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Abstract: The main purpose of this paper is to provide information on how to create a convolutional
neural network (CNN) for extracting features from EEG signals. Our task was to understand the
primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered
the characteristics of EEG signals, coupled with an exploration of various signal processing and data
preparation techniques. These techniques include noise reduction, filtering, encoding, decoding,
and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-
known CNN architectures, categorizing them into four distinct groups: standard implementation,
recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a
comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and
an appendix that contains a table outlining the parameters of commonly used CNN architectures for
feature extraction from EEG signals.
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1. Introduction

The beginning of investigation into the chemical processes of the brain is attributed
to D. Reymond (Du Bois Reymond), who in 1849 demonstrated that the brain, like nerves
and muscles, possesses electrogenic properties [1]. However, it was not until 75 years
later, in 1924, that the German psychiatrist Hans Berger made the first recording of an
electroencephalogram (EEG) [2]. In the years that followed, this term became widely used
in medicine, creating a new scientific field known as neuroscience. In 1935–1936, Pauline
and Hallowell Davis recorded the first known event-related potential (ERP) in awake
individuals, and their results were published a few years later in 1939 [3]. This significantly
increased the popularity of using EEG for clinical purposes. ERPs are event-related voltage
changes in EEG activity that are time-bound to sensory, motor, and cognitive events.
Consequently, ERP analysis is used to identify and measure specific electrical signals
associated with cognitive processes, and these signals can be used to control external
devices such as prostheses or computers [4,5].

Electroencephalogram (EEG) signals are essential for various applications and serve
as a valuable tool for understanding and interacting with the human brain [6]. Notable ap-
plications include sleep monitoring, which assists in sleep pattern analysis and diagnosing
sleep disorders [7]. EEG signals contribute to emotion recognition by correlating patterns of
brain activity with different emotional states [8]. In motor imagery tasks, the EEG facilitates
the control of external devices, influencing rehabilitation and assistive technologies [9–11].
Neurofeedback therapy uses EEG to regulate brain activity, offering potential benefits for
conditions such as anxiety [12]. In assessing cognitive load, EEG is used to measure mental
workload during tasks important to human-computer interaction and design [13]. EEG
is critical for diagnosing and monitoring epilepsy, assessing traumatic brain injury, and
assessing the impact on brain function [14]. These applications highlight the versatility of
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EEG signals across a wide range of contexts related to the human brain. In addition, the
EEG is one of the key components of brain-computer interfaces (BCI), providing direct
communication between the brain and external devices [15]. Different activities, such as
disease diagnosis or robot control, exhibit unique characteristics that necessitate a deep
understanding of the underlying physical processes. For example, the control of sleep is
influenced by various factors, with the frequency component playing a crucial role [16].
During sleep, humans go through six distinct stages: wakefulness, rapid eye movement
sleep, and four non-REM sleep stages, each having its own characteristic frequency [17,18],
as shown in Figure 1.
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EEG signals exhibit non-linear characteristics, which pose challenges in their math-
ematical description, as indicated by previous studies [20,21]. Furthermore, a non-linear
relationship exists between the object of interest and EEG data, which standard algorithms
struggle to capture. While a linear relationship does exist between electrochemical synaptic
activity (expressed as current density) and EEG data in accordance with Poisson’s equation
and Maxwell’s equations [22–24], practical applications require a focus on underlying
mental or cognitive processes rather than solely the electrochemical activity of the brain.
For example, emotions do not linearly correspond to brain activity. This, combined with
the linear mapping of brain activity to EEG data, implies that emotions do not have a linear
relationship with EEG signals.

Recent developments in CNNs have shown their prowess in handling non-linear
dependencies and effectively decomposing them into their characteristic frequency compo-
nents [25]. As a result, many developed architectures can operate on raw EEG data without
the need for any additional processing. However, the use of CNNs poses a limitation, given
their “black box” nature [26,27], whereby an output is obtained without comprehending
how it occurred. Nevertheless, despite CNNs finding numerous applications across various
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fields, we maintain the perspective that comprehending the data processing is crucial for
fully grasping the significance of their architecture [28].

1.1. Research Problem Statement

In existing review articles on machine learning for EEG, authors typically avoid
discussing general topics like “review of EEG algorithms” due to their broad nature.
Instead, they often focus on how machine learning can be applied to address specific
diseases [29]. However, we believe that this approach limits the potential of machine
learning and does not show how a single machine learning algorithm can be adapted to
similar tasks of extracting features from EEG signals. In this manuscript, our primary
goal is therefore to illustrate how CNN architectures can be adapted to suit individual
needs in response to changing tasks. To achieve this goal, we aim to provide readers with
a comprehensive understanding of the signal processing within a CNN and examine all
aspects of the CNN tuning process as it pertains to EEG signals. We have chosen to focus on
CNNs as they are one of the most promising areas in the field of artificial intelligence [30,31]
and are particularly well-suited for real-time processing, which is crucial when dealing
with signals that exhibit non-linear and non-stationary properties. Instead of classifying
CNNs based on the tasks of their application, we have categorized them into the following
groups for analysis:

- The standard implementation of CNNs
- RCNN-based architectures
- Decoder-based architectures
- Cascade Architecture.

To gain a better understanding of specific CNN architectures, it is important to have a
basic understanding of signal processing. By doing so, we hope to provide readers with
the necessary background knowledge to fully comprehend and appreciate the significance
of various CNN architectures.

1.2. Machine Learning for EEG. Why CNN?

The field of machine learning is incredibly diverse, encompassing a wide range of
subfields, as evident from the numerous existing classification schemes and terminologies
outlined [32]. In the context of EEG, traditional machine learning algorithms, such as
decision trees, support vector machines, and random forests, are commonly employed
to classify EEG data based on different features, including the amplitude, frequency, and
coherence [33,34]. These algorithms are widely used and have proven to be effective in
various applications related to EEG analysis.

CNNs belong to the class of artificial neural networks (ANNs) and are primarily
used for visual image analysis [35]. They represent a regularized version of multilayer
perceptrons. Multilayer perceptrons typically refer to fully connected networks, whereby
every neuron in one layer is connected to every neuron in the next layer. Researchers
such as Albawi [36] and Indolia [37] have aimed to provide an understanding of CNNs
and have considered general information about their structure. In a more closely related
context to our topic, CNNs have been applied in medical image understanding [38] and in
understanding the behavior of 3D CNNs for the diagnosis of Alzheimer’s disease based on
brain imaging [39]. In this context, ANNs, including CNNs, can analyze complex non-linear
relationships between EEG inputs and output classification labels [40,41]. This analysis is
used to classify EEG signals based on different cognitive states, such as wakefulness, sleep
stages, or various types of epileptic seizures [42,43].

CNNs can collect temporal information, automatically extract features, scale large
datasets, and have the flexibility to adapt to various EEG applications. At the same time, it
is often believed that for many data analysis tasks that require detection and dominance
of the frequency range in EEG signals, band-pass filters may be used. However, CNNs
automatically learn and extract complex features from raw input data, whereas bandpass
filters can only capture simple frequency patterns.
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There are numerous review articles on the topic of machine learning for EEG that
provide a comprehensive assessment of various architectures. In a well-known publication,
Lotte et al. [16] offered a comprehensive overview of machine learning for EEG. Later, an
updated analysis was conducted after 11 years, providing insights into the field in a more
modern context [44]. The updated work presented a wide range of methods for processing
EEG signals but provided fewer details on feature extraction and gave insufficient attention
to deep learning architectures. As a result, the article described some architectures that are
not commonly used in practice, potentially causing confusion. Furthermore, significant
advances have occurred in the field of neural networks over the last 5 years, which are not
fully reflected in the article.

