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Abstract: Multi-spectral imaging technologies have made great progress in the past few decades. The
development of snapshot cameras equipped with a specific multi-spectral filter array (MSFA) allow
dynamic scenes to be captured on a miniaturized platform across multiple spectral bands, opening
up extensive applications in quantitative and visualized analysis. However, a snapshot camera
based on MSFA captures a single band per pixel; thus, the other spectral band components of pixels
are all missed. The raw images, which are captured by snapshot multi-spectral imaging systems,
require a reconstruction procedure called demosaicing to estimate a fully defined multi-spectral
image (MSI). With increasing spectral bands, the challenge of demosaicing becomes more difficult.
Furthermore, the existing demosaicing methods will produce adverse artifacts and aliasing because of
the adverse effects of spatial interpolation and the inadequacy of the number of layers in the network
structure. In this paper, a novel multi-spectral demosaicing method based on a deep convolution
neural network (CNN) is proposed for the reconstruction of full-resolution multi-spectral images
from raw MSFA-based spectral mosaic images. The CNN is integrated with the channel attention
mechanism to protect important channel features. We verify the merits of the proposed method using
5 × 5 raw mosaic images on synthetic as well as real-world data. The experimental results show that
the proposed method outperforms the existing demosaicing methods in terms of spatial details and
spectral fidelity.

Keywords: multi-spectral filter array; demosaicing; convolution neural network

1. Introduction
1.1. Background

Multi-spectral images, which contain rich spectral and spatial information, have been
utilized in a wide range of applications in different fields such as food safety inspection [1],
medical diagnosis [2], precision agriculture [3], and target tracking [4,5]. A series of multi-
channel imaging systems utilizing image sensors have been invented to meet the demands
for the capture of multi-spectral images (MSIs). These systems can be classified into
the following three categories: (i) single-camera multi-shot systems [6], (ii) multi-camera
one-shot systems [7], and (iii) single-camera one-shot systems [8–13]. Single-camera multi-
shot systems rely on precisely controlled environments and complex equipment, while
multi-camera single-shot systems require optical system calibration [14]. Furthermore,
single-camera multi-shot systems capture spectral–spatial information at multiple spectral
bands by sequentially switching a specific optical filter for each band [15]. Therefore,
this technology is unsuitable for capturing dynamic scenes of moving targets because
of switching among filters is time-consuming. To overcome these shortcoming, single-
camera one-shot systems, which are equipped with special multi-spectral filter arrays
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(MSFAs), have emerged to acquire spectral–spatial information simultaneously from a
single shot [16,17]. The principle is to reduce the acquisition time by adding a multi-
spectral color filter array in front of the camera sensor. The structural design has the
merit of compacting the sensor size and taking snapshots, which leads to low spatial
resolution since each pixel of an MSFA only captures spectral information of a specific
band. The recovering procedure, called demosaicing, as shown in Figure 1, is the key
step to obtaining a full-resolution and high-quality multi-spectral image cube [18]. As the
number of spectral bands and the sparsity of sampling increase, the estimation of missing
pixels becomes more difficult, which makes the demosaicing procedure of MSFAs more
challenging. For all this, a variety of MSFA patterns and corresponding demosaicing
methods [19–21] have been proposed to improve demosaiced image quality. Figure 2
shows three different MSFA patterns with 6 bands, 5 bands, and 25 bands.

Figure 1. The procedure of multi-spectral demosaicing.

Figure 2. Several different MSFA patterns: (a) Brauers and Aach’s MSFA; (b) Monno et al.’s MSFA;
(c) our MSFA.

1.2. Related Works

Brauers and Aach [22] proposed a fast linear interpolation demosaicing method for a
six-band MSFA, as shown in Figure 2a. Their demosaicing method initially employs bilinear
interpolation for each band based on the color difference between channels, which was
developed for the field of demosaicing for color filter arrays (CFAs). The method assumes
that the adjacent bands exhibit similarity in the spatial structures, such as textures or edges.
The similarity is referred to as inter-band correlation. Nevertheless, the assumption that
there is a strong correlation across all channels cannot be satisfied.

