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Abstract: Reconfigurable intelligent surfaces (RIS) offer the potential to customize the radio propaga-
tion environment for wireless networks, and will be a key element for 6G communications. However,
due to the unique constraints in these systems, the optimization problems associated to RIS configura-
tion are challenging to solve. This paper illustrates a new approach to the RIS configuration problem,
based on the use of artificial intelligence (AI) and deep learning (DL) algorithms. Concretely, a custom
convolutional neural network (CNN) intended for edge computing is presented, and implementations
on different representative edge devices are compared, including the use of commercial AI-oriented
devices and a field-programmable gate array (FPGA) platform. This FPGA option provides the
best performance, with ×20 performance increase over the closest FP32, GPU-accelerated option,
and almost ×3 performance advantage when compared with the INT8-quantized, TPU-accelerated
implementation. More noticeably, this is achieved even when high-level synthesis (HLS) tools are
used and no custom accelerators are developed. At the same time, the inherent reconfigurability of
FPGAs opens a new field for their use as enabler hardware in RIS applications.

Keywords: 6G; reconfigurable intelligent surfaces; artificial intelligence; neural networks; FPGA

1. Introduction

The future of mobile communications appears to be highly promising, as it is marked
by the emergence of new use cases and complex demands. A forecast by the International
Data Corporation (IDC) estimates that there will be 55.7 billion Internet of Things (IoT)
devices in 2025, capable of generating 80 zettabytes (ZB) of data [1]. Meanwhile, after years
of diligent research and development, the initial commercial rollout of the 5th generation
(5G) mobile communication standard was successfully concluded in June 2018. At this
moment, new 5G network deployments are underway in more than 30 countries [2], with a
large offer of commercial 5G-compatible mobile devices. This significant advancement
marks the beginning of a new era for mobile communications, presenting three distinct use
cases with differing demands: enhanced mobile broadband, ultra-reliable and low-latency
communications, and massive machine-type communications. Notably, the standardization
process underscores a crucial realization: no single enabling technology exists that can fully
accommodate all the diverse application requirements of 5G wireless networks [3].

Taking into consideration the discussion above, in order to meet future needs, ex-
perts in the field have already embarked on research into 6th generation (6G) wireless
communications, which will provide possibilities for multiscale global connectivity and
distributions [4]. There are several emerging trends around the idea of this new generation,
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including the development of new antenna technologies or the inclusion of artificial intelli-
gence (AI) techniques into intelligent network systems [5], which will inevitably introduce
communication engineering challenges. These challenges will require the exploration and
adoption of radically new communication paradigms, particularly at the physical layer [3].

Traditionally, the propagation medium of wireless communications has been un-
derstood as a randomly behaving entity between the transmitter and the receiver. This
randomness implies uncontrollable interactions of the transmitted radio waves that de-
grade the quality of the received signal. However, in recent years, a new technology with
the potential of changing this by adding the possibility of controlling the wireless chan-
nel itself has appeared. This technology is the use of reconfigurable intelligent surfaces
(RIS) [3,6–9], also referred to in the literature as intelligent reflecting surfaces (IRS) [10] or
large intelligent surfaces (LIS) [11].

RIS are planar surfaces composed of an array of cells built of reflecting materials. RIS
can be affixed to flat surfaces, such as walls or buildings, with the aim of redirecting radio
frequency signals to the desired locations. Each RIS cell can be individually configured,
generating a specific arrangement that will reflect the incident signal towards the target
device. In order to enable more efficient communication, the signal must be transmitted
to the receptor system without encountering obstacles or necessitating signal repeaters,
which, in turn, results in an increase in power consumption. Therefore, it is this ability, just
by reconfiguring the reflecting surface, to redirect the incident signal to the target devices
that positions RIS as a key technology for the green transition to 6G communications [5].

The optimization problem associated with the computation of the most suitable RIS
configuration for a certain scenario may require significant real-time data processing, which
is not always possible. In [9], the non-dominated sorting genetic algorithm (NSGA-II) is
used to derive the RIS configuration by maximizing the amount of energy concentrated
in the particular region of space of the RIS that enables the desired redirection of the
beam. This method begins with an initial RIS configuration and iteratively changes random
parts until the resulting RIS reaches the target signal amplitude, which makes the process
time-consuming and unsuitable for edge computing applications (the computation of a
single configuration with this algorithm may take up to 3 min on a 20-core Intel® Xeon®

server). Thus, artificial intelligence, which has achieved significant breakthroughs in big-
data processing systems, has been considered in the literature as an option to address this
optimization [12]. Furthermore, edge computing is emerging as a solution for decentralized
data processing, both reducing the latency associated with cloud computing and aiding the
achievement of real-time processing [13]. Considering these facts, this work introduces a
novel approach to compute the configuration of RIS devices, illustrated with a 1-bit 15 × 15
RIS example. Thus, this proposal makes use of a convolutional neural network (CNN)
specifically designed and trained to compute the phase shift for each RIS cell according
to certain input features based on a representation of the desired redirection angle for
the incident signal. Furthermore, this CNN is optimized for deployment on different
devices including field-programmable gate arrays (FPGAs), which are an ideal solution
to implement AI accelerators as well as to optimize performance at the edge computing
level [14]. Hence, this work showcases the implementation of an ad hoc CNN on various
devices to address the RIS optimization challenge. Its main contributions reside in the
ability of this CNN to be adapted to different data flows and target devices, and the
illustration of the advantages of the combination of AI techniques and FPGA devices as the
target technology to enable the adoption of RIS for 6G deployment.

The rest of the manuscript is organized as follows. Section 2 provides a brief overview
of RIS devices, their applications, and the diverse architectures currently under study. It
also discusses the basics of using AI techniques to solve the optimization problem for
obtaining a RIS configuration according to the signal redirection objective. Furthermore, it
explores the relevance of computing this on the edge, as well as the current devices in this
field. In Section 3, the databases on use and the neural network (NN) design process are
described. Section 4 details the NN implementation method on different devices. Finally,



Sensors 2024, 24, 899 3 of 21

in Section 5, the results of the deployment of the resulting CNN are presented and compared
using different devices, and the conclusions are summarized in Section 6.