Numerous detailed reviews have explored the use of machine learning in EEG signal
analysis for disease detection and other applications. For instance, Maitin et al. [45]
provided an insightful review of the use of machine learning for Parkinson’s disease
detection, while Rodrigues et al. [46] presented a comprehensive overview of the utilization
of machine learning for the detection of alcoholism and other diseases. In addition, Rasheed
et al. [47] reviewed various machine learning architectures for epilepsy detection from
EEG signals, while Lucas et al. [48] explored the use of machine learning for detecting
pathologies in EEG signals. In the field of emotion recognition, Bazgir et al. [49], Xiao-Wei
et al. [50], and Nedelcu et al. [51] conducted thorough reviews of various techniques for
removing artifacts from EEG signals using machine learning. Aggarwal et al. [52], on the
other hand, focused on brain-computer interfaces and the application of machine learning
in signal processing, including feature extraction and real-time processing.

There are also many smaller-scale reviews, such as “Brain-Computer Interface and
Emotions” [53], along with numerous other review papers investigating the use of machine
learning for disease detection via EEG signals [54–57]. Additionally, papers by Roman
et al. [58] and Shedeed et al. [59] have explored the application of machine learning for
signal processing in EEG analysis.

While reviews of pre-existing architectures can be helpful in determining which archi-
tecture to use for a specific case, they may not provide a complete understanding of how a
convolutional neural network (CNN) is constructed or how to modify its architecture to
accommodate changes in EEG measurement conditions. Although there are many review
papers on the topic of feature extraction from EEG signals using machine learning, the infor-
mation presented in these papers is typically not consistent in format or evaluation criteria.
Therefore, in this work, we aim to provide a comprehensive guide on how to prepare, pro-
cess, and build CNN architectures for EEG signals, as well as how to tune hyperparameters,
estimate models, run in real-time, and address other important considerations.

In recent years, there has been a trend toward the development of new types of brain
computer interfaces with the goal of making the process of measuring EEG signals more
comfortable [60–62]. One promising approach is the use of ear-based devices for measuring
EEG signals [63]. While these devices offer greater convenience, the quality of the signals
they pick up is typically lower due to increased noise levels. Another alternative that
has gained popularity in recent times is dry electrodes, which are also known to produce
noisier signals. Consequently, the need for the development of improved machine learning
algorithms for extracting useful features from EEG signals becomes even more crucial.

2. Signal Processing

The process of detecting EEG potentials involves measuring the potentials of electrodes
placed on the surface of the head relative to the potential of an electrode on the earlobe,
expressed in microvolts. The potential of the reference electrode should remain constant
over time, but the scalp’s electrically active conduction system can introduce variations in
potential measurements. One of the simplest solutions to address this issue is to recalculate
the EEG signal drifts relative to the total averaged reference [64]. However, due to the
non-stationary nature of EEG and its high susceptibility to various types of noise, especially
electrical noise, the task of denouncing raw EEG data to obtain useful information poses a
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significant challenge [65]. In fact, the noise problem remains one of the primary obstacles
to extending the application of EEG beyond the laboratory setting [66].

Pre-processing the EEG is a crucial step in preparing it for further analysis. This
involves a range of techniques aimed at reducing noise and removing artifacts to ensure a
clean signal is ready for subsequent steps. The initial step in this process is the removal of
noise originating from external electromagnetic fields [67]. Next, motion artifacts need to be
addressed, as they can have a negative impact on the EEG signal. One of the most popular
tools for removing artifacts and noise from non-linear EEG signals is Principal Component
Analysis (PCA) [68]. PCA reduces dimensionality and redundancy by combining original
variables in a way that maximizes variance, effectively removing artifacts from the data.
Independent Component Analysis (ICA) is another popular technique used for EEG signal
pre-processing [69]. When dealing with multi-channel signals, ICA separates the multi-
component EEG signal into its independent parts, thereby removing noise and interference
caused by blinks, eye movements, heart contractions, and muscle activity. This technique
has proven to be particularly effective in addressing artifacts in multi-channel EEG record-
ings. Canonical Correlation Analysis (CCA) is yet another technique that enhances EEG
signal quality. CCA identifies linear transformations to maximize the correlations between
two datasets. It has been employed to improve brain-computer interface (BCI) performance
in various scenarios, such as code-modulated visual evoked potentials, steady-state visual
evoked potentials, and event-related potentials like P300 and error-related potentials.

2.1. Signal Processing with Machine Learning

Research on EEG artifact removal methods has spanned over 55 years, yet there is still
no consensus on which algorithm is optimal for a particular application [70]. Nonetheless,
EEG artifact removal techniques are crucial for fully utilizing EEG data and can be imple-
mented through both automatic and manual online and offline methods. Two of the most
popular methods for EEG artifact removal are the support vector machine (SVM) [71,72]
and PCA [73,74]. While these methods are commonly used, numerous other techniques
are available, and several review papers aim to explore different approaches for artifact
removal [75–78]. These review papers provide a valuable resource for researchers seeking
to evaluate the effectiveness of different artifact removal methods. Despite the lack of
consensus on the optimal algorithm, ongoing research in EEG artifact removal methods
continues to enhance EEG data quality and improve analysis accuracy. The use of various
techniques, including SVM and PCA, can effectively mitigate artifacts in EEG signals,
enabling comprehensive utilization of EEG data in a wide range of applications.

In recent years, several researchers have explored the use of CNNs for EEG noise
reduction, demonstrating promising results. In a 2020 study, Sun et al. [79] introduced
CNN-1D-ResCNN, one of the first applications of CNN for EEG noise reduction. Similarly,
Yang et al. [80] employed CNN and an auto-encoder, incorporating weights into an objective
function to remove artifacts without compromising the EEG field signal. These studies
demonstrate the potential for CNNs to effectively reduce noise in EEG signals.

Another promising approach for EEG noise reduction involves the use of recurrent
neural networks (RNNs) in conjunction with CNNs. Zhang et al. [81] presented an archi-
tecture that combines CNNs and a recurrent neural network (LSTM) to eliminate dangling
artifacts, naming it EEGdenoiseNet. The incorporation of RNNs in this architecture en-
ables the network to consider temporal dependencies in the EEG signal, enhancing the
effectiveness of the noise reduction process. Furthermore, Mashhadi et al. [82] successfully
transformed each EEG signal into an image for input into a model designed for image
segmentation tasks. This model, based on a convolutional neural network architecture
known as U-NET [83], allowed for the selection of weights and filters that removed artifacts
from the EEG signal, underscoring the versatility of CNNs in processing EEG data. Overall,
the use of CNNs, RNNs, and other deep learning techniques shows promise in reducing
noise and artifacts in EEG signals. As research progresses, these methods are likely to
become increasingly effective in improving the quality of EEG data for analysis.
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Despite the promising results of using machine learning techniques for EEG artifact
removal, there are still some limitations prior to their widespread application. One of the
primary challenges stems from the non-linear nature of artifacts, which complicates the
task of isolating artifacts while preserving the valuable information within EEG signals.
Another significant constraint is the substantial computing power required for machine
learning algorithms, rendering them less accessible and practical for many researchers.
Consequently, researchers often opt to employ machine learning to extract features from
EEG signals rather than direct artifact removal. This approach allows for a hybrid model,
where artifacts are eliminated in the initial layers while subsequent layers extract features.
Nonetheless, the application of machine learning for EEG artifact removal remains an
active area of research, with ongoing advancements in computational capabilities and
machine learning algorithms expected to enhance the effectiveness and accessibility of
these methods. Therefore, it is anticipated that machine learning techniques will assume an
increasingly significant role in EEG artifact removal in the future.

In addition to artifacts, EEG signals can also be affected by noise stemming from
external sources, such as electromagnetic interference [84], suboptimal skin-electrode
contact, or low electrode quality [85]. To address these issues, researchers have developed
denoising techniques aimed at eliminating unwanted noise while preserving the EEG
signal’s non-linear characteristics [86].

Denoising techniques typically involve signal processing methods, including filtering,
averaging, and wavelet decomposition. It is imperative to apply these methods with care
to ensure that the denoising process does not distort the inherent EEG signal or remove
any critical information. Therefore, researchers must diligently assess the effectiveness of
various denoising techniques and select the most suitable method for their specific applica-
tion. In summary, denoising constitutes a crucial step in the EEG signal processing pipeline
and is indispensable for obtaining precise and dependable results in EEG experiments.