Monno et al. [11] proposed a demosaicing method for the five-band MSFA pattern, as
shown in Figure 2b. The filters of the MSFA are, respectively, R, Cy, G, Or, and B. The filter
G is arranged most densely, allowing it to preserve spatial structures in the image more
intricately than the others. Therefore, the proposed demosaicing method utilizes the G
band to interpolate other bands based on inter-band correlations.

Wang et al. [23] extended a discrete wavelet transform (DWT)-based CFA demosaicing
to the MSFA demosaicing. Their approach independently reconstructs the high-frequency
and low-frequency components of the image. The reconstruction of the low-frequency
component employs intra-band interpolation, whereas the high-frequency component’s
reconstruction follows the “substitution rule” introduced by Driesen and Scheunders [24].
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The substitution rule replaces the high-frequency components of each band in an MSI with
the high-frequency components corresponding to the middle-spectral channel, assuming it
to be the sharpest one. However, this method strongly relies on inter-channel correlations,
and the substitution rule is applicable only to Bayer CFA but not fully extendable to MSFAs.

Miao et al. [25] proposed a novel demosaicing method that is binary tree and edge-
sensing (BTES) based. In an MSFA, the sampling positions of each channel are mapped
onto nodes in a binary tree. They interpolate the unknown pixel iteratively by edge-
aware interpolation to improve the quality of the resulting images. However, due to the
fact that the estimation of missing pixels in BTES only utilize intra-channel correlation,
the reconstructed image failed to retain spatial details.

Mihoubi et al. [26] involved the use of a pseudo-panchromatic image (PPI), which is
the average spectral value of all spectral bands, to aid in the demosaicing process. Their
approach assumes a strong correlation between the PPI and all channels. The proposed
method combines the pseudo-panchromatic image with the original multi-spectral im-
age to improve the accuracy and quality of the demosaicing process, resulting in more
accurate multi-spectral images. Nevertheless, the assumption regarding the correlation
between PPI and all channels in this method seems to be relatively weak, and it requires
complex computations.

In recent years, convolutional neural networks (CNNs) have been employed as a
data segmentation method for many low-level image processing problems, such as im-
age deblurring [27], super-resolution [28–30], mechanical fault diagnosis [31,32], and
denoising [33–35]. In recent years, many multi-spectral reconstruction methods have
also been proposed, such as MST++ [36], HSCNN+ [37], and AWAN [38]. MST++, which
achieves higher-performance metrics with fewer computational and parameter resources,
employs a multi-stage spectral-wise transformer to perform spectral reconstruction. HSCNN+
is a CNN-based method for RGB image hyperspectral restoration. This method achieves
more accurate solutions by deepening the network structure. AWAN is a deep self-adaptive
weighted attention network that can obtain more precise MSI and better reconstruction
quality. Similarly, all kinds of deep learning-based methods have been proposed for MSFA
deosaicing. Shinda [39] proposed a deep deosaicing network that combines the deep
residual network ResNet with three-dimensional (3D) convolution, the final results of
which are superior to the pseudo-panchromatic image difference (PPID) method. However,
the images generated by this approach may exhibit false color artifacts in areas of high
contrast and brightness. The method proposed by Wisotzky [40] involves using raw sparse
multi-spectral images (MSIs) cube as the input of the deep convolutional network (DcNet),
maintaining the complete spatial information of the original image. However, performing
standard convolution on sparse inputs can lead to some artifacts, making the convergence
of the network more difficult. Many deep-learning-based methods often validate their
effectiveness on publicly available datasets, but they rarely validate their performance on
real-world captured images. Furthermore, improving the quality of real-world captured
images using models trained on public datasets remains a challenging problem. In this
paper, we assume that public datasets can be used to simulate images captured by a real
camera based on camera parameters. The aim is to enhance the quality of real captured
images by training better models.

1.3. Our Contribution

Multi-spectral imaging systems, which are based on MSFA, often capture objects of
interest in complex environments, resulting in poor image quality. Therefore, the proposed
demosaicing method must have strong robustness. Moreover, the above demosaicing
methods have certain limitations in the quality of image restoration.