2. Edge Computing for RIS
2.1. Reconfigurable Intelligent Surfaces

RIS technology emerges as a key player in shaping the future of wireless communi-
cations. At 6G frequencies, it is highly probable that signals are absorbed, reflected, or
scattered by common urban and rural elements such as buildings, hills, and vehicles. Thus,
the environment can become hostile to signal transmission. In such a scenario, maintaining
a direct line-of-sight (LOS) between the emitter or base station (BS) and the users is crucial,
and this is precisely how RIS technology becomes a key feature in the 6G era [8]. The way
this is accomplished is by effectively establishing a virtual LOS [15]. RIS can be strategi-
cally placed in the radio channel between the transmitter and the receiver, as shown in
Figure 1, so the RIS cell configuration is adjusted to purposefully reflect the signal toward
the user’s receptor.

1 
 

 
  

Figure 1. Usage of RIS to create a virtual LOS.

RIS technology does not only bring the advantage of preventing signals from being
blocked by obstacles, but it also has the potential to establish a secure network by simul-
taneously increasing the received signal power for the intended user and minimizing
any information leakage to potential eavesdroppers [15]; at the same time, tracking the
position of the the target user ensures uninterrupted communications despite users moving
around [16]. Furthermore, there are additional beamforming applications in which the
incident signal is divided into multiple beams and redirected towards multiple users. For in-
stance, the potential benefits that RIS could bring to multicast networks or IoT networks
have been explored in the literature [15]. RIS applications are thus almost limitless.

An RIS can be defined as an array functioning as an antenna, typically built using
either metamaterials or conventional patch-array antennas equipped with rapid electronic-
switching capabilities. These arrays have the capacity to control electromagnetic waves
by enabling anomalous reflection, refraction, polarization transformation, and various
other functionalities. In this context, our focus is on RIS configured as anomalous reflective
and/or refractive surfaces capable of tailoring the propagation environment by directing
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signals to desired directions through reflection and/or refraction [5]. Depending on the RIS
application and the throughput required, various hardware configurations and operational
modes come into play. In terms of cell architecture, RIS can be continuous, in which the
finite surface is made up of a virtually infinite number of elements, or discrete, where
a limited number of independent elements are configured to achieve the desired phase
shift [17].

The number of elements is closely related to the resolution achieved in the target
angle by the RIS device and depends on the number of phase shifts each cell can perform.
The simplest cell is a binary cell, which allows two-phase shifts, 0◦ and 180◦, coded in a
single bit. In any case, the availability of more phase-shift levels implies better resolution at
the cost of higher complexity in the computational problem of RIS configuration.

2.2. Why Deep Learning and Not Other Approaches

Another critical aspect is the optimization method to compute the precise phase shift
that each cell must provide in order to meet the redirection demands for a particular
RIS or a particular application. Numerous mathematical approaches have been detailed
in the literature to optimize phase shifts, many of which rely on iterative calculations.
However, these methods are both resource-intensive and time-consuming. Deep learning
(DL) techniques involve feeding an algorithm with a vast amount of data, enabling it to
solve a complex problem automatically based on the experience gained during the learning
process [18]. As a result, the required computation resources can be reduced.

In recent years, the growing utilization of AI has demonstrated its potential to address
this optimization challenge with reduced time and resource usage [12]. The strategy used
in both the arithmetical and AI methods involves calculating a continuous phase shift to be
implemented in each cell. If discrete phase shifts must be used due to design or hardware
constraints, the preferred approach is to compute the continuous phase shift and then
quantize it based on the available discrete levels in the design [12].

In this work, the input data format, discussed further in Section 3, is a color image with
three separate 2D arrays, with each array corresponding to one of the RGB (red, green, blue)
color channels. This makes CNNs perfectly suitable for processing these data [18]. The use
of CNNs in applications such as face recognition is widely known, but they are extensively
used as an advanced alternative to classical image processing in applications such as
food or character recognition [19], where images are processed to extract certain features.
Considering all of the above, CNNs can be considered as a suitable option to process target
angle-derived information and thus optimally obtain the desired RIS configurations.

2.3. Why on the Edge

With the rapid evolution of technology, the increasing number of data-transmitting
devices, including IoT devices, and the resulting substantial increase in the volume of
data sent to the cloud for processing, edge computing has emerged as a pivotal paradigm
nowadays. Instead of sending a large amount of data to a central server, data are processed
locally, just where sensor or actuator devices are deployed. Consequently, edge devices,
placed close to data sources and end-users, play a crucial role in processing and analyzing
data locally, thus mitigating the challenges posed by latency, bandwidth, and privacy
concerns [13].

This shift towards edge computing is also a consequence of the current state of data
science, which demands the processing of vast quantities of data during both the learn-
ing and inference processes for artificial neural networks (ANNs). In this context, edge
computing holds the potential to enhance performance significantly, enabling efficient AI
computational acceleration through edge devices suitable for AI processing such as central
processing units (CPUs), graphical processing units (GPUs), tensor processing units (TPUs),
FPGAs, or dedicated application-specific integrated circuits (ASICs) [20]. A clear example
of this is the emergence of embedded GPU-based technologies, also referred to as neural
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processing units (NPUs), that several smartphone manufacturers are integrating into their
devices to process data with AI algorithms on the edge [21].

This study proposes a novel approach to compute RIS configurations from data de-
rived from target angles, in which a signal must be redirected using a RIS device whose
configuration is inferred by AI algorithms. This derived information can contain large
volumes of data and, furthermore, the computational load can be intensified as the size of
the target RIS increases. Consequently, sending all these data to be processed in a server
and having the RIS configuration sent back to the device or devices modifying the RIS
setup could result in significant data bandwidth, along with notable data latency. As a
result, this approach might not be efficient in meeting real-time requirements. Consid-
ering all this, the use of edge devices becomes essential to mitigate latency and reduce
data bandwidth effectively.

2.4. Target Edge Devices

Numerous devices have been explored in the literature to enhance the performance of
edge computing. These devices are designed with the aim of optimizing various aspects of
edge computing, such as latency reduction, enhanced processing capabilities, or improved
energy efficiency. GPUs are among the devices that are more generally used to compute AI
on the edge. GPUs were originally developed and architected to process images and videos.
Comprising multiple parallel processors, GPUs facilitate parallelization, i.e., breaking down
complex problems into smaller tasks that can be simultaneously computed. This feature
makes GPUs suitable for AI training and inference, where a vast amount of data and
calculations are needed, and the parallel computing capacity significantly speeds up the
process [14].