2.2. Frequency and Spatial Components in EEG Signals

Spectral analysis is a widely used method for extracting valuable information from
EEG signals. By analyzing the power spectral density (power spectrum) of the signal,
spectral analysis can provide insight into the frequency composition or the distribution
of signal power over frequency. This information aids researchers in understanding the
underlying neural processes responsible for generating the EEG signal and in identifying
patterns that may be associated with specific cognitive states or behaviors. The power
spectrum can be computed through various techniques, including Fourier transform,
wavelet transform, and autoregressive modeling. These methods enable researchers to
analyze the power of different frequency bands in the EEG signal, such as the alpha, beta,
theta, and delta bands. By examining changes in the power spectrum over time or across
experimental conditions, researchers can gain valuable insights into how brain activity is
modulated by various factors [87–89]. Additionally, the phase synchronization method is
also rooted in the frequency component. This approach measures the tendency of two time
series signals to maintain a constant phase separation over a period [90,91].

The coherence method is a widely used technique for examining the relationship
between EEG signals originating from various regions of the brain [92,93]. It provides valu-
able physiological information about functional connectivity patterns, which can enhance
the performance of EEG-based biometric systems [94]. Additionally, this approach can
detect alterations in the information flow between cortical areas across different frequency
bands [95].

Moreover, the connection between these signals can also be represented using the
symmetric matrix method, which illustrates the covariance of each pair of variables. The
values within the covariance matrix indicate the magnitude and direction of the distribution
of multivariate data within a multidimensional space. By manipulating these values, it
becomes possible to extract information about how the data are distributed across any two
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dimensions [96]. Examples of the implementation of a symmetric matrix are illustrated in
Figure 2.
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Figure 2. Implementation of symmetric matrix for EEG signals: (a) Initial data, (b) Symmetric
matrix [97].

The symmetric matrix can be complemented with additional methods, such as Rieman-
nian geometry [98], to improve the performance of EEG data analysis for low-dimensional
problems [99,100]. These methods enable a clearer tracing of the relationship between
signals in the cerebral cortex using spatial filters. A spatial filter is an algorithm utilized
for multi-channel electroencephalogram (EEG) analysis [101], often employed to extract
features from EEG data based on variance. These features are then integrated into a deep
neural network for classification [102].

One particularly effective spatial filter is the Common Spatial Patterns (CSPs), which
has demonstrated success in extracting sensorimotor rhythms and can be employed in real-
time in brain-computer interfaces. International competitions have further demonstrated
the effectiveness of spatial filters in conjunction with machine learning models [103–105].
In addition, their application in classification problems, spatial filters can also enhance the
signal-to-noise ratio in regression-based problems [106] or accentuate differences in power
between various imaging conditions [107], as shown in Figure 3.
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3. Feature Selection and Feature Extraction

EEG data are measured in microvolts, but their amplitudes can vary significantly,
necessitating data scaling. The most commonly used tools for this purpose are normal-
ization and standardization [108]. Normalization typically involves rescaling values to
the range [0, 1], while standardization usually means rescaling the data to have a mean
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of 0 and a standard deviation of 1 (unit variance). In practice, normalization is a more
frequently employed method of data preparation [109–112], though standardization is
still used [113]. One notable variation on normalization is stratified normalization [114],
introduced by Fdez [115], which is particularly useful for training deep neural networks
to classify emotions across subjects using EEG signals. This method effectively removes
between-participant variability while preserving emotional information in the data, com-
pared to less popular methods like batch normalization [116].

Feature selection is a crucial step in enhancing the performance of machine learning al-
gorithms by eliminating unnecessary, redundant, or noisy features from feature vectors. In
EEG signal processing, statistical features such as mean, median, variance, standard devia-
tion, and skewness are often used as the simplest features [116]. Frequency domain features
(FDF) can also be computed using the discrete Fourier transform of raw EEG signals [117].

In addition to these standard methods, custom approaches have also been developed.
For example, Duan et al. [29] introduced a new decision tree-based feature selection method
for EEG signals, involving a feature space search and automatic selection of optimal features
using a decision tree algorithm. Another approach is to utilize PCA for feature extraction
from the EEG signal and subsequently employ a decision tree-based selection process to
automatically select the optimal features. This method has been shown to effectively reduce
the dimensionality of the EEG data while preserving important information. The EEG sig-
nal is a non-linear graph containing an extensive amount of information, with each aspect
potentially representing an independent feature useful for specific functions. Therefore, fea-
ture selection is crucial in EEG signal processing to identify the most important features for
a given analysis. Several survey projects have been conducted in this area [118]. It is worth
noting that EEG devices can have up to 1024 electrodes, making processing all channels a
computationally intensive task. To address this challenge, Alotaiby et al. [119] presented a
survey of algorithms for channel selection for machine learning models. These algorithms
aim to select the most informative channels while minimizing the computational burden.

Feature extraction is a critical step in EEG signal analysis, involving the conversion
of raw data into numerical features that can be processed while retaining the information
in the original dataset. Various popular methods are used for feature extraction in EEG
signal processing, including Wavelet Transform (WT), Fast Fourier Transform (FFT), Time
Frequency Distributions (TFD), Eigenvector Methods (EM), and Auto-Regressive Methods
(AR), which are described in detail in, e.g., Refs. [120,121].

One well-known method for feature extraction is the Hilbert–Huang transform, a
time-frequency method that decomposes EEG signals into empirical modes or intrinsic
mode functions (IMF) to obtain instantaneous frequency data [122], as shown in Figure 4.
Unlike the Fourier transform [123] used in harmonic analysis [124], instead of decomposing
a signal into its constituent frequencies, the Hilbert–Huang transform aims to decompose
data into its AM-FM intrinsic monocomponent modal functions, perceiving the locality of
information. See Figure 4 for an illustration.

Figure 4. Cont.
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Figure 4. Hilbert transform of a set of real-filtered EEGs: (a) The analyzed time series; (b) The signal
power plotted in the time-frequency domain [125] Once the data has been processed and transformed
into numerical features, it can serve as input for machine learning models. By choosing the right
feature extraction method, researchers can derive informative and meaningful features from EEG
signals, thereby enhancing the accuracy and efficiency of machine learning algorithms when applied
to these signals.

4. Datasets and Transfer Learning in EEG

Acquiring suitable datasets for training and evaluating CNN models applied to EEG
data presents unique challenges compared to popular tasks like machine vision, primarily
due to the inherent characteristics of biodata.

EEG recordings, in particular, are known for their inherent noise, erratic behavior,
susceptibility to artifacts, and significant variability from person to person and session to
session. These issues often introduce biases, confounders, and limitations that can impact
the accurate estimation of the CNN architecture’s performance.

One of the primary challenges in collecting EEG datasets for CNNs is ensuring the
quality and reliability of the recorded data. Various forms of noise, including environmental
noise, electrode artifacts, and muscle or eye movement artifacts, can distort EEG signals
and compromise the accuracy of subsequent analysis. Addressing these issues necessitates
stringent electrode placement protocols, precise equipment calibration, and diligent artifact
detection and removal methods. Ideally, all data should be included in datasets, but
in practice, this is not always the case. Moreover, the spatial resolution of EEG signals
is limited, further complicating dataset acquisition. The scalp-based nature of the EEG
recording makes it challenging to precisely localize nerve sources and differentiate activities
in neighboring brain regions. Proper preprocessing and data completion are crucial for
CNN analysis of EEG datasets. Effective filtering techniques, artifact removal algorithms,
and appropriate data segmentation methods are needed to enhance the signal-to-noise
ratio and provide meaningful and robust inputs for training CNN models.

The reliability, interpretability, and performance of CNN models when working with
EEG data are critical factors. This chapter will focus on available datasets and cover several
important aspects, some of which are less commonly addressed.