In this paper, based on the spectral and spatial correlations existing in mosaic images
captured by the snapshot MSFA imaging sensors, we propose a deep neural network that
combines channel attention mechanisms with CNNs, which is able to extract features
automatically and protect important channel features, for multi-spectral images based
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on 25-band MSFA, as shown in Figure 2c. The proposed demosaicing method makes the
following main contributions:

• We analyze the acquisition process of multi-spectral images, laying the theoretical
groundwork for synthesizing the mosaic images and the radiance label images using
the spectral sensitive functions (SSFs) of the IMEC camera we purchased and the
available illuminants.

• We present a simple and feasible end-to-end deep convolution neural network that
introduces the channel attention mechanism, which is able to adaptively adjust channel
feature response and protect important channel features.

• The methodology we propose exhibits superior demosaicing performance on both
simulated datasets and real-world scenarios compared to other existing methods,
offering significant potential for the application of IMEC’s camera in both commercial
and industrial sectors.

2. Observation Model

In this section, we perform the description of the observation model for the snapshot
imaging systems based on MSFA. A single-sensor multi-spectral camera fitted with MSFA
of K band provides a raw image IMSFA with M × N pixels. As depicted in Figure 3, at each
pixel of a raw mosaic image IMSFA, only one out of the K bands is available while the levels
of the remaining bands are missing. Furthermore, we consider that a fully defined MSI with
K bands {Gλ}K

1 can be modulated through a series of sampling matrices {Xλ}K
1 . Finally,

the raw mosaic image can be formulated as

IMSFA =
K
Σ

λ=1
Xλ · Gλ (1)

where · represents the pixel-wise product.

Figure 3. The model of a snapshot mosaic imaging system fitted with an MSFA.

Our expectation is to use the CNN network to learn a mapping model T that can
estimate a high-precision MSI. The entire process can be formulated as

∧
θ = arg min lMSI(T(IMSFA; θ), G) (2)

where lMSI(·) refers to the loss function, and θ represent the parameters of the networks.

3. Reference Image Simulation

We refer to the multi-spectral image I = {I j}K
j=1, which is composed of K fully defined

channels corresponding to K bands, as the reference image. The reference image is often
utilized as a reference for evaluating the demosaicing quality, although it cannot be provided
by multi-spectral cameras fitted with a single-sensor. To obtain the reference image, we
employ the multi-spectral image formation model described in Section 3.1 to simulate the
acquisition process. Subsequently, we will utilize the acquired reference image to generate
spectral mosaic images, which serve as inputs to our network.
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3.1. Multi-Spectral Image Formation

Assuming ideal optics and uniform spectral sensitivity of the sensors, the image for
the j-th channel can be expressed as

I j = Q(
∫

Ω
E(λ) · R(λ) · T j(λ)dλ) (3)

where the term E(λ) refers to the relative spectral power distribution of the light source,
which uniformly illuminates all surface elements within the scene. Ω stands for the working
spectral range. R(λ) represents the reflectance function of all surface elements. The camera
captures the radiance spectrum represented by E(λ) · R(λ). This spectrum is then filtered
based on the transmittance T j(λ) of the band j, which is centered at the wavelength λj.
The pixel values in the image of the last j-th channel are determined by quantifying the
received energy using the function Q.

3.2. Simulation of Radiance Data

In order to simulate the radiance data, we need (i) illumination data and (ii) reflectance.
(i) We specifically consider three standard light sources (F12, A, and D65) to generate
radiance data. Their relative spectral power distributions E(λ) are defined for all [420 nm,
1000 nm]. (ii) The TT-59 database consists of high-quality hyperspectral images, which are
saved in the form of spectral reflectance. The reflectance is defined on 59 bands, ranging
from 420 nm to 1000 nm at 10 nm intervals and centered at {420 nm, 430 nm, . . . 1000 nm}.
Assuming linear continuity of reflectance, we can use linear interpolation of the reflectance
data from the TT-59 database to get R(λ) for all integer wavelengths λ within the range of
[420 nm, 1000 nm].