In recent years, GPUs have played a pivotal role in accelerating AI tasks. However,
GPUs imply more power consumption than other specific devices aimed for AI, such as
TPUs, or devices with a hardware configuration specifically designed for the goal, such as
FPGAs or ASIC devices. For this reason, along with the booming interest in AI, Google
developed a device specifically intended to run DL models with an exceptional degree of
efficiency. These devices are known as TPUs, which comprise arrays of multiplication units.
Initially designed for cloud computing, the first versions from Google, TPU1 and TPU2,
were enormous servers to compute data in a data center. However, the evolving trend
towards edge computing has driven the evolution to edge TPUs, designed to meet power
consumption and size requirements while delivering high-performance acceleration [14].
One such example of these devices is Google Coral, which has been chosen to implement
the neural network developed in this study, thereby enabling a comparison with other
target devices.

The final devices considered in this study are FPGAs. FPGAs are reconfigurable
devices that provide the capability to implement customized hardware designs. Due to their
inherent flexibility, they can be applied to a wide range of fields, and, notably, recent studies
have positioned them as key components in the realm of AI science [14]. The development
of tailored hardware to compute the target NN and the required operations within an
FPGA brings the benefit of optimizing and parallelizing the computation according to
the design limit and the capacity of the target hardware device. Flexible architectures
of FPGA devices not only offer the advantage of optimizing NN architectures, but also
enable the implementation of the additional features required in the final implementation.
For instance, the development on FPGAs of digital control systems for reconfigurable
antennas has been explored in the literature [22]. This approach opens up the possibility
of implementing the RIS-cell control system along with the AI optimization algorithm to
configure each RIS cell according to the desired redirection.

3. Methodology

As it was detailed above, the aim of this work is to develop a deep learning model able
to estimate the optimal configuration of an RIS, which is illustrated with a 1-bit 15 × 15
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RIS example. The approach that has been followed to achieve this goal is to consider
this optimization as a classification problem, i.e., given an input derived from the target
angle for the beam redirection of the RIS, each RIS cell is classified into two classes, 0 or
1 (0◦ or 180◦ phase-shift), depending on the configuration needed to create the desired
redirection. Thus, each cell is activated or deactivated to change the signal phase according
to its classification result. This strategy is only valid when the RIS resolution is coded in
1 bit; however, for larger resolutions, this approach would still be valid when adapted to
the necessary number of bits per cell.

In order to obtain a model that estimates the optimal configuration of the RIS, it was
decided to use a supervised learning approach to train the neural network. Therefore,
it is necessary to have a correctly labeled dataset that serves as the ground truth, based
on which the neural network is optimized and tested. In this work, radiation diagrams
have been used as the input to the network. These diagrams show in which direction the
signal reflected by the RIS has the greatest energy. For each of these diagrams, there is an
associated RIS configuration, thus obtaining the pairs (x, y) used for training. Section 3.1
will show a detailed explanation on how the dataset is generated.

To train the network, it is also required to take into consideration the fact that equiva-
lent configurations for the RIS are possible. This means that, for a given target redirection
of the incident wave in the RIS, two or more valid configurations are possible. The num-
ber of these valid solutions varies according to the number of bits used to represent the
phase-shift. In order to address this, a custom loss function, which takes this fact into con-
sideration for the training of the model, has been developed. Further details on the model
architecture, custom loss function, training and validation, and evaluation are available in
Sections 3.2, 3.3, and 3.4, respectively.

3.1. Dataset Generation

The first step in developing an ANN involves the generation of a comprehensive
dataset. In light of the points mentioned above, this work introduces a novel approach to
compute the configuration of an RIS device. In this way, the input data must represent the
direction in which the RIS is intended to redirect the incident wave. To do this, the resolution
of the RIS has to be taken into account, given that, as mentioned above, the state of each
of the cells is represented with just 1 bit. This, combined with the assumption that what
impinges the RIS is a plane wave, causes the reflected wave not to have a main lobe,
but rather two specular ones [23]. Furthermore, due to the periodicity of the RIS cells being
0.75λ, grating lobes will start to emerge in undesired directions when the direction of the
reflected wave deviates significantly from that of the incident wave. Due to these side
effects, it is not necessary to sweep all the possible direction values of the reflected wave
when generating the dataset.

For the generation of the training dataset, the illumination of the RIS with the plane
wave was set to be normal. In the spherical coordinate system, assuming that the RIS is
positioned in the XY-plane, a sweep is performed in azimuth (ϕ) from −89◦ to 90◦ and in
elevation (θ) from −25◦ to 25◦, with 1◦ resolution in both cases. In this way, the space for
z > 0 where no grating lobes are expected is covered, and, as for z < 0, no radiation is
foreseen due to the nature of the RIS. For each of these directions, a pair (x, y) of training
values was generated, where the input of the network, x, is the desired direction of the
reflected wave, and the output, y, is the optimal RIS configuration achieving that redirection.
The total number of training pairs is thus 9180.

In order to represent the desired direction for the reflected wave, the information
is presented in the form of a radiation diagram, which is an image of 343 × 342 pixels.
Figure 2a illustrates three samples of the radiation diagrams. These images show the space
distribution of the energy of the signal, therefore indicating in which direction the signal
has the greatest energy. For this, a UV mapping was performed, so that a transformation of
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the ϕ/θ angles to their corresponding u/v space coordinates was made. This coordinate
transformation is detailed in Equation (1):

u = sin θ cos ϕ

v = sin θ sin ϕ.
(1)

Train data

Train labels

a)

b)

Figure 2. Samples extracted from the training dataset: (a) train images, (b) train labels.