4.1. Analysis of Datasets

While numerous research papers present their own datasets for evaluating machine
learning models applied to EEG signals [126,127], it is worth noting that these datasets
are often narrowly defined and may lack the broad recognition associated with well-
established benchmark datasets, like the Microsoft-COCO datasets [128] used in machine
vision tasks. Approximately a decade ago, there were popular brain-computer interface
(BCI) competitions in which researchers competed to develop machine learning archi-
tectures for feature extraction from EEG signals [129–131]. Some parts of the datasets
used in these competitions are still available. Additionally, several review papers have
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attempted to generalize datasets for application problems [132,133]. Additionally, datasets
and architecture evaluations can be accessed through platforms such as Kaggle competi-
tions (https://www.kaggle.com/competitions?searchQuery=EEG, accessed on 26 April
2023). However, each EEG dataset is typically unique, varying in the number of channels,
electrode locations, data acquisition frequency, and other factors, making it challenging
to adapt them for use with different CNN models. To address this issue, transfer learning
is employed, which involves using the trained weights obtained from one dataset with
another related dataset. In a review paper, Wan et al. [134] and Zhang et al. [135] conducted
a search of the literature from 2010 to 2020 on the use of transfer learning in EEG decoding
for brain-computer interfaces.

Another approach is self-supervised learning (SSL) [136], which can generate a dataset
from the data themselves, simplifying the dataset collection process. Creating an EEG
dataset using self-monitoring reduces the need for time-consuming EEG annotation [137].
In principle, SSL algorithms aim to derive everything they need from the data itself [138].
However, self-monitoring systems require a substantial amount of data, and the architecture
must be efficient in terms of runtime and memory requirements. To date, SSL in EEG has
been widely used in tasks such as anomaly detection in electroencephalography [139] and
especially in sleep phase detection tasks [140–143]. SSL is a promising method for data label
detection and has the potential to be applied to a wider range of tasks for feature extraction
from EEG signals [144–146]. However, the application of SSL to EEG signals is not as
widespread, and it is often used to identify events with prominent frequency components.

4.2. Overfitting in EEG Data

Overfitting in machine learning is a phenomenon in which the constructed model
performs well in explaining examples from the training set but exhibits relatively poor
performance when tested on new examples not included in the training set. This issue is
particularly prevalent in EEG data analysis for several reasons. Firstly, the use of a large
number of channels (e.g., 1024) and a high frequency (1000 Hz) results in a vast amount
of data, much of which may not be relevant for practical tasks. Consequently, machine
learning models can inadvertently learn patterns from noise rather than the actual events
of interest within the dataset.

One of the commonly employed methods to solve the problem of overfitting is cross-
validation [147,148]. Nevertheless, King et al. [149] demonstrated that cross-validation is
not always a comprehensive solution for overfitting issues when dealing with EEG data,
and it cannot serve as a universal method. As expected, many authors concur that one of
the fundamental principles for addressing overfitting problems is to utilize a larger amount
of EEG data [150,151].

To address the challenge of overfitting in CNN architectures, one approach is to reduce
the number of hidden layers in the network. Zhang et al. [152] introduced a highly accurate
neural network that reduces overfitting by incrementally increasing feature sizes and down-
sampling time series to eliminate muscle artifacts. Regularization is another commonly
employed technique to prevent overfitting in EEG, as demonstrated by Zhang et al. [153]
and Raduntz et al. [154]. Ying et al. [155] conducted an extensive review of contemporary
methods for addressing overfitting issues in EEG.

4.3. Dimension Reduction of EEG Data

Reducing the sampling frequency is a common approach to mitigating overfitting,
as typical sampling frequencies for reading data are around 1000 Hz [156]. However, it
is important to note that upsampling can negatively impact the performance of a con-
volutional neural network [157], and downsampling may result in a loss of information
unless it is known that the relevant data lies within a specific frequency band accessible
through the Nyquist frequency. A simple algorithm for dimensionality reduction in EEG
signals has been presented by Pagnotta et al. [158], but it should always be considered that
lower sampling rates can lead to a reduction in model quality and connectivity estimate

https://www.kaggle.com/competitions?searchQuery=EEG
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accuracy. Balancing the trade-off between mitigating overfitting and preserving signal
quality requires careful consideration.

One of the most widely employed methods for dimensionality reduction in EEG data
are PCA, which has been extensively utilized in various studies [159–161]. PCA reduces
the dimensionality of a data set with “m” features into a subspace with fewer “n” features
while retaining most of the information (or variance) from the original data set.

In addition to PCA, there are other techniques for dimensionality reduction that can be
employed to prevent overestimation, including lock-boxes [162], blind signal analyses [163],
pre-registrations [164], and nested cross-validation [165]. Pooling in convolutional neural
networks [166,167] can also be used to reduce dimensionality. For example, Nakagome
et al. [168] demonstrated that downsampling neural network-based decoders can effectively
reduce dimensionality in recurrent networks. While Tang provided an overview of methods
for dimensionalizing EEG signals [169], it is important to note that there are numerous
techniques available, and some of them may be beyond the realm of neuroscience [170].

4.4. Data Representation in Different Dimensions

EEG data can be represented in various formats, depending on the algorithmic re-
quirements and the research questions being addressed. One common representation is
the 1D format, which is utilized when convolution kernels move along a single dimension,
such as when analyzing EEG data over time. Another representation is the 2D format,
which allows convolution kernels to move along two dimensions, facilitating the depiction
of EEG data as matrices. The 3D format involves a convolution kernel convolving with the
input layer, generating an output tensor. Figure 5 illustrates how EEG data can be fed into
CNNs using the standard implementations for 1D, 2D, and 3D formats, with the electrode
locations on the matrix corresponding to their positions on the scalp.
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Sugi et al. [172] introduced a CNN model that utilized 3D input for stimulus presenta-
tion intervals of 500, 400, and 300 ms, achieving remarkable P300 classification accuracy
rates exceeding 80%. Similarly, Cho et al. [173] developed an emotion recognition method
employing 3D convolutional neural networks (3D CNNs) to efficiently represent spatiotem-
poral features of EEG signals. Specifically, the authors reconstructed raw EEG signals as
stacks of one-dimensional (1D) time series data into two-dimensional (2D) EEG frames
based on their initial electrode positions. They then combined these frames with the time
axis to obtain the 3D EEG stream, which they analyzed using 3D CNNs. Figure 6 illustrates
these 3D reconstructions and their use in feature representation from spatiotemporal data.
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Figure 6. A 3D CNN for emotion recognition tasks.

Recent research has explored various formats for presenting EEG data in CNNs for
classification tasks, including 1D, 2D, and 3D formats. For instance, Oralhan et al. [174]
presented EEG data in all three formats for classifying visual evoked potentials in a wireless
brain-computer interface system, with the 3D CNN achieving the best results at an average
classification accuracy of 93.75%. While the 2D format is more commonly used in the
reviewed literature, some authors have suggested that 3D formats are better suited for
studying spectral and spatial information in CNNs, as well as tasks that involve time and re-
lationships, such as word recognition tasks [175,176]. However, it is crucial to recognize that
the CNN architecture remains the most significant factor in determining their performance,
and there is no evident correlation between data format and classification accuracy.

5. CNNs for EEG

The theory of CNN has been comprehensively covered in various works, such as
the book authored by Francois Chollet, the developer of the Keras framework [177]. This
book explains the theory of CNNs and the mechanisms for configuring them using the
Python programming language [178]. Before employing CNN algorithms in EEG signal
classification, one of the primary challenges lies in the quality of the recorded signal. EEG
signals encompass numerous concurrent brain activities, rendering them complex and
noisy to work with. Consequently, proper pre-filtering of raw EEG signals is essential to
eliminate noise and artifacts. Additionally, the selection of extracted features should be
based on their correlation with the desired outcome to enhance classification performance.
CNNs consist of several crucial components, including layers of convolutional filters,
activations, pooling, and fully connected layers. Pooling is employed to downsample the
data effectively, reducing the number of parameters and mitigating overfitting. Convolution
layers extract features from the data matrix, while filters increase the depth of the feature
space and help learn more levels of abstract structures. The inclusion of fully connected
layers aids in learning non-linear combinations of high-level features within the output of
a convolutional layer. Each EEG channel represents a non-linear plot depicting EEG data
measured in microvolts, illustrating variations in magnitude over time. Frequently, the
overall input signal is initially transformed into a series of 2D time-frequency images. The
time series data are represented as a 1D signal on one axis, while the signal’s frequency
content is represented on the other axis. The work in [179] provides a clear guide on how
to convert data into heat maps, as depicted in Figure 7.