3.3. Multi-Spectral Image Simulation

In order to simulate the reference channels provided by the IMEC camera we pur-
chased according to Equation (1), we also need transmittance Ti

IMEC(λ) of the the IMEC
camera. Transmittance Ti(λ) differs based on the specific camera. The IMEC camera sam-
ples 25 bands with known transmittance Ti

IMEC(λ). By summing discretely with d(λ) = 1,
Equation (1) transforms to

I j = Q(
1000
Σ

λ=420
E(λ) · R(λ) · Ti

IMEC(λ)) (4)

4. Proposed Demosaicing Method
4.1. Network Framework

Multi-spectral demosaicing can be seen as an interpolation method that utilizes known
pixel information from the raw mosaic image to estimate the missing pixel information.
The bilinear interpolation, which is fast and easy to achieve, can effectively recover low-
frequency information in the image. Furthermore, the CNN has the ability to reconstruct
the high-frequency information of the image by learning the mapping relationship between
the original mosaic image and the multi-spectral image. Therefore, we utilize the strengths
of both to achieve the reconstruction process.

First of all, we regard the multi-spectral demosaicing process as an end-to-end learning
task. The input to our network is the two-dimensional raw mosaic image generated by
Section 3.3. Based on the spatial and spectral correlation existing in multi-spectral filter
array mosaic images, we propose an end-to-end deep convolution neural network that
introduces the channel attention mechanism to reconstruct an fully defined and high-
quality MSIs. The proposed method first utilizes K sampling matrices to separate the
band of the initial mosaic input image, as shown in Figure 4, generating K sparse single-
spectral images. Sparse single-spectral images exhibit values exclusively at particular
spectral band pixels, with information absent at the remaining pixels. The proposed
method utilizes a 9 × 9 convolution filter, as shown in Equation (6), to perform a rough
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and quick reconstruction. The 9 × 9 convolution is performed independently on sparse
spectral images for each spectral band. The low-frequency information of the images
can be effectively recovered, but the details and textures of the images suffer from more
severe loss. We utilize parallel convolution and a deep residual network (ResNet) to reduce
artifacts in the initial demosaiced image. The efficient channel attention (ECA) module [41]
is introduced into both the parallel convolution and ResNet to adaptively adjust channel
feature response and protect important channel features. The ECA module eliminates
the fully connected layer typically present in traditional attention mechanism modules.
Instead, it directly employs a 1D convolution on the features following global average
pooling for learning. Because experimental evidence has shown that convolution has
excellent cross-channel information-gathering capabilities. The ECA module achieves
the fusion of global contextual information by squeezing the feature maps. This step
is accomplished by performing global average pooling, transforming the feature maps
from a size of (N, C, H, W) to (N, C, 1, 1). Then, ECA calculates the size of the adaptive
convolutional kernel using Equation (5) and maps the weights between 0 and 1 using the
sigmoid activation function. In Equation (5), C represents the number of input channels,
we set γ and b to 2 and 1. Finally, ECA performs element-wise multiplication between the
reshaped weight values and the original feature maps to obtain feature maps with different
weights. The diagram of the ECA module is shown in Figure 5. The detailed structure of
the proposed method network is illustrated in Figure 6.

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣ (5)

F = 1/25



1 2 3 4 5 4 3 2 1
2 4 6 8 10 8 6 4 2
3 6 9 12 15 12 9 6 3
4 8 12 16 20 16 12 8 4
5 10 15 20 25 20 15 10 5
4 8 12 16 20 16 12 8 4
3 6 9 12 15 12 9 6 3
2 4 6 8 10 8 6 4 2
1 2 3 4 5 4 3 2 1


(6)

The proposed network consists of three steps: initial demosaicing, convolutional net-
work, and residual network. The initial spectral mosaic image is the input of the network.
The process of the initial demosaicing is used to transform the input from 480 × 480 × 1 to
480 × 480 × K. The value of K is set to 25, and it is determined by the number of spectral
bands of the specific snapshot camera. The relationship between the initial demosaicing
image and the reference image is utilized to train the whole network model, which is able
to restore the high-frequency information of the multi-spectral image. The convolutional
network uses three convolution kernels of different sizes to implement parallel convolution
operations on the initial demosaiced image, respectively, which is able to obtain the shallow
features of the multi-spectral image. The three paths of the convolutional network adopt
convolution kernels of 1 × 1, 3 × 3, and 5 × 5, respectively, and the number of kernels
is 128. Each path has the same input, which is processed in the same way: convolution
operation, rectified linear unit (ReLU), convolution operation, and ECA. The convolution
operation can automatically extract important features from multi-spectral images without
any manual supervision. The main function of ReLUs is to improve the expression ability
of the CNN model by making the network sparse and reducing the possibility of gradient
disappearing. The ECA module with channel attention mechanism is added at the end
of each convolutional pathway, allowing for the adaptive adjustment of channel feature
responses and preserving important information. The results of the three paths are summed
as the input to the residual network. The residual network [42] can effectively extract deep
features from multi-spectral images while preserving important information. The unique
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architecture can effectively solve the problem of gradient vanishing and explosion. Each
residual block has the same structure with skip connections, which consists of two convolu-
tional layers with the filter size of 3 × 3, ReLU activation functions, and ECA. The number
of extracted feature maps is 128. There are 12 residual blocks in the residual network.
The output of the residual network performs one convolutional operation to obtain the final
fully defined multi-spectral image. A 5 × 5 convolution kernel is used for convolution, and
the number of images obtained through convolution should be consistent with the number
of spectral bands. The convolution layer has a stride with padding to ensure that the size
of the input and output arrays remains the same. In the proposed network structure, all
convolution kernel coefficients are determined by learning. The ReLU function in the
proposed network is f = max(x, 0), which has the ability to improve the speed of network
training [43].