The label for each of these images is represented as an array of 225 elements (since the
size of the RIS is 15 × 15), with each element being the phase-shift of each of the cells of the
RIS. Three examples of the resulting RIS configuration are represented in Figure 2b. These
labels were obtained through a brute-force ad hoc algorithm characterized as follows:

• It takes as a reference the amount of energy in the desired direction with a random
configuration of 0/1. Now, cell by cell, their states are inverted, and then the energy
is again checked. If it has increased, the inversion is maintained; if not, it is reverted.
When all the elements have been processed, new sweeps are performed until the
stopping criterion is met: at the end of a sweep, less than 10% of the element’s states
have been inverted. This threshold is set because the computational cost of conducting
a new sweep does not justify the marginal improvement in the energy value.

• Although the algorithm converges relatively quickly, the computational cost is high
and sustained over time and not suitable for real-time calculations.

With all this in mind, the use of an ANN-based algorithm to calculate the optimal
configuration of the RIS is justified, since these algorithms can be accelerated on different
platforms, making it feasible to perform these calculations in real time.

3.2. Model Architecture Design

CNNs are nowadays one of the most effective tools for computer vision applications,
such as object detection [24], image recognition [25], or image classification [26]. The way
they process data makes manual feature engineering unnecessary, as is usually the case
with traditional algorithms, since CNNs achieve this feature learning from large datasets.
As it was detailed in Section 3.1, the input data in this work are images representing the
space distribution of the energy of the wave, which makes CNNs especially suitable for
this application.

The NN model architecture design has been based on some well-known CNNs in the
literature, which have also been implemented on FPGAs [27]. One of them is the LeNet-5
model, a modification of the classic LeNet [28], which has been used in many application
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scenarios, like medical diagnosis [29], signal processing [30], or image segmentation [31].
It is a simple and efficient CNN, which offers great performance in some of the cases.
However, this model does not deliver strong performance in this particular application. As a
result, a modified version of the OverFeat model [32], winner of the ImageNet Large Scale
Visual Recognition Challenge 2013, was considered, and it was adjusted to the requirements
of this specific RIS problem. The number of layers and the architecture’s complexity were
determined through experimentation and validation on a separate validation set, and the
final architecture design is shown in Figure 3.

Figure 3. Convolutional neural network architecture diagram.

The first layer of the network is a Lambda layer, whose purpose is to normalize
the image so that each pixel has values in the range [0, 1]. It must be noted that the
original 343 × 342 input image is first padded to 360 × 360 to match this Lambda layer
better. After that, a set of convolutional layers is applied, whose aim is to reduce the
dimension (width and height) of the original image progressively and increase the feature
dimension. The activation functions are ReLU layers, which are commonly used in CNNs.
TensorFlow [33] and Keras [34], which are software tools widely used in data science, were
chosen for the development of the CNN.

During training of a deep neural network, one of the possible difficulties that can arise
is that the distribution of the inputs to layers deep in the network may change after each
mini-batch when the weights are updated. This can cause the learning algorithm to chase a
moving target. To solve this problem, two batch normalization layers are placed between
the inner convolutional layers. These layers apply a normalization by mean and standard
deviation, plus re-scaling (γ) and biasing (β) parameters, as shown in Equation (2). These
two parameters are learnable parameters and will enable the accurate normalization of
each batch during training:

y =
x − E[x]

Var[x] + ϵ
γ + β. (2)

The final stage of the network is composed of two fully connected layers, which apply
a multiplication by a weight matrix and the sum of a bias to obtain the classification result
from the features extracted by the convolutional layers. The activation function of the last
fully connected layer is a Sigmoid, since its output range is limited to the interval [0, 1] and
can be related to a probabilistic value. If the outcome of the Sigmoid function is greater
than 0.5, then the classification result will be in the 1-class, or positive, while the remaining
outcomes will be classified as 0 (negative class). Table 1 shows a complete summary of the
model architecture.
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Table 1. Summary of network model.

Layer Type Output Shape Activation Number of
Parameters

Input Padding [360,360,3] - 0
Lambda 1 Lambda 1 [360,360,3] - 0
Conv2d_0 Conv2D [180,180,8] ReLU 224
Conv2d_1 Conv2D [90,90,16] - 64

BN_0 BatchNormalization [90,90,16] - 64
LR_0 Activation Layer [90,90,16] ReLU 0

Conv2d_2 Conv2D [45,45,32] ReLU 4640
Conv2d_3 Conv2D [15,15,64] - 18,496

BN_1 BatchNormalization [15,15,64] - 64
LR_1 Activation Layer [15,15,64] ReLU 0

Conv2d_4 Conv2D [8,8,128] ReLU 73,856
Conv2d_5 Conv2D [4,4,256] ReLU 131,328
Conv2d_6 Conv2D [1,1,512] ReLU 2,097,664

FC_0 Dense [1,1,256] ReLU 131,328
FC_1 Dense [1,1,225] Sigmoid 57,825

Reshape Reshape [15,15,1] - 0
Total: 2,516,849

1 The Lambda layer applies a normalization to the original image.

3.3. Custom Loss Function

One of the considerations in the description above, as also mentioned in the introduc-
tion to this section, is the fact that there are equivalent configurations that cause the RIS
to redirect the incident waves in the same direction. Concretely, for any given RIS config-
uration, if the state of every cell is modified by the same phase-shift offset, the resulting
configuration will be equivalent to the initial one. Thus, if the phase-shift is discrete and
represented with k bits, there will be N = 2k equivalent configurations for each possible
combination of cells, since only 2k phase-shift states are possible for each cell. Figure 4
shows two examples of equivalent configurations. It can be seen that, with 1-bit resolution,
the equivalent configuration of any combination of cells is thus just its logical NOT, as the
only applicable phase-shift offset is 180◦, i.e., each cell is switched to the other possible state.
In the case of 2-bit resolution, 4 equivalent configurations are possible, which correspond
to 90◦ offsets.

a)

b)

Figure 4. RIS equivalent configurations for different resolutions: (a) states represented with 1 bit,
(b) states represented with 2 bits.