Convolutional filters are subsequently applied to each of these 2D images to extract
local features, such as spikes or peaks, as shown in the heat plot in Figure 7, all of which are
relevant to the task at hand. The output of the convolutional layer is then passed through
one or more fully connected layers, which perform a non-linear feature transformation into
the output categories.
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For example, in machine vision tasks, recognizing a cat in an image involves a CNN
learning to identify key visual features characteristic of cats, such as pointy ears, whiskers,
and a furry body. Through a series of convolutions, activations, and merging operations,
such as pooling, the CNN progressively transforms raw pixel values into a set of high-level
features that capture these distinctive characteristics. After passing the image through the
CNN layers, the fully connected output layer computes a set of class scores based on these
features, with the highest score corresponding to the “cat” class. However, unlike searching
for a cat in an image, working with EEG data are far more intricate and challenging to
explain, given the data’s multidimensionality and interdependence. It is exceedingly
difficult to visually identify the features requiring extraction from the graph. Consequently,
the most effective approach involves the utilization of a CNN, which employs a series of
trainable filters and layers. This CNN methodology enables the extraction of high-level
features from the input image, facilitating the classification of these features into distinct
categories among several possibilities.

5.1. Hyperparameters

Hyperparameters are an important component of CNN models, as they provide
control over the training process and significantly impact the model’s performance and
accuracy [180–182]. These hyperparameters encompass various factors, such as the number
and size of kernels in each convolutional layer, the step size, and the size of kernels in the
pooling layer [183]. While there has been extensive research on the influence of hyperpa-
rameters on CNN performance [184], the authors often provide only general guidance [185].
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Determining the optimal hyperparameters for a specific model remains a challenging task,
and the existing literature sometimes lacks practical insights on this matter. To address
this challenge, various libraries are available for hyperparameter tuning, such as hose in
Python [186], including the Scikit-learn library’s GridSearchCV and RandomizedSearchCV
methods [187,188]. GridSearchCV explores all possible hyperparameter combinations to
identify the best model, while RandomizedSearchCV tests random combinations of hyper-
parameters, making it a more efficient choice for larger datasets. Although some authors
still employ RandomizedSearchCV [189], most researchers opt for GridSearchCV [190,191].
These methods prove invaluable in optimizing CNN model performance by identifying
the ideal hyperparameters for a specific architecture while simultaneously reducing the
risk of overfitting.

5.2. Kernel Size

Another important hyperparameter for CNN tuning is the kernel size, represented by
the weight matrix used to filter the input data. Typically, small filters are employed to detect
high-frequency objects, while larger kernels are utilized to identify low-frequency objects.
A larger kernel size implies a less detailed examination of the data but may result in a more
generalized representation of the input data. The EEG is characterized by non-linearity and
non-stationarity, making it challenging to analyze comprehensively. Therefore, the selection
of the kernel filter size is crucial and should be treated as if it were stationary within a
specific time interval. This brings up the question of which size to choose for the kernel.
Google researchers have made strides in addressing this issue by introducing a novel layer
architecture called Inception [192,193]. The fundamental concept behind the Inception
module is to perform multiple operations in parallel, such as combination and convolution,
using filters of various sizes (3 × 3, 5 × 5, . . .). Figure 8 shows a convolution operation
with 16 filters of sizes 1 × 1, 3 × 3. The resulting output tensor includes dimensions of
32 × 32 × 16, 32 × 32 × 32, and 32 × 32 × 64, where the last number corresponds to the
number of resulting feature maps, equal to the number of filters collapsed on the image.
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However, this type of model usually requires substantial computational resources,
including a higher number of parameters and a longer training period [194,195].

6. Popular CNN Architectures for EEG

The EEG signal carries valuable information at specific frequency ranges: alpha
(8–13 Hz), beta (14–40 Hz), theta (4–8 Hz), delta (0.5–3 Hz), gamma (above 40 Hz), and
more. Each of these frequencies has its own unique characteristics and applications [196].
Since the frequency ranges and their characteristics have been extensively studied [197,198],
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many researchers have decomposed EEG signals into their frequency components and
then fed the data into a CNN. It is important to note that one of the advantages of a CNN
is its ability to discover dependencies that may elude human observation. Therefore, it
is advisable to examine the raw data and exercise caution to prevent overfitting. In light
of this, Zhang et al. [199] employed the short-time Fourier transform (STFT) method for
frequency decomposition of the EEG signal to detect motor activity. The resulting data
were then input into a 7-layer CNN designed for classification tasks with various core
layers of 3 × 3, 2 × 2, and 3 × 3. In this CNN, the last two layers were fully connected
layers, comprising 100 and 2 neurons, respectively, with the SoftMax classifier, as shown in
Figure 9.
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The use of CNNs in analyzing EEG signals has demonstrated promising results, par-
ticularly in the detection of frequency patterns [4,33]. Some researchers continue to rely on
conventional methods to decompose EEG signals before feeding the data to CNNs. While
these methods may offer faster results, their accuracy needs to be thoroughly validated.
Lawhern et al. [200] introduced a specialized architecture known as EEGNet, designed
specifically for brain-computer interfaces. In Figure 10, it can be observed how a CNN can
decompose EEG signals. The CNN starts with a time convolution to learn frequency filters,
followed by a depth convolution that learns dependent frequency mass filters. The final
convolution is a basic convolution that generates a temporal summary for each feature map
within the sequence. This is followed by a point convolution that learns the regularity of
the feature map set, with more details about the model provided. These architectures are
capable of learning hierarchical features from sequential data, making them well-suited for
capturing patterns in the time domain of EEG signals. The main advantage of the EEGNet
is the compactness of the CNN architecture. And the model can be easily adapted for
different scenarios and integrated into other architectures of ML [201].

Wang et al. [202] introduced an 8-layer CNN designed for emotion recognition. The
model’s input size was determined as width × height, where the width corresponded to
32 (representing the number of electrode channels), and the height was set at 3 × 128 = 384
(calculated as the product of the window size, 3 s, and the sampling frequency, 128 Hz).
The batch size used for the model was set to 128, indicating the amount of data used in
each batch. In the proposed model, Conv2 represents a multidimensional (2D) convolu-
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tional layer, Pooling2D stands for maximum 2D pooling, BatchNorm2d denotes 2D batch
normalization, and Liner signifies a fully connected layer. Each convolutional layer is
followed by an activation layer, Leaky ReLu. As a result, the architecture comprises eight
convolutional layers, four batch normalizations, four dropout layers with a probability
of 0.25, three maximum pooling layers, and two fully connected layers. The 5 × 1 con-
volution kernel folds the data in the temporal direction, while another 1 × 3 convolution
kernel handles data folding in the spatial direction. The first three convolution blocks are
connected to the maximum pooling layers at the end, and the architecture culminates in a
fully connected layer utilized for emotion recognition classification. This comprehensive,
lightweight model has a high degree of generalization and versatility, with an emphasis on
real-time wearable applications. The visual representation of this architecture is shown in
Figure 11.
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Lun et al. [203] presented a 5-layer CNN structure designed for classifying physiologi-
cal activity. The authors employed a 4-layer maximum pooling and a fully connected (FC)
layer for classification. To mitigate the risk of overfitting, they incorporated dropout and
batch normalization techniques. This architecture predominantly relies on 1D convolution,
which is well-suited for extracting essential local features between neighboring element
values of a feature vector. This model allows the decoding of raw EEG signals, providing
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reliability and adaptability, which simplifies the design of BCI systems for application
applications. This is shown in Figure 12.