Figure 4. Band separation.

Figure 5. A diagram of the efficient channel attention (ECA) module.

4.2. Loss Function

In order to enable the trained network model to more accurately reconstruct the fully
defined MSI, we design a weighted combination loss function to minimize the signal
reconstrucion errors of the demosaiced image. We define the real image as I and define the

final reconstructed images as
∧
I . The overall loss function can be formulated as

Ldemosaic = Lmse + α · Lwavelet (7)
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Figure 6. A schematic diagram of the proposed demosaicing method.

Typically, the MSE (mean squared error) is commonly used as a loss function in the
field of image processing because it encourages estimated pixel values to be closer to the
ground truth. The MSE loss function can be formulated as

Lmse =
1
N

·
N
Σ
p

∥∥∥∥Ik
p − I

∧
k
p

∥∥∥∥2

2
(8)

where k and p represent the channel index and the pixel index, and N is the number of
pixels in the image.

Morever, we introduced an additional edge loss to enhance the shaperness and texture
richness of the final estimated images. We transform the final estimated images and
the reference images into wavelet domain, respectively, and calculate their MSE after
transformation in the high-frequency sub-bands. The edge loss can be calculated as

Lwavelet =
1

Nw
·

Nw
Σ
q

∥∥∥∥wI
q − w

∧
I
q

∥∥∥∥2

2
(9)

where wI
q and w

∧
I
q represent the qth wavelet coefficients of the final estimated images and

the reference images, respectively. Nw is the number of high-frequency wavelet coefficients
of the image decomposed by stationary wavelet transform. We use Haar filters in wavelet
transformation and set the transformation level to 2.

5. Datasets and Training

We use the TT-59 database [44] to evaluate the effectiveness of the proposed demo-
saicing method. Multi-spectral images in the database are saved in the form of spectral
reflectance, which is more convenient for us in synthesizing the radiance data. The TT-59
database has 16 scenes, which are divided into 11 scenarios for training the models and
5 scenarios for evaluating the performance of the model. We utilize the SSFs of the IMEC
camera we purchased to synthesize the raw images with a 5 × 5 mosaic, illustrated in
Figure 2c, where the spectral bands of the IMEC camera were centered at λi = 699, 713, 726,
739, 752, 766, 780, 794, 807, 821, 834, 847, 859, 872, 884, 896, 908, 919, 930, 941, 952, 962, 972,
982, and 992 nm.

In the practical training of the proposed multi-spectral demosaicing approach, in order
to artificially augment the number of training samples, we use two CIE standard light
sources (D65 and F12) and rotate 90◦, 180◦, 270◦ during the training of the model. During
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the training of the network, we randomly extract 32 mosaic images with a size of 480 × 480
as a batch input. The optimizer of the network is Adam, and the learning rate is initialized
to 0.0001 for all of the layers. We implemented the network model using the TensorFlow
neural network framework. The deep learning model was trained for 500 epochs. In this
paper, we used Python 3.6 to train the models, and all the experiments were conducted on
a laboratory server with the configuration of an NVIDIA GeForce RTX 3090 12 GB GPU.