The loss function, or cost function, computes the “distance” between the current
output of the model and the expected output, so the target is to minimize it during training.
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The classical loss function that is applied in binary classification problems is called binary
cross-entropy, and it is shown in Equation (3):

L = − 1
N

N

∑
i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi), (3)

where N is the number of samples in the batch, yi is the expected output, and ŷi is the
estimated one. In order to use this function, it will be necessary to adapt it, since in this
case there are multiple binary outputs, one for each cell. However, the main problem with
this function is that the distance between two equivalent configurations is the maximum
when it should be the minimum. In order to overcome this, a custom loss function was
developed, which takes into consideration the expected output and its logical NOT, taking
the minimum cross-entropy between them. This loss function is shown in Equations (4)–(6):

L1i = − 1
M

M

∑
j=1

yij · log(ŷij) + (1 − yij) · log(1 − ŷij) (4)

L2i =− 1
M

M

∑
j=1

yij · log(ŷij) + (1 − yij) · log(1 − ŷij)

= − 1
M

M

∑
j=1

(1 − yij) · log(ŷij) + yij · log(1 − ŷij)

(5)

L =
1
N

N

∑
i=1

min(L1i , L2i ), (6)

where M is the number of cells of the RIS and N is again the number of samples in the
batch, while yij is the logical NOT of the expected output.

3.4. Model Training and Evaluation

The Adam optimizer [35] was used for the training of the model. It is an extended
version of the classic stochastic gradient descent that has demonstrated good results, with a
learning rate of 0.001. For the batch, there is a trade-off between large and small sizes.
When it is large, there is a degradation in the quality of the model. On the other hand,
when it is too small, the noise of the gradient is increased. In this study, it was observed
that 32 samples per batch offers the best results, achieving good results with 100 epochs.

For the same reason that justifies the need for a custom loss function, to evaluate
our model it was also necessary to use a custom accuracy computation that takes into
consideration equivalent configurations. This is shown in Equation (7):

accuracy(y, ŷ) = max

(
1
M

M

∑
j=1

I(ŷj = yj),
1
M

M

∑
j=1

I(ŷj = yj)

)
. (7)

Here, the same nomenclature is followed, with ŷj being the j-th cell of the estimated
configuration, and yj and yj the j-th cell of the expected configuration and its logical NOT
(the equivalent configuration), respectively. With this combination of train hyperparameters,
the obtained accuracy is 98.88%.

4. Implementation

Edge computing is becoming a viable alternative as technology advances and more
computation resources are available within edge devices and their inherent limitations.
While a wide variety of options are available, the most prevalent devices used in edge
computing were discussed in Section 2.4. Thus, and in order to facilitate a comparison
among these edge devices, one representative example from each category was selected
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in this study. The ROCK 4C Plus [36] is a single board computer (SBC) used in this study
to infer the NN on a CPU. In the case of GPUs, the study focuses on the NVIDIA Jetson
Nano platform [37], an SBC combining a CPU and a GPU to enhance machine learning
computations. The Google Coral [38], on the other hand, features a TPU, while the Intel®

Arria® 10 SX SoC Development Kit [39] board is used as the representative FPGA device in
this comparative analysis. Their respective specifications are summarized in Table 2.

Table 2. ROCK 4C Plus, NVIDIA Jetson Nano, Google Coral, and Intel® Arria® 10 SX SoC Develop-
ment Kit specification summary.

ROCK 4C Plus NVIDIA Jetson Nano Google Coral Intel® Arria® 10 SX
SoC Development Kit

Device Family CPU + GPU GPU + CPU Edge TPU FPGA + CPU

CPU
ARM®

Cortex™-72
+

ARM®

Cortex™-A53

ARM® Cortex™-A57
ARM®

Cortex™-A53
+

ARM®

Cortex™-M4

ARM®

Cortex™-A9 MPCore

CPU Cores 2 + 4 4 4 + 1 2

CPU Architecture 64-bit 64-bit 64-bit 32-bit

CPU Max. Freq. 1.5/1.0 GHz 1.43 GHz 1.5 GHz 1.2 GHz

AI Acceleration -
NVIDIA Maxwell

architecture with 128
NVIDIA CUDA® cores

Google Edge TPU
coprocessor FPGA with

251,680 ALMs
+

1687 Variable
Precision DSPs

+
2131

20-kb BlockRAMs

RAM Memory 4 GB 64-bit LPDDR4
3200 MHz

4 GB 64-bit LPDDR4
1600 MHz

4 GB 32-bit LPDDR4
1600 MHz

2 GB + 1 GB 16-bit
DDR4 1200 MHz

Framework TensorFlow TensorFlow TensorFlow Lite

MATLAB® Deep
Learning HDL

ToolboxTM/Intel®

FPGA AI Suite

Operating System Debian Desktop
5.10.110

Ubuntu Desktop
4.9.253 Mendel Linux 4.14.98

Linux Intel SoC
4.9.0/Yocto

Linux 5.15.70

4.1. Neural Network Adaptation

To ensure a reliable comparison, the initial NN design was adjusted to find a compro-
mise for compatibility with the different platforms under study. This approach involves
deploying and executing the exact same neural network architecture on each of the afore-
mentioned devices. Respective frameworks are used to tailor and perform AI applications
on each device, resulting in different approaches for implementing the same neural network
on each platform. However, it is important to note that all of these implementations sprout
from the pretrained NN model, and inference and testing were performed with exactly the
same dataset.

The primary limitation in the initial NN design stems from its implementation on
FPGA, which is constrained by the frameworks in use. Notably, the Reshape and Lambda
layers are not supported by the tools employed for NN implementation. Consequently,
these layers were excluded from the initial design for all the selected devices, and a
new training process was conducted using the revised architecture. The resulting neural
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network remains identical in terms of architecture, but these excluded functions must now
be executed externally to the NN deployment. They can thus be regarded as preprocessing
and postprocessing functions. The Lambda layer is responsible for normalizing the input
image, while the Reshape operation aligns the output data dimensions to the requirements
of the RIS. The result of this new training process is a new pretrained NN, which is now
compatible with all the devices under study. It achieves an accuracy of 99.88% across the
dataset when implemented and tested in the TensorFlow framework, as expected from
the results in Section 3.4. The general workflow for implementation and testing over
the different platforms is depicted in Figure 5, while it must be noted that some of the
test platforms are compatible with the INT8 data type. Thus, the model has also been
quantized to INT8, and the corresponding training was carried out in order to optimize
this quantized model. Both the FP32 and INT8 models are implemented in the different
platforms according to their suitability to these two data types, and the results over these
test platforms are presented and discussed in Section 5. 