The primary challenge in EEG classification for MI tasks is its specificity. This means
that each individual may exhibit unique characteristics that influence the system’s ability to
correctly classify MI movement. To address this issue, multi-scale, multi-branch, or parallel
architectures can be employed, enhancing the model’s generality.

The use of standard CNN architectures for EEG signal processing has demonstrated
promising results in various applications, including motion image classification and seizure
detection. Nevertheless, selecting optimal architecture and hyperparameters remains a task
that is inherently tailored to the specific EEG signal and classification objective.
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6.1. Architectures with Encoders and Decoders

In the context of EEG signal classification, it is common to utilize encoders and
decoders to transform data into scales more suitable for CNNs [204]. The primary objective
of these encoders is to reduce the dimensionality of the original feature space. Unlike PCA
techniques, decoders are typically integrated into the CNN architecture and not used as a
separate component of the data preparation process. Several studies have demonstrated
that autoencoders outperform PCA in preparing data for CNNs [205,206]. By leveraging
the CNN training procedure, autoencoders can effectively capture the salient features of
objects, facilitating the recovery of the original sample objects.

Decoders are frequently employed in Generative Adversarial Networks (GANs) for
various applications, including image generation [207,208]. More recently, GANs have
been extended to time-series data [209], yielding promising results. Successful applications
of the GAN architecture include generating synthetic data for use in LSTM networks [210],
removing noise from data [211], and detecting sleep stages.

Supervised and unsupervised CNNs serve different purposes in the analysis of EEG
(electroencephalography) data. Supervised CNNs are employed in EEG classification tasks
where output labels are known. The networks require labeled training data to learn the
relationship between EEG inputs and corresponding output labels. Supervised CNNs
find applications in various domains, including emotion recognition, seizure detection,
and sleep staging within EEG analysis. In contrast, unsupervised CNNs are utilized
to explore EEG data, extract patterns, and identify underlying structures for research
purposes. These networks are designed to learn the internal structure of EEG data without
the need for labeled data. Unsupervised CNNs can be suitable for tasks such as clustering,
dimensionality reduction, and anomaly detection. Autoencoders represent a specific type
of unsupervised CNN used for studying EEG characteristics. The network is trained
to recover input data at the output layer, with a bottleneck in the middle that learns a
compressed representation of the input data. The learned features can subsequently be used
for classification tasks. Therefore, supervised CNNs are employed for EEG classification
tasks, while unsupervised CNNs are utilized for data exploration and feature learning.

6.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are well-suited for analyzing EEG data due to
their ability to capture temporal dependencies, which are crucial for understanding brain
dynamics [212]. The cyclic connections in RNNs allow the network to maintain an internal
state or memory that can be updated with new data. This memory enables the network
to process sequential data, such as EEG signals, while preserving temporal relationships



Sensors 2024, 24, 877 19 of 39

between the data points. However, RNNs face challenges with vanishing gradients when
dealing with long-length data. This issue has been addressed with the Long Short-Term
Memory (LSTM) architecture [212]. Ma et al. [213] developed an architecture for predicting
decision-making behavior from EEG signals using the t-SNE method. This method employs
a stepwise iterative approach to represent the original data in a low-dimensional manner
while preserving information about its local neighborhood. The architecture includes the
t-SNE algorithm for feature extraction from EEG signals in the first stage and a recurrent
neural network with a LSTM layer for predicting decision behavior in the second stage, as
shown in Figure 13.
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LSTMs, as well as CNNs, are applicable for sleep stage detection. Mousavi et al. [214]
implemented a CNN with two sections for extracting temporal and frequency information.
The input signals consist of a sequence of 30 s EEG epochs, and the output data represents
the corresponding stages or classes. The encoder processes the input sequence, while
the decoder computes the category of each individual channel of the 30 s EEG input
sequence. The encoder consists of long short-term memory (LSTM) blocks that capture
complex and long-term short-term contextual dependencies between inputs and targets, as
shown in Figure 14. This algorithm proposed new approaches to calculating losses, which
helped reduce the impact of the class imbalance problem and improve sleep stage detection
performance. These LSTM blocks address non-linear dependencies across the entire time
series when predicting the target.
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Fu et al. [215] introduced an architecture that employs a bidirectional recurrent neural
network (BiRNN), consisting of an encoding and decoding module, for sleep phase de-
tection. This approach combines time- and frequency-domain feature extraction using a
CNN to expand the feature extraction domain while preserving the original EEG feature
information. Time series information is extracted using the BiRNN encoding-decoding
module, and automatic sleep stage discrimination of the EEG signal is performed using the
SoftMax function. The block diagram of the network is shown in Figure 15.
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In recent years, BiRNN has gained popularity for predicting speech from EEG signals.
Schuster et al. [216] introduced the BiRNN architecture in 1997 as an extension of a RNN
to a bidirectional recurrent neural network (BRNN), as shown in Figure 16. The authors
showed that in the task of extracting a feature from EEG signals, the BRNN structure
leads to better results than other ANN structures, while the training time for BRNN is
approximately the same as for other RNNs.
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Unlike the standard RNN, the BRNN divides neurons into two directions: one for
the positive time direction (forward state) and the other for the negative time direction
(backward state).

6.3. Cascaded Architecture

Many papers exist in which the authors have presented architectures that combine
multiple architectures to solve a task, often referred to as a “cascaded architecture”. The ad-
vantage of this approach is that it allows for the use of, for example, parts of an architecture
designed to extract frequency patterns with another part of the CNN designed for extract-
ing spatial filters. For instance, Altuwaijri et al. [217] employed the EEGNet architecture in
the first stage to work on the frequency components of the signal, as described above for
image signal classification. They included a block for altering the data dimension, referred
to as Squeeze–Excitation, and only in the final part of the classification task did they use a
few layers of custom CNN architecture.

Li et al. [218] proposed a solution to the motion classification problem by introducing
the Temporal-Spectral Fusion of Squeeze and Excitation Functions (TS-SEFFNet). In this
combined architecture, a deep temporal convolution block (DT-Conv block) was used to
extract multivariate temporal representations from raw EEG data alongside a parallel mul-
tispectral convolution block (MS-Conv block). The use of multilayer wavelet convolutions
enabled the extraction of information regarding the spectral component of the signal. A
feature fusion block (SE-Feature-Fusion block) was employed to merge deep temporal and
multispectral data into complex merged feature maps. Experimental results confirm that
this architecture can effectively decode EEG, which can be considered a powerful tool for
MI-EEG-based BCI. Finally, for motion classification, a classification block was utilized, as
illustrated in Figure 17.
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Several papers exist in which authors have presented complex combined deep ar-
chitectures for the purpose of extracting features from EEG signals. These models are
particularly intriguing because they are composed of distinct blocks, each of which can be
adapted for use in a customized architecture. For example, Kostas et al. [219] employed a
self-directed learning model for speech recognition from EEG signals. The model utilizes a
multilevel convolutional feature encoder consisting of multiple blocks. Each block includes
time convolution, followed by level normalization and a GELU activation function. The
raw signal entering the encoder is normalized to have a mean of zero and a unit variance.
The total encoder step determines the number of time steps provided to the converter. The
output of the feature encoder is then directed into the context network, which follows
the transformer architecture. This context network incorporates a convolutional layer
for encoding absolute position information. Finally, the authors append the convolution
output, followed by GELU, to the input and then apply layer normalization.

7. Details of CNNs in the Context of EEG Signals

The primary building blocks of CNNs include convolutional layers, subsampling
(pooling) layers, activation layers, and fully connected layers. As part of EEG signal
processing, we will consider hyperparameters, activation functions, and loss functions.