6. Experimental Results with Simulated Data and Real-Word Data

To validate the effectiveness of the model, we compare the proposed demosaicing
method with three existing traditional demosaicing methods including weighted bilinear
interpolation (WB), binary tree-based edge-sensing (BTES), pseudo-panchromatic image
difference (PPID), and two deep-learning-based methods, including ResNet-3D [39] and
deep convolutional network (DcNet) [40]. Furthermore, three metrics were utilized to
represent the quality of the reconstructed multi-spectral image [45,46], which are the peak
signal-to-noise ratio (PSNR), the structural similarity (SSIM), and the spectral angle mapper
(SAM), respectively. The PSNR is to calculate the difference in pixel values between the
reconstructed image and the reference image. The larger the value of PSNR between the
two images, the better the quality of the reconstructed image. The SSIM is an image quality
evaluation index that is utilized to measure the image degradation between the reconstructed
image and the reference image. The value range of SSIM is [0, 1]. The larger the SSIM value,
the smaller the distortion degree of the reconstructed image. The SAM, which is widely used
in pixel classification in multi-spectral imaging, is utilized to measures the spectral fidelity
between the reconstructed image and the reference image by calculating the spectral angle.
The smaller the value of SAM, the higher the spectral similarity between the reconstructed
multi-spectral image and the reference image. We select two scenes Cloth3 and Spray in
the database to visually compare the reconstructed images, which were generated by the
above demosaicing methods. We crop and zoom in an area of 140 × 140 pixels from the
reconstructed images for display. The visual comparison of reconstructed results by the
above demosaicing methods is shown in Figures 7 and 8.

As shown in Figures 7 and 8, the edge of the image reconstructed by WB and BTES is
highly blurred, and high-frequency information is seriously lost. The preservation of details
in the PPID is significantly superior to WB and BTES, but the PPID still suffers from poor
artifact prevention. The results from the ResNet-3D and DcNet are significantly superior
to conventional methods, but still exhibit some artifacts. The image reconstructed of the
proposed method provides better edge information with almost no artifacts and noise.

The PSNR and SSIM quantitative comparison results are shown in Table 1. The best
results are highlighted in bold. Furthermore, The PSNR and SSIM values are calculated
from the average of all test scenes in the database. Compared to other demosaicing methods
in the spatial domain, the proposed demosaicing method has a significant improvement
in both the PSNR and the SSIM. Table 1 indicates that the proposed demosaiking method
outperforms the existing methods. The SAM comparison results are given in Table 2.
In order to verify the effect of the proposed method, we randomly select four points from
the reconstructed image to calculate SAM. The average SAM is reduced to 0.4168. Table 2
indicates that the proposed demosaiking method has an obvious superiority over other
existing methods in spectral domain.

Due to the fact that the visual quality of an image cannot be strictly reflected by the
PSNR/SSIM metrics, we compare the subjective quality of the demosaicing results on
three test scenes from the TT-59 database using the error maps, which are the absolute
errors between the demosaicing results and the ground truth. As shown in Figure 9, our
method has superior demosaicing results in MSI images, which indicates that our method
outperforms other demosaicing methods in terms of spatial accuracy. To further compare
the superiority of the proposed method compared to other demosaicing methods in terms of
spectral performance, we compared the absolute errors of all methods along the spectrum
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using the three scenes in Figure 9. As shown in Figure 10, the proposed method is much
closer to the ground truth, which demonstrates higher spectral fidelity than other methods.

Figure 7. The visual quality comparison results of different demosaicing methods for cloth3 scenes.
(a,b) is the reference image and the ground truth. (c) is the result of the WB. (d) is the result of the
BTES. (e) is the result of the PPID. (f) is the result of the ResNet-3D. (g) is the result of the DcNet.
(h) is the result of ours.

Figure 8. The visual quality comparison results of different demosaicing methods. (Images are
converted to sRGB for display). (a,b) is the reference image and the Ground Truth. (c) is the result of
the WB. (d) is the result of the BTES. (e) is the result of the PPID. (f) is the result of the ResNet-3D.
(g) is the result of the DcNet. (h) is the result of ours.
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Table 1. Demosaicing results (PSNR/SSIM) for three typical scenarios and the average results for all
test scenarios on the TT-59 dataset. (Bold indicates the best result).

