initiation of a request or task and the corresponding
response or completion. In IoT applications, low latency is often critical for real-time
monitoring and control tasks. For example, in industrial IoT applications, minimising
latency is essential for ensuring timely responses to critical events. In WSNs, latency affects
the timeliness of data delivery from sensor nodes to the sink node or base station. Similarly,
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in FL systems, latency impacts the speed at which model updates are propagated among
participating devices.

Energy consumption is another important metric in evaluating system performance.
In IoT deployments, devices are often battery-powered or have limited energy resources.
Therefore, minimising energy consumption is crucial for prolonging device lifetime and
reducing maintenance costs. In WSNs, where sensor nodes are typically deployed in
large numbers and may be difficult to access for battery replacement, energy efficiency is
paramount. FL systems also need to consider energy consumption as participating devices
may have limited power resources [48,79].

Scalability is a metric that measures how well a system can handle increasing work-
loads or accommodate a growing number of devices or users. In IoT applications, scalability
is crucial as the number of connected devices can range from a few to billions. Scalable sys-
tems can handle this growth without a significant degradation in performance or resource
utilisation. Similarly, in WSNs, scalability is essential to support large-scale deployments
and ensure efficient data collection. FL systems also need to be scalable to accommodate
a large number of participating devices and handle increasing model sizes. Accuracy is
a metric used to evaluate the correctness of system outputs or predictions. In IoT appli-
cations, accuracy is crucial for tasks such as anomaly detection, predictive maintenance,
and decision making based on sensor data. In WSNs, accuracy is important for ensuring
reliable and trustworthy data collection. FL systems also need to maintain high accuracy
levels to ensure the quality of the aggregated models.

Communication overhead refers to the additional resources consumed by communi-
cation processes in a system. This metric includes factors such as bandwidth utilisation,
message size, and network congestion. In IoT applications, minimising communication
overhead is essential for efficient use of network resources and reducing latency. In WSNs,
communication overhead affects energy consumption and network capacity. FL systems
also need to consider communication overhead as it impacts the time and energy required
for model updates and aggregation [4].

To evaluate these performance metrics, researchers employ various methodologies in
their studies related to IoT, WSNs, and FL. These methodologies often involve simulation-
based approaches, testbed experiments, or analytical models. Simulations allow researchers
to assess system performance under different scenarios and conditions while providing
control over various parameters. Testbed experiments involve deploying real hardware and
software components in a controlled environment to evaluate system performance under
realistic conditions. Analytical models provide theoretical insights into system behavior
and performance characteristics.

In [149], the authors provide a comprehensive review of the recent advances in
FL methods for medical image analysis and also present some experimental results to
compare the performance of FL and centralised learning on different medical imaging tasks.
One of the tasks is the classification of brain tumour subtypes using magnetic resonance
imaging (MRI) data from multiple hospitals. The paper reports that by using FL with
only 10 epochs for model updates, the average accuracy of the classification model was
improved from 75% to 90.8%, compared to centralised learning with 50 epochs. This shows
that FL can achieve significant improvements in diagnostic accuracy (up to 15%) compared
to traditional centralised methods with fewer training iterations while also preserving the
privacy and security of hospital data. This illustrates the effectiveness of FL despite fewer
training iterations. In [150], the authors report that by using FL and an asynchronous graph
convolutional network, the average accuracy of the prediction model was improved by up
to approximately 6.85% in Root Mean Squared Error and 20.45% in Mean Absolute Percent-
age Error compared to the existing models. This shows that FL can achieve comparable
or even better accuracy with fewer epochs while also reducing the communication and
computation overheads of centralised learning.

In [151], the authors introduce an approach to end-to-end on-device machine learning
by utilising FL and validate it with wheel steering angle prediction for autonomous driving
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vehicles. The model decreases training time by 75% and bandwidth costs by 25% while
achieving the same level of prediction accuracy as the widely used centralised learning
method. In [152], the authors proposed a FL framework for IoT devices, utilising DT
and edge networks for reliable real-time data processing. The framework increases data
privacy, enhances system security, and reduces latency. The Deep Reinforcement Learning
(Deep-RL) agent optimises resource allocation and energy consumption, ensuring real-time
data-processing interactions between IoT devices and edge servers. The Deep-RL-agent-
based DT optimises bandwidth allocation, localisation, and transmission costs, enhancing
learning efficiency, and the approach effectively selects 47.5% of local computing activities
with 1 MHz bandwidth, thereby minimising the weighted cost of edge-computing strategies.