The loss function, in the theory of statistical decision-making, characterizes the losses
incurred due to incorrect decisions based on observed data. Machine learning inherently
revolves around optimization, and as in any optimization problem, we need to deter-
mine how far our predictions deviate to make the necessary adjustments. Loss functions
take predictions and compare them to actual values or data labels, providing an error
metric. Loss functions are fundamental components of any architecture and have been well-
studied [220]. Thiyagarajan et al. [221] utilized a triplet-based loss function for clustering
EEG data in their CNN, while Zhang et al. [222] applied the central loss function to improve
the deep learning performance for EEG signal classification. Zhao et al. implemented focal
loss for EEG-based seizure detection using a linear graph convolution network with focal
loss [223]. Luo et al. [224] for EEG signal reconstruction using GAN with Wasserstein
distance used temporal-spatial-frequency loss. This TSF-MSE-based loss function recon-
structs signals by calculating MSE based on time series characteristics, general spatial
structure characteristics, and power spectral density characteristics. Several researchers
have introduced their custom loss functions, which, however, tend to be specialized and
challenging to adapt to other architectures [225–227]. Brophy et al. [228] used a custom loss
function to improve the denoising of electrode motion artifacts in ECG using convolutional
neural networks. The choice of the optimal loss function for an architecture designed to
work with EEG signals remains an ongoing challenge. Commonly used approaches include
Mean Normalized Error (MNE) for extracting frequency patterns and Softmax loss for
extracting spatial patterns.

Optimisers play a crucial role in CNN training, aiding in achieving increasingly
accurate predictions. Optimizers determine the optimal set of model parameters, such as
weights and biases, so that the model performs best for a given problem. The gradient
descent algorithm [229,230] is a widely used optimization technique. A review of the
papers showed that Adam is a commonly employed optimizer for both classification and
prediction in the EEG field.

One of the stages in the development of a CNN is the choice of the activation function
of the neurons. The type of activation function largely determines the functionality of
the architecture and the method of training the model. The classic backpropagation algo-
rithm [231] works well for CNNs with a few layers but encounters challenges as network
depth increases, notably due to the problem of gradient attenuation [232]. The attenuation
of gradients refers to the diminishing or vanishing of gradient values as they are propa-
gated backward through the layers during the training process. In the context of the classic
backpropagation algorithm, the attenuation of gradients can impede the effective updating
of the network’s weights, especially in deep architectures. As the error propagates from
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the output layer to the input layer, the current result is multiplied by the derivative of
the activation function at each layer. Different activation functions are employed in fully
connected layers (FC), with the Rectified Linear Unit (ReLU) activation function being a
common choice for neural network layers, especially for tasks in the frequency domain
and spatial problem-solving, such as those addressed by Softmax. Dubey et al. [233] wrote
about activation functions in the deep learning field; Mehta et al. [234] considered activation
functions in the context of CNN; and Hao et al. [235] considered function activations more
locally for EEG signal classification. In machine learning problems, metrics are used to
evaluate the model quality and compare different algorithms. Understanding these metrics
is crucial, as their values are used to evaluate the developed architecture. Choosing the
right metrics is essential to avoid misinterpretation of the work of the CNN architecture.
Carvalho et al. [236], R. Padilla et al. [237], and Saeedeh Ziyabari et al. [238] considered
metrics in the context of machine learning, CNNs, and EEG signal processing.

8. Progress in Hardware

Laboratory equipment for non-real-time EEG data analysis faces no issues with com-
puting power [239]. However, in recent years, there has been a growing interest in brain-
computer interface devices that operate in real-time and are not highly powerful. Simulta-
neously, affordable consumer-grade EEG devices based on microcontrollers can measure
EEG signals with the same quality as laboratory equipment [240,241]. This necessitated the
implementation of machine learning algorithms directly on the microcontroller. The con-
cept of Edge AI enables the utilization of machine learning algorithms directly on chips like
Kneron, Kendryte, K210, and RISC-V [242,243]. For example, Fang et al. [244] employed
Edge AI in a system-on-chip design for an EEG-based real-time emotion recognition task.
TensorFlow introduced a platform for machine learning on embedded devices, known as
TinyML [245], which gained popularity for microcontrollers [246–248]. STMicroelectronics
has introduced a framework, X-CUBE-AI, for implementing machine learning algorithms
on STM32 series microcontrollers [249–251].

Wang et al. [252] presented an EEGNet-based motor visualization brain-computer
interface for low-power edge computing. To implement the EEGNet model on the ARM
Cortex-M family of microcontrollers, Wang et al. [252] downsized the input feature map by
reducing temporal and spatial dimensions and narrowing the time window, which relaxed
the memory requirements.

Mezzina et al. [253] developed an Embedded convolutional NN (E-CNN) using two
1D convolutional layers, an intermediate batch normalization step to counter data covariate
shift, and two dropout sections to mitigate overfitting phenomena. The batch size for
the stochastic gradient descent was set to 128, and the optimal number of epochs to
prevent overfitting was set to 50. The model was tested on STM32 microcontrollers with
quantization crosses.

As the market for embedded devices continues to grow, along with the growing scope
of EEG data, the significance of machine learning architectures for real-time EEG signal
processing and feature extraction in embedded systems is becoming increasingly relevant.

9. Conclusions

In this paper, we have addressed the design of CNNs for custom tasks in the field of
feature extraction from EEG signals. Our analysis encompasses several popular algorithms
and explores the data preparation and hyperparameter tuning processes. One limitation in
evaluating the models we have reviewed is that different datasets were used by the authors
for their assessments. In neuroscience, comparing the effectiveness of models involved in
different tasks is not as straightforward as in domains like computer vision, which employ
widely recognized datasets such as COCO [254]. For this reason, we have provided a table
in Appendix A detailing the parameters for different architectures. This table will help
those who are starting to develop a custom architecture and will allow, at the initial stage,
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the selection of hyperparameters and the determination of the structure of the created
architecture.

Recurrent neural networks, particularly LTSM, have found extensive application in
event prediction from EEG signals. Encoders and decoders, serving as alternatives to PCA
methods, have become effective in reducing dimensionality. These blocks are already part
of the CNN architecture, and their placement within the network hierarchy depends on the
architecture type.

Popular architectures can be categorized into two application areas: (a) identification
of frequency patterns (e.g., sleep, emotions) and (b) spatial analysis, usually used for pre-
diction tasks (e.g., motor imagery, speech). Standard implementations of CNNs are well
suited for extracting frequency components, as evidenced by numerous papers with minor
architectural and hyperparameter variations. Models based on recurrent neural networks,
in particular LTSM, have been widely applied to the task of event prediction from EEG
signals. Encoders and decoders, serving as alternatives to PCA methods, have become
effective in reducing dimensionality. These blocks are already part of the CNN architecture,
and their placement within the network hierarchy depends on the architecture type. The
block architecture has shown that different model blocks can be easily implemented into
new models, and the EEGNet model has become particularly popular in this direction,
often being used as the first block for the task of decomposing the EEG signal into fre-
quency components. While some papers use data preparation methods like PCA and ICA
to enhance classification accuracy, many others work with raw data. CNNs exhibit an
advantage in classification and prediction tasks, but one drawback when working with
EEG signals is their limited generalizability, unlike the machine vision domain. In the
future, we expect to see more approaches employing LSTM and more complex cascade
models, with a new framework developed that will allow resource-intensive CNNs to run
on hardware without large computing power.

In upcoming research, we plan to extend this article by implementing different CNN
architectures (e.g., Similarity Learning Network, Multi-task learning) on the same dataset
to facilitate a more direct comparison of their effectiveness. We will also consider well-
established CNN architectures implemented outside the field of neuroscience. CNNs
are more advanced in machine vision tasks and tuned for object detection tasks, yet the
popular Yolov model [255], implemented for machine vision tasks, has also been used
to extract features from EEG [256]. Therefore, it is logical for neuroscientists to look for
new architects beyond the EEG domain. The accuracy of feature extraction from EEG data
depends not only on the CNN architecture but also on various external factors, such as the
number of EEG channels. More electrodes can provide enhanced spatial resolution, aiding
in localizing neural activity and producing ERP. High-quality electrodes are effective in
reducing electrical noise, and optimizing impedance matching between the electrodes and
the scalp further improves the signal-to-noise ratio. Additionally, advanced data analysis
techniques like machine learning and multivariate analysis can reveal subtle patterns
in EEG data that are difficult to detect using traditional analysis methods. Combining
EEG with other neuroimaging techniques, such as fMRI or MEG, can provide additional
information about the neural processes underlying ERP.
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Appendix A

Table A1. Applying CNN to Feature Extraction from EEG Signals.