Methods
Spray Cloth3 Doll2 Average of All Test

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

WB 26.60 0.9006 25.42 0.8998 26.88 0.9068 26.42 0.9016
BTES 26.72 0.9076 25.78 0.9014 27.56 0.9106 27.64 0.9048
PPID 35.46 0.9810 33.78 0.9624 36.78 0.9764 35.78 0.9784

ResNet-3D 41.87 0.9992 39.41 0.9975 40.26 0.9970 41.53 0.9978
DcNet 42.76 0.9993 41.12 0.9980 41.77 0.9972 41.98 0.9982
OURS 45.87 0.9999 42.50 0.9988 43.55 0.9984 44.88 0.9990

Table 2. Demosaicing results (SAM) at different pixel points for doll2 scenes. (Bold indicates the
best result).

Image Methods Point 1 Point 2 Point 3 Point 4 Average

WB 1.2973 1.1768 1.1618 1.6128 1.2482

BTES 1.1236 1.1752 1.1527 1.5023 1.2378

PPID 0.8952 0.8681 0.8486 0.8749 0.8254

ResNet-3D 0.8011 0.8340 0.7981 0.8292 0.8022

DcNet 0.6420 0.6690 0.7447 0.6791 0.6814

OURS 0.4266 0.4331 0.4720 0.4154 0.4168

Figure 9. Visual quality comparison of representative scenes of the TT-59 database at 699 nm. The
error maps for WB/BTES/PPID/ResNet-3D/DcNet/our demosaicing results.

To evaluate the generalization ability of the proposed model, we select scene peppers
in the CAVE database to visually compare the reconstructed images. We crop an area of
140 × 140 pixels from the reconstructed images for display. The reconstructed results by
the above demosaicing methods are shown in Figure 11. As shown in Figure 11, The image
reconstructed of the proposed method provides better edge information with almost no
artifacts and noise. To further validate the effectiveness of our method, we conducted
quantitative comparisons using three metrics: PSNR, SSIM, and SAM. The results are
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shown in Tables 3 and 4. The quantitative comparison results indicate that the proposed
method outperforms the other methods.

Figure 10. The absolute error between the demosaicing results and the ground truth of the scenes in
Figure 9 along the spectrum for all methods.

Table 3. Demosaicing results (PSNR/SSIM) for three typical scenarios and the average results for all
test scenarios on the cave dataset. (Bold indicates the best result).

Methods
Sponges Paints Feathers Average of All Test

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

WB 25.58 0.9112 26.18 0.9018 26.46 0.9132 25.84 0.9106
BTES 25.88 0.9178 26.72 0.9124 26.88 0.9186 26.95 0.9162
PPID 36.62 0.9788 34.22 0.9728 37.46 0.9652 36.12 0.9720

ResNet-3D 40.26 0.9986 39.58 0.9964 39.86 0.9972 40.84 0.9980
DcNet 41.52 0.9990 40.46 0.9986 41.04 0.9982 41.08 0.9986
OURS 44.12 0.9997 41.86 0.9986 43.20 0.9988 43.24 0.9989

Table 4. Demosaicing results (SAM) at different pixel points for peppers scenes. (Bold indicates the
best result).

Image Methods Point 1 Point 2 Point 3 Point 4 Average

WB 1.3820 1.2526 1.2764 1.5208 1.3206

BTES 1.2960 1.2542 1.2328 1.4856 1.2726

PPID 0.9042 0.8528 0.8664 0.8812 0.8652

ResNet-3D 0.8324 0.8226 0.8168 0.8456 0.8288

DcNet 0.7812 0.7416 0.7852 0.7018 0.7182

OURS 0.5126 0.4864 0.4912 0.4328 0.4418

The proposed demosaicing method is applied in real-world images acquired by a real
5× 5 snapshot camera. This camera has a spatial resolution of 409× 217 (per band), and the
frame rate can reach up to 170 data cubes per second (full sensor frame). As shown in
Figures 12 and 13, the proposed method is better than the traditional methods of WB and
PPID. In terms of the details of the overall image, our method is also superior to ResNet-3D
and DcNet.
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Figure 11. The visual quality comparison results of different demosaicing methods for peppers scenes.
(a,b) is the reference image and the Ground Truth. (c) is the result of the WB. (d) is the result of the
BTES. (e) is the result of the PPID. (f) is the result of the ResNet-3D. (g) is the result of the DcNet.
(h) is the result of ours.