3 

 

 
  
Figure 5. Implementation workflow diagrams for different platforms.

4.2. CPU—ROCK 4C Plus

Despite including a GPU alongside the CPU, the ROCK 4C Plus board was chosen
to run the target neural network on the lower-capability CPU. This selection was made as
a reference point for the comparison, and to enable benchmarking with the other devices
in this study, which are more specialized for AI applications. This approach ensures a
well-rounded performance assessment across a range of devices with varying capabilities
and intended use cases.

Since the neural network is executed using the FP32 data type and the architecture is
compatible with the TensorFlow framework, no modifications are required for inference on
this device. Therefore, the pretrained neural network is executed directly with TensorFlow
to predict the RIS configuration for the previously preprocessed dataset and to compute
accuracy, as described in Section 3.4. Additionally, the platform can also support INT8, so
this quantized model is also tested on the ROCK 4C Plus, as will be discussed later.

4.3. GPU—NVIDIA Jetson Nano

The NVIDIA Jetson Nano is a compact yet powerful solution specifically designed
for AI applications. This SBC combines a CPU with the NVIDA Maxwell architecture
GPU with 128 NVIDIA CUDA® cores [40], thus allowing highly parallel computations and
making it a suitable choice for AI development. The NVIDIA Jetson Nano platform is also
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compatible with the TensorFlow framework for inference, so a similar approach to that in
Section 4.2 was adopted. The key distinction lies in the fact that this SBC includes a GPU
equipped with NVIDIA CUDA® cores. As a result, the NN takes advantage of this GPU
acceleration for execution, although only the FP32 model is supported.

4.4. TPU—Google Coral

Implementing neural networks on the Google Coral platform offers a powerful and
efficient solution for AI inference tasks. Google Coral is known for its Edge TPU [41], which
is a dedicated hardware accelerator designed to accelerate machine learning workloads
on edge devices. TensorFlow Lite is used to convert and optimize the pretrained NN for
deployment on the Coral device. The AI model is then executed with TPU hardware-
acceleration, and dataset outputs are predicted. However, the use of the TPU does require
the NN to be quantized to the INT8 data type; otherwise, the NN would be executed
exclusively by the ARM CPU cores. Thus, in the case of the Google Coral TPU, the INT8-
quantized NN model is the only one tested in this platform.

4.5. FPGA—Intel® Arria® 10 SX SoC Development Kit

The NN implementation on FPGA devices is carried out using two different high-level
synthesis (HLS) frameworks: the MATLAB ® Deep Learning ToolboxTM [42] version 14.6
and the MATLAB® Deep Learning HDL ToolboxTM [43] version 1.5, on the one hand,
and the OpenVINO toolkit [44] along with the Intel® FPGA AI Suite [45], on the other hand.
The MATLAB® R2023a revision is used in this study, while the Intel® toolkit comprises
the OpenVINO Toolkit version 2022.3 LTS and the Intel® FPGA AI Suite version 2023.2,
along with Quartus® Prime Pro 22.4.0 [46]. The workflow for both sets of tools is detailed
in the following.

4.5.1. MATLAB® Deep Learning HDL ToolboxTM

The Deep Learning HDL ToolboxTM provides a prebuilt image with the embedded
software and the FPGA configuration file implementing the AI acceleration hardware and
I/O peripherals. The workflow is illustrated in Figure 6 [47]. 

2 

 

 
  

Figure 6. NN implementation workflow for the Intel® Arria® 10 SX SoC Development Kit device
using the MATLAB® Deep Learning HDL ToolboxTM.

The implementation begins with the externally pretrained (using TensorFlow 2.6.0
and Keras 2.6.0) NN. This pretrained model is imported into MATLAB® using the Deep
Learning Converter for TensorFlow Models. However, as detailed above, the Lambda and
Reshape layers are not supported by this Deep Learning HDL ToolboxTM. Additionally,
the Sigmoid layer is supported by the tool but it is not specifically implemented in the
prebuilt bitstream for the device in the Intel® Arria® 10 SX SoC Development Kit. Thus,
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as detailed in Section 4.1, the Lambda and Reshape layers are excluded from the NN
for all platforms and are run as preprocessing and postprocessing operations in the host
computers, while the Sigmoid activation layer is implemented in this case as software run
in the Arria 10 SoC CPU.

Once the neural network is imported and converted into a Series or DAG Network
object in MATLAB®, the NN is compiled and deployed to the FPGA device using the
MATLAB® Deep Learning HDL ToolboxTM. It generates layer control instructions for
executing the specific neural network with the provided accelerator, and the weights and
activations are loaded into the device based on quantization level considerations. The NN
can be compiled to make use of either the FP32 (single) data type, which is the resulting one
after training and the same as that used for TensorFlow inference, or the INT8 quantization,
which yields better performance at the cost of reduced accuracy. The compiled model and
the preprocessed input data are transmitted from the host computer to the Intel® Arria®

10 SX SoC Development Kit device via the Ethernet link. The output is also received by
the host computer using the same communication channel. The test setup is depicted in
Figure 7. The Deep Learning HDL ToolboxTM not only provides the model compilation
and inference, but also provides data and tools to analyze and enhance NN performance
on the target hardware and reports latency and throughput (frames-per-second, FPS).
Table 3 provides an overview of the utilization of key FPGA resources for the deep learning
accelerator implementations for both FP32 and INT8 data types, while the clock frequency
of the DL processors is 200 MHz and 150 MHz, respectively, for these data types. A larger
resource usage is noticeable in Table 3 for the INT8 implementation, which is explained by
the use of more parallel convolution threads than what is possible with FP32.

 

4 

 

Figure 7. Intel® Arria® 10 SX SoC Development Kit test setup. The dataflow related to the NN
accelerator creation and deployment is represented in blue, while the test dataflow is illustrated in black.

Table 3. Resource usage in Intel® Arria® 10 SX SoC Development Kit with MATLAB® Deep Learning
HDL ToolboxTM.