In [153], the authors propose an efficient adaptive algorithm called FAFED based on
the momentum-based variance-reduced technique in cross-silo FL. The authors describe the
architecture of FAFED and its key components, including the edge server, the edge device,
and the cloud server. The paper shows that FAFED is the first adaptive FL algorithm to
achieve the best-known sample complexity of O(ϵ−3) and O(ϵ−2) communication rounds
for finding an ϵ-stationary point without using large batches. The experimental results on
the language modelling task and the image classification task with heterogeneous data
demonstrate the efficiency of FAFED. For the computational complexity of FL, this work is
an invaluable resource.

In conclusion, performance evaluation methodologies play a crucial role in assessing
the effectiveness and efficiency of IoT, WSNs, and FL systems. Metrics such as latency, en-
ergy consumption, scalability, accuracy, and communication overhead are used to measure
system performance. By evaluating these metrics through simulation-based approaches,
testbed experiments, or analytical models, researchers can gain valuable insights into
system behavior and make informed decisions regarding system design and optimisation.

7. Future Directions and Vision

In our visionary pursuit, we aspire to establish a cutting-edge paradigm that facilitates
secure and privacy-preserving data collaboration across heterogeneous IoT and WSNs
through the implementation of FL. Our overarching goal is to craft a unified framework
that seamlessly integrates the realms of IoT, wireless sensor networks, and federated learn-
ing, meticulously addressing the inherent challenges associated with data heterogeneity,
security, and privacy. By leveraging the capabilities of FL, we intend to overcome the intri-
cacies presented by diverse data sources, ensuring a harmonised approach that not only
upholds the integrity of the integrated system but also safeguards against potential security
threats and privacy breaches. This comprehensive vision demonstrates our commitment to
advancing the understanding and practical application of a unified ecosystem in which
the synergy between IoT, WSNs, and FL not only thrives but also sets a benchmark for
secure, privacy-preserving data collaboration in the ever-changing landscape of techno-
logical integration. By prioritising these key elements, our objective is to maintain a lucid
and cohesive narrative that not only adds depth but significantly contributes to a broader
understanding of the subject matter.

Additionally, we aim to enrich our exploration by incorporating findings related to
performance measurement metrics, including latency, energy consumption, scalability,
accuracy, and communication overhead, ensuring that only the most pertinent insights are
integrated. Through this strategic approach, our vision is to elevate the overall quality and
impact of our article, providing a comprehensive and insightful resource for those seeking
a deeper understanding of the integration of IoT, WSNS, and FL. This paper’s relevant
views are summarised as follows:

• To enable secure and privacy-preserving data collaboration across heterogeneous IoT
and WSNs using FL.

• To create a unified framework for integrating IoT, WSNs, and FL that respects data
heterogeneity, security, and privacy.
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• To leverage FL to overcome the challenges of heterogeneity, security, and privacy in
IoT and WSN integration.

The existing literature on the integration of IoT, WSNs, and FL has made signifi-
cant progress in understanding the potential benefits and challenges of combining these
technologies. However, there are still several gaps in the current research that need to
be addressed, and future studies can explore various directions to further enhance the
integration of IoT, WSNs, and FL.

7.1. Standardisation of Protocols

One of the main gaps in the existing literature is the lack of standardised protocols
and frameworks for integrating IoT, WSNs, and FL. While there have been efforts to
develop protocols such as MQTT and CoAP for IoT communication, there is a need for
similar standards specifically tailored for WSNs and FL. Standardisation would enable
interoperability between different devices and systems, facilitating seamless integration
and collaboration.

7.2. Security and Privacy Considerations

Another gap in the literature is the limited understanding of the security and privacy
implications of integrating IoT, WSNs, and FL. As these technologies involve collecting
and analysing sensitive data from various sources, ensuring data confidentiality, integrity,
and privacy becomes crucial. Future research should focus on developing robust security
mechanisms that can protect data during transmission, storage, and processing. Addition-
ally, privacy-preserving techniques such as differential privacy can be explored to mitigate
the risk of re-identification attacks.

7.3. Scalability Challenges

Furthermore, there is a need for more comprehensive studies on the scalability and
resource constraints associated with integrating IoT, WSNs, and FL. As the number of
connected devices continues to grow exponentially, scalability becomes a critical factor.
Researchers should investigate how to efficiently handle large-scale deployments of IoT
devices and WSNs while maintaining low latency and high throughput. Moreover, con-
sidering the resource-constrained nature of many IoT devices and WSNs, energy-efficient
algorithms and optimisation techniques should be developed to minimise power consump-
tion without compromising performance.