№ Tasks Dataset CNN Learning
Type Steps Structure Optimization Activation

Function
Function
Loss Evaluation Metrics Framework Ref.

1

C
la

ss
ifi

ca
ti

on
ta

sk

Sleep stage
annotations

Physionet
Sleep-EDF
dataset

SleepEEGNet Supervised

Decomposition of data
into frequency
components and
subsequent classification

2DCNN
and BiRNN

RMSProp
optimizer ReLU lMFE

k-fold cross validation.
overall accuracy,
precision, recall
(sensitivity),
specificity, and
F1-score.

Python 3.7–3.10,
TensorFlow 2.8 [256]

2 Emotion
recognition

DEAP
dataset 39

EEG-Based
Emotion
Recognition
Using a 2D
CNN

Supervised

Decomposition of data
into frequency
components and
subsequent classification

2D CNN

Particle
Swarm
Optimiza-
tion

LeakyReLU
Outpit—
Softmax

Cross
Entropy 85% Python 3.7–3.10 [214]

3

Motor
Imagery
Signals Clas-
sification

BCI Compe-
tition IV 2a
(BCI-IV2a),
High
Gamma
(HGD)

MBEEGSE Supervised

MBEEGSE architecture.
Divided into three
branches, each with
EEGNet and SE block

EEGNet
and
Squeeze-
and-
Excitation
(SE) Block

Adam
optimizer Softmax Cross

Entropy 70%
Keras 3.0.4,
Python 3.6, 3.7,
3.8, 3.9

[202]

4

Motor
Imagery
EEG
Decoding

BCI Compe-
tition 2008
IV 2a
Dataset
High
Gamma
Dataset:
(HGD)

TS-SEFFNet Supervised

First, the deep temporal
convolution block
(DT-Conv block). Second,
multispectral convolution
block (MS-Conv block) is
then run in parallel using
multilevel wavelet
convolutions. Finally,
block (SE-Feature-Fusion
block) displays the
depth-time
and multispectral features
into complex pooled
feature maps that extract
the feature responses
across channels.

DT-Conv
block,
MS-Conv
block,
SE-Feature-
Fusion
block

The Opti-
mization
Steps of the
Proposed
TS-
SEFFNet
Method

Softmax Custom loss
function 93.25% Torch 1.4,

Python 3.8 [217]
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Table A1. Cont.

№ Tasks Dataset CNN Learning
Type Steps Structure Optimization Activation

Function
Function
Loss Evaluation Metrics Framework Ref.

5

C
la

ss
ifi

ca
ti

on
ta

sk

Sleep stage
annotations

Physionet
Challenge
dataset

Self-
supervised
learning
(SSL)

Unsupervised

The first step is a sampling
process by which
examples are extracted
from the time series S
(EEG recording). The
following describes a
learning process where
sample examples are used
to train the feature
extractor end-to-end.

Relative
positioning
(RP).
Temporal
shuffing
(TS),
Contrastive
predective
coding
(CPC)

Adam
optimizer

Rectified
Linear Unit
(ReLU)

Cross-
entropy loss
function

72.3% Torch 1.4,
Python 3.9 [218]

6

Pr
ed

ic
ti

on
ta

sk

EEG
Imaginary
Speech
Recognition

Kara One
database - Supervised

a CNN containing two
convolutional layers with
64 and 128 filters
connected to a dense layer
with 64 neurons for input
signal spectrum of a 0.25 s
window

2D CNN Adam
optimizer Linear

Categorical
cross-
entropy

37% - [257]

7
EEG-
Speech
Recognition

Custom
dataset (not
available)

- Supervised

ResNet18/50/101 with 2
layers of managed
recurrent units—Gated
Recurrent Unit (GRU).
And after that ResNet18
operation are fed to the
input of a recurrent neural
network containing 1024
hidden GRUs.

CNN and
RNN

Adam
optimizer Softmax - 85% - [258]

8 EEG speech
recognition

Custom
dataset (not
available)

- Supervised

The architecture used
includes the already
trained VGG Net CNN
design and the target CNN
design, while the already
trained VGG Net CNN
design extracts global
features for general image
classification work, and
the target CNN design
aims at efficient and
accurate categorization of
EEG signals using already
trained Model VGG
Net CNN.

Deep
Residual–
encoder–
based VGG
net CNN

- Softmax
Softmax
cross-
entropy

95% - [259]
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Table A1. Cont.

№ Tasks Dataset CNN Learning
Type Steps Structure Optimization Activation

Function
Function
Loss Evaluation Metrics Framework Ref.

9

Pr
ed

ic
ti

on
ta

sk

Seizure
prediction

CHB-MIT
and Kaggle - Supervised

a hybrid network that can
combine the additional
benefits of CNN and
Transformer. The CNN is
used to extract local
information that contains
two 3 × 3 convolutions
with stride 1 and another
3 × 3 convolution with
stride 2 to reduce the size
of the input features. Each
convolutional layer is
followed by a GELU
activation and a batch
normalization (BN) layer.
The model has two stages
for extracting multiscale
features from the EEG
spectrum. Each stage
consists of a set of
Transformer blocks
applied to extract
long-term dependencies.

CNN and
transformer Adam Softmax Cross-

entropy 95% Torch 1.4,
Python 3.8 [260]

10

Predicting
Human
Intention-
Behavior

BCI
competition
IV Dataset
2b

- Supervised

The multi-scale CNN
model has seven layers,
which are one input layer,
two convolutional layers,
one max-pooling layer,
one multi-scale layer, one
full connection layer and
one softmax output layer.
The input layer in the
multi-scale CNN model is
fed with a time-frequency
image with the size of
40 × 32 × 3 after EEG
signals are preprocessed
by STFT

Multi-Scale
CNN Model - Linear Cross-

entropy 73.9% Python 3.8,
Keras 3 [261]
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Table A1. Cont.

№ Tasks Dataset CNN Learning
Type Steps Structure Optimization Activation

Function
Function
Loss Evaluation Metrics Framework Ref.

11

A
rt

if
ac

tR
em

ov
al

EEG
Artifact
Detection
and
Correction

Costum
dataset, not
available

- Unsupervised

modification of a
feed-forward neural
network that uses weight
sharing and exhibits
translation invariance.
Learning in the CNNs
operates on the same
principle as a traditional
feed-forward neural
network where an error
from output layer is
back-propagated through
the network and weights
of the network are
proportionally updated to
the gradient of error.

CNN Adam - Cross-
entropy - Python 3.9,

Keras 3 [262]

12

Remove
Muscle
Artifacts
from EEG

EEGdenoise
Net - Supervised

CNN for myogenic artifact
reduction contains seven
similar blocks. In each of
the first six blocks, two
1D-convolution layers
with small 1*3 kernels, 1
stride, and a ReLU
activation function are
followed by a 1D-Average
pooling layer with pool
size equal to two. In the
seventh block, two
1D-convolution layers are
followed by a flatten
layer.The network
gradually reduce the EEG
signal sampling rate by the
1D-Average pooling layer.

CNN RMSprop ReLU
mean
squared
error (MSE)

- Python 3.10,
Tensorflow 2.8 [263]
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№ Tasks Dataset CNN Learning
Type Steps Structure Optimization Activation

Function
Function
Loss Evaluation Metrics Framework Ref.

13

A
rt

if
ac

tR
em

ov
al

Denoise
EEG signal
from
artifacts

EEGdenoise
Net

MultiRes
UNet3+ Supervised

Net3+ consists of
full-blown pass-through
connections that aggregate
connections between
encoders and decoders
and internal connections
between decoder subnets.
Instead of directly
combining the encoder
and decoder functions, the
encoder functions go
through several
convolutional levels with
residual connections

CNN,
encoders Adam Rely

mean
squared
error (MSE)

- - [152]
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