ALM BlockRAM
Memory Bits BlockRAM

Variable
Precision

DSP

Total 251,680 43,642,880 2131 1687

FP32 Used 134,187 23,133,724 2131 255
Usage % 53.32% 53.01% 100.00% 15.12%

INT8 Used 160,818 17,584,432 2131 730
Usage % 63.90% 40.29% 100.00% 43.27%

4.5.2. Intel® FPGA AI Suite

The Intel® FPGA AI Suite tool flow works with the OpenVINO toolkit, which is an
open-source project to optimize inference on a variety of hardware architectures. The pre-
trained TensorFlow/Keras model is fed to OpenVINO and converted into an intermediate
representation (IR) format. This format encapsulates the neural network topology along
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with the weight and bias information. Subsequently, this IR model is optimized with the
Intel® FPGA AI Suite DLA Graph Compiler for inference on the target hardware, the Intel®

Arria® 10 SX SoC Development Kit in this case. The workflow is illustrated in Figure 8.
Simultaneously, the so-called CoreDLA IP core (deep learning accelerator IP core) is built
for this target device accordingly to the configuration specified in the IP architecture file.
The resulting bitstream is then integrated within the Yocto Linux system, alongside the
FPGA AI Suite Runtime Plugin for inference.

 

3 

 

 
  

Figure 8. Intel® FPGA AI Suite implementation workflow.

The CoreDLA IP can be built using different sets of performance/area parameters,
which include the possibility of using the FP16 data type. However, as it is not avail-
able for any of the other CPU-based platforms or the MATLAB® Deep Learning HDL
ToolboxTM, only implementations from the FP32 model are considered in this case, with the
A10_Performance and A10_Generic architectures [48]. Thus, Table 4 shows a summary
of the FPGA resource usage for these two Intel® FPGA AI Suite implementations. It
must be noted that these resources correspond to the CoreDLA IP as well as to all the
peripherals, including a Nios® V [49] instance, required for the communication between
the CoreDLA IP and the HPS (hard processor system) CPU of the Arria 10 SoC device.
Moreover, the CoreDLA IP is clocked in the two architectures at 100 MHz, even when
frequencies above 200 MHz are supported in both cases. The comparison of Tables 3 and 4
makes it clear that a more compact implementation is possible with the Intel® FPGA AI
Suite, although the MATLAB® Deep Learning HDL ToolboxTM allows users with practically
no hardware background to implement and use the NN accelerators, as well as interact
with them directly from the MATLAB® user interface. Performance results for all the test
platforms are discussed in Section 5.

Table 4. Resource usage in Intel® Arria® 10 SX SoC Development Kit with Intel® FPGA AI Suite.

ALM BlockRAM
Memory Bits BlockRAM

Variable
Precision

DSP

Total 251,680 43,642,880 2131 1687

A10_Generic Used 48,899 14,371,616 777 182
Usage % 19.42% 32.93% 36.46% 10.79%

A10_Performance Used 68,624 20,452,640 1102 606
Usage % 27.26% 46,36% 51.71% 35.92%

5. Results

The different implementations have been described in Section 4, and accuracy and
performance results are presented below for the different test platforms and devices.



Sensors 2024, 24, 899 16 of 21

5.1. Accuracy

In order to illustrate how accuracy is computed, it must be noted that, once the plat-
form in use was implemented, outputs were inferred for each input in the dataset. Thus,
accuracy is calculated on the basis of the labels or expected RIS, considering that both
the label and the opposite/complement are valid solutions, as discussed in Section 3.3.
An example of this is illustrated in Figure 9, where the output is computed using the Intel®

Arria® 10 SX SoC Development Kit, implementing the MATLAB® Deep Learning HDL
ToolboxTM FP32 accelerator, for the test element with index 94; the predicted RIS is com-
pared with both the expected RIS and its opposite. In this case, the opposite RIS is predicted
with 12 incorrect cells, resulting in an accuracy of 94.67% for this particular element in the
dataset and this hardware accelerator. The hit rate is then averaged across all predictions
for each accelerator under study. Table 5 provides a summary of the accuracy results for
the different platforms and frameworks, as well as for both FP32 and INT8 data types.
The results in Table 5 confirm that all the tested platforms/implementations are performing
adequately and in the same range of accuracy, always keeping in mind the slight reduction
in accuracy that can be expected from the INT8-quantized implementations. Regarding
the FP32 implementations, all of them provide the same accuracy, which also matches the
value derived from the model evaluation in Section 3.4. This confirms the validity of all
implementations, as there should be no noticeable deviation from the software evaluation
when floating-point is used. The INT8-quantized implementations obviously result in
reduced accuracy, which is more noticeable in the case of the FPGA implementation with
the MATLAB® Deep Learning HDL ToolboxTM but is almost negligible for Google Coral.

5.2. Performance

The same AI application was executed on all the devices, with the same quantiza-
tion and operation conditions, to ensure a reliable performance comparison among the
different edge devices. The time required for predicting all the samples was averaged to
calculate latency and frames-per-second (FPS) as performance metrics. The performance
results of all devices and implementations under test are summarized in Table 6, and are
graphically compared in Figure 10. Thus, several interesting conclusions can be drawn.
First, FPGA-based solutions provide the best performance, using the Intel® FPGA AI
Suite implementations. Their overall throughput is clearly superior to any of the other
alternatives, with an approximately ×20 increase in performance when the Intel® FPGA
AI Suite A10_Performance architecture is compared with the MATLAB® Deep Learning
HDL ToolboxTM FP32 implementation or the NVIDIA Jetson Nano. Second, while the
TPU-accelerated Google Coral option provides a remarkable performance when INT8 quan-
tization is considered, its performance is still around a third of what is possible with the
Intel® Arria® 10 SX SoC Development Kit. This remarkable performance of the FPGA de-
vices enables real-time computing of the RIS configuration, making it suitable for a broader
range of applications that require more demanding computing capabilities. At the same
time, it makes it possible to embed the RIS configuration problem into an edge computing
system, since the FPGA may host a more complex system along with the AI accelerator,
which in this particular RIS application may include the control system, additional acceler-
ators for RIS management or application, or even hardware not directly related to the RIS.
On an additional note, while the use of the MATLAB® Deep Learning HDL ToolboxTM does
not provide the best performance, it is interesting to note that the development of this kind
of implementation does require practically no hardware background from the user and
makes it possible to integrate the AI accelerator within the MATLAB® ecosystem for further
development of the global application. Finally, it must be noted that the performance
advantages shown here for the FPGA-based implementations were obtained using HLS
tools. This opens the possibility for the development of custom accelerators that could
further improve the performance of AI hardware, especially when new AI-oriented device
families are used as target devices.
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Figure 9. Inference example, Intel® Arria® 10 SX SoC Development Kit with Matlab® Deep Learning
HDL ToolboxTM FP32 accelerator: (a) expected RIS, (b) inferred RIS, (c) error when matching the
expected RIS and the inferred RIS, and (d) error when matching the opposite of the expected RIS and
the inferred RIS (errors are shown in red in both (c,d), coincidences in green).