7.4. Edge and Fog Computing Paradigms

In terms of future research directions, one promising area is the exploration of edge
computing and fog computing paradigms in the integration of IoT, WSNs, and FL. Edge
computing involves processing data closer to the source, reducing latency and bandwidth
requirements. Fog computing extends this concept by distributing computing resources
across multiple edge devices, enabling more efficient data processing and analysis. By lever-
aging these paradigms, researchers can investigate how to offload computationally inten-
sive FL tasks to edge devices or fog nodes, improving overall system performance.

7.5. Adaptive and Self-Organising Algorithms

Another potential research direction is the development of adaptive and self-organising
algorithms for IoT, WSNs, and FL integration. Traditional centralised approaches may not
be suitable for dynamic and heterogeneous environments where IoT devices and WSNs
can join or leave the network at any time. Adaptive algorithms can dynamically adjust
their behavior based on changing network conditions, ensuring robustness and scalability.
Self-organising algorithms can enable autonomous coordination and collaboration among
distributed devices, optimising resource utilisation and enhancing system resilience.
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7.6. Integration of AI Techniques

Additionally, future research can explore the integration of artificial intelligence (AI)
techniques such as ML and DL with IoT, WSNs, and FL. AI algorithms can enhance the
capabilities of IoT devices and WSNs by enabling intelligent decision-making, anomaly
detection, and predictive analytics. By combining AI with FL, researchers can investigate
how to train models collaboratively on distributed data while preserving privacy, enabling
more accurate and efficient analysis.

In conclusion, while the existing literature has made significant progress in under-
standing the integration of IoT, WSNs, and FL, there are still gaps that need to be addressed.
The standardisation of protocols, security and privacy considerations, scalability challenges,
edge computing and fog computing paradigms, adaptive and self-organising algorithms,
and the integration of AI techniques are all potential areas for future research. By exploring
these directions, researchers can further enhance the integration of IoT, WSNs, and FL,
unlocking their full potential in various domains.

8. Conclusions

This systematic literature review conducted on the integration of IoT, WSNs, and FL
has revealed several key findings. This review aimed to explore the current state of research
in this area and identify the potential benefits and challenges associated with integrating
the three core technologies to enable intelligent decision-making in various domains.

Firstly, the review found that the integration of IoT, WSNs, and FL has the potential to
revolutionise data collection, data exchange, and decision-making processes across different
domains. By leveraging the vast amount of data collected by IoT devices and WSNs,
FL algorithms can be used to train models collaboratively without sharing raw data.
This enables organisations to make more accurate and informed decisions based on real-
time data analysis.

Secondly, the review highlighted the importance of data privacy and security when
integrating these technologies. As IoT devices and WSNs may collect sensitive data,
ensuring the privacy and security of this data becomes crucial. FL provides a solution to
this challenge by allowing model training without exposing raw data, thereby preserving
privacy while still benefiting from collective intelligence.

Additionally, the review identified several domains where the integration of IoT,
WSNs, and FL can have significant impacts. These domains include healthcare, trans-
portation, agriculture, smart cities, industrial automation, and environmental monitoring.
In healthcare, for example, integrating these technologies can enable remote patient moni-
toring, early disease detection, and personalised treatment plans. In transportation, it can
facilitate intelligent traffic management systems and autonomous vehicles. In agriculture,
it can optimise irrigation systems and crop yield prediction. These examples demonstrate
the wide-ranging applications and potential benefits of integrating IoT, WSNs, and FL.

Heterogeneity in FL can have a significant impact on the accuracy and reliability of
the model to be trained in a distributed manner. The statistical, architecture, network,
communication, model, generation of the device, manufacturer of the device, and type
of device can all contribute to the issue of heterogeneity. To address this challenge, it is
essential to develop sophisticated methods and techniques that can handle the variations
in data formats, quality, and capabilities of devices in a FL system.

Furthermore, the review emphasised the need for further research in this area. While
there are already numerous studies exploring different aspects of integrating IoT, WSNs,
and FL, there is still much to be explored in terms of scalability, interoperability, energy
efficiency, and algorithm optimisation. Future research should focus on addressing these
challenges to fully realise the potential of this integration.

In conclusion, this systematic literature review highlights the importance of integrating
IoT, WSNs, and FL for enabling intelligent decision making in various domains. The review
reveals that this integration has the potential to revolutionise decision-making processes,
preserve data privacy and security, and have significant impacts in domains such as health-
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care, transportation, agriculture, smart cities, industrial automation, and environmental
monitoring. However, further research is needed to address scalability, interoperability,
energy efficiency, and algorithm optimisation challenges.
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