Figure 12. The visual results of a building using different demosaicing methods at 699 nm. (a) is
the mosaic image. (b) is the result of the WB. (c) is the result of the PPID. (d) is the result of the
ResNet-3D. (e) is the result of the DcNet. (f) is the result of ours.
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Figure 13. The visual results of a signboard using different demosaicing methods at 699 nm. (a) is
the mosaic image. (b) is the result of the WB. (c) is the result of the PPID. (d) is the result of the
ResNet-3D. (e) is the result of the DcNet. (f) is the result of ours.

7. Discussion

In this paper, we propose a snapshot multi-spectral demosaicing method for MSFA
images based on the channel attention network. Extensive experiments indicate that the
proposed demosaicing method has an obvious superiority over other existing methods in
image quality and spectral domain. We also demonstrate that our method can guarantee
real-time demosaicing performance in real-world shooting scenarios in ablation studies.

However, due to the limited number of training samples and the influence of the
network architecture, the results of the proposed demosaicing method on real-world data
still have some artifacts. How to more effectively utilize public datasets to simulate images
captured based on camera parameters is also a factor. This is also a direction on which we
will focus our future research efforts.

8. Ablation Studies

To demonstrate the effect of the proposed ECA module, we use the plain network
without any attention as our base model, and then we study the networks with different
attention in Table 5:

(1) The base model without any attention, labeled as NT-NA;
(2) The base model with ECA added to the convolutional network, labeled as NT-CN;
(3) The base model with ECA added to the residual network, labeled as NT-RN;
(4) The base model with ECA, which is our full model, is labeled as NT-FM.

All of these networks are trained under the same default settings for fair comparison.
We test and average all the test images in the TT-59 database. Table 5 indicates that the
proposed method are all better in terms of spatial accuracy and spectral fidelity than the
other attention modules.
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Table 5. The ablation study of the network with different attention. (Bold indicates the best result).

Case PSNR SAM

NT-NA 41.56 0.5436

NT-CN 42.88 0.5324

NT-RN 42.86 0.5312

NT-FM 44.88 0.5132

To further validate the effectiveness of the ECA module, we selected scenes from the
dataset for visual quality comparisons. As shown in Figure 14, the proposed method is
better than the other attention modules.

Figure 14. The visual results of different cases.

The running time and computational cost of the demosaicing method are of great
importance when implemented on a realistic multi-spectral imaging system. Therefore,
we compared the running time and GFLOPs of several deep-learning-based methods in
Table 4. All experiments are implemented using the same machine (Intel Xeon Platinum
8260 CPU 2.40GHz, and NVIDIA GeForce RTX 3090 12 G GPU) and implemented on all test
images of the TT-59 database. As shown in Table 6, the proposed method can guarantee
real-time demosaicing performance.

Table 6. The demosaicing performance comparison of different methods.

Methods Running Times (ms) GFLOPs

ResNet-3D 2.87 932.4

DcNet 2.16 50.6

Ours 2.46 68.2
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9. Conclusions

In this paper, we present an end-to-end network based on the channel attention
network to demosaic spectral mosaic images acquired by an MSFA-based imager. To
achieve high-accuracy demosaicing of MSFA images, the proposed method takes advantage
of the channel attention mechanism to protect important channel features, which is able to
avoid artifacts and aliasing during the process of demosaicing. Our experimental results
demonstrated that the proposed method generates more accurate demosaicing results in
terms of spatial accuracy and spectral fidelity compared to other existing methods. It also
serves as a universal multi-spectral demosaicing approach that can be adapted to different
MSFA patterns with different spectral resolutions. Finally, We validated the effectiveness of
the proposed method on real-world mosaic images with a pattern size of 5× 5, which offers
an alternative pathway for the real-time application of multi-spectral imaging in complex
environments. Because the results of the proposed demosaicing method on real-world
data still have some artifacts, we need to improve the network structure (e.g., change
from bilinear interpolation to PPID in the initial demosaicing) in the future. In summary,
the proposed method could be potentially utilized to build high-quality MSFA-based image
acquisition systems working well in object detection, medical diagnosis, and food safety
inspection applications.
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