NA

(a) (b)

Figure 10. Graphical performance comparison for (a) FP32 implementations and (b) INT8-quantized
implementations (performance of the A10_Performance implementation for the Intel® Arria® 10 SoC
DevKit and Intel® FPGA AI Suite is shown in green as a benchmark).
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Table 5. Accuracy comparison of NN execution across the different devices and implementations.

Devices FP32 INT8

ROCK 4C plus 98.88% 98.56%
NVIDIA Jetson Nano 98.88% -
Google Coral - 98.44%
Intel® Arria® 10 SoC DevKit & MATLAB® DL ToolboxTM 98.88% 91.62%
Intel® Arria® 10 SoC DevKit & FPGA AI Suite (A10_Generic) 98.88% -
Intel® Arria® 10 SoC DevKit & FPGA AI Suite (A10_Performance) 98.88% -

Table 6. Performance comparison of NN execution across the different devices and implementations.

FP32 INT8
Device FPS Latency (ms) FPS Latency (ms)

ROCK 4C plus 2.38 420.17 65.60 15.24

NVIDIA Jetson Nano 48.00 20.83 - -

Google Coral - - 345.93 2.89

Intel® Arria® 10 SoC DevKit &
MATLAB® DL ToolboxTM 51.19 19.54 104.92 9.53

Intel® Arria® 10 SoC DevKit &
FPGA AI Suite (A10_Generic)

881.09 1.13 - -

Intel® Arria® 10 SoC DevKit &
FPGA AI Suite (A10_Performance)

971.14 1.03 - -

5.3. Analysis of Resource Usage and Performance for FPGA Implementations

Since the FPGA device has been shown to provide the best performance, as detailed
above, it is interesting to analyze the resource usage for the different implementations
in the Intel® Arria® 10 SoC DevKit. Thus, Table 7 summarizes the resource usage for
the two implementations carried out for each of both MATLAB® Deep Learning HDL
ToolboxTM and Intel® FPGA AI Suite options. In this table, the resource usage of the
A10_Peformance architecture with the Intel® FPGA AI Suite is used as the benchmark
data, as it provides the best performance in Table 6. Therefore, the resource usage for
the other implementations is also shown as percentages (BM %) of the resources for this
benchmark. It is clear from these data that the Intel® FPGA AI Suite provides more efficient
implementations than the MATLAB® Deep Learning HDL ToolboxTM, not only in terms of
performance but also in terms of resource usage, especially when comparing the number of
required embedded memory blocks (BlockRAM) and logic elements (ALM). It is also worth
noting the difference in device occupation between the two MATLAB® Deep Learning HDL
ToolboxTM implementations: while the INT8-quantized version implies a slight reduction
in accuracy, it is able to almost double the performance over the FP32 option thanks to a
more intensive use of ALMs and, particularly, the embedded-multiplier variable-precision
DSP blocks. In any case, resource utilization for any of the Intel® FPGA AI Suite options
leaves more than half of the FPGA device available for implementing additional logic.
In this way, the FPGA implementation of the AI-based configuration of an RIS becomes a
viable edge computing system, as the FPGA can still host any other required logic for RIS
control, communications, or other related tasks, while maintaining the performance of the
CNN computation.
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Table 7. Resource usage comparison in Intel® Arria® 10 SX SoC Development Kit.

ALM BlockRAM
Memory Bits BlockRAM Variable

Precision DSP

Intel® FPGA AI
Suite

A10_Performance
Used 68.624 20,452,640 1102 606

MATLAB® DL
ToolboxTM FP32

Used
BM %

134,187
195.54%

23,133,724
113.11%

2131
193.38%

255
42.08%

MATLAB® DL
ToolboxTM INT8

Used
BM %

160,818
234.35%

17,584,432
85.98%

2131
193.38%

730
120.46%

Intel® FPGA
AI Suite

A10_Generic

Used
BM %

48,899
71.26%

14,371,616
70.27%

777
64.15%

182
30.03%

6. Conclusions

This work shows a novel approach to obtain the optimal configuration of a binary RIS
using AI techniques. The input data to train and compute the desired configuration are an
image representing the target redirection angle, and, therefore, a custom CNN is proposed
to implement the problem solution. The resulting model underwent evaluation on various
computing devices, including a CPU, a TPU, a GPU, and an FPGA, with the ultimate
aim of performing optimal RIS configuration computations at the edge. The evaluation
was conducted under identical conditions for each device, implementing the NN with
the FP32 and INT8 data types in order to facilitate performance comparisons. The FPGA
was initially considered the most suitable device for NN inference, due to its inherent
reconfigurability and adaptability to different algorithms and use cases. As expected, all
devices produced comparable accuracy results under the same conditions, but there were
significant variations in terms of performance. While TPUs and GPUs offer remarkable
performance, the FPGA-based implementations exhibited a ×20 performance increase
over the closest FP32 option, with a performance of 971 FPS compared with the 48 FPS
achieved with the NVIDIA Jetson Nano. If the INT8-quantized, TPU-accelerated implemen-
tation on the Google Coral is considered in the comparison, despite its inferior accuracy,
the FPGA-based implementations still offer an almost ×3 performance advantage (971 FPS
vs. 346 FPS). Furthermore, for the implementation of the neural network on FPGA devices,
the use of innovative HLS tools significantly reduces development time and simplifies the
overall design process, making it especially suitable for rapid prototyping while achieving
high performance. However, it is worth noting that further performance enhancements
can be achieved on FPGA devices once new AI-oriented device families and custom DL
accelerators, beyond what is possible with HLS tools, are introduced.
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