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Abstract: This research proposes a novel approach to global path and resource planning for lunar
rovers. The proposed method incorporates a range of constraints, including static, time-variant,
and path-dependent factors related to environmental conditions and the rover’s internal resource
status. These constraints are integrated into a grid map as a penalty function, and a reinforcement
learning-based framework is employed to address the resource constrained shortest path problem
(RCSP). Compared to existing approaches referenced in the literature, our proposed method enables
the simultaneous consideration of a broader spectrum of constraints. This enhanced flexibility leads
to improved path search optimality. To evaluate the performance of our approach, this research
applied the proposed learning architecture to lunar rover path search problems, generated based on
real lunar digital elevation data. The simulation results demonstrate that our architecture successfully
identifies a rover path while consistently adhering to user-defined environmental and rover resource
safety criteria across all positions and time epochs. Furthermore, the simulation results indicate that
our approach surpasses conventional methods that solely rely on environmental constraints.

Keywords: path planning; planetary rover; lunar rover; reinforcement learning

1. Introduction

The need for energy efficient operation in the space environment and specifically on the
Moon is paramount to effective commercial and scientific missions in vast lunar/planetary
surfaces. The techniques are categorized at the first level into global (offline) and local
(online) path planning approaches [1]. Global path planning involves computing an initial
path using available global map information, aiming to optimize a target metric such as the
vehicle’s travel distance. Typically, this computation occurs in a mission operation center on
the ground. The resultant data are then either employed by ground operators for manual
operation or transmitted to space rovers for autonomous operation [2]. On the contrary,
local path planning techniques are reactive in nature. They come into play to adjust the
initially calculated path by the global planner in response to unforeseen situations, such as
the sudden presence of obstacles. The local path planning is ideally conducted on onboard
computers for increased autonomy. In this research, our focus is on the global path planning
problem for lunar surface missions, especially in application to ’small’ lunar rovers where
limited size and power capability impose extended environmental and resource constraints.

In the conventional global path planning for terrestrial applications, the primary goal
is to achieve maximum speed for swift surface coverage. However, when addressing addi-
tional operational conditions, the concept of accelerated exploration does not necessarily
equate to effective planning. A number of studies have been conducted on global path
planning, employing different algorithms to address various environmental considerations:
obstacle avoidance [3] (MDP); terramechanics [4,5] (Dijkstra), [6] (Reinforcement learning);
sun-synchronous motion [7] (A*), [8] (Multi-speed spatiotemporal A*); terramechanics
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and power generation [9] (A*), [10] (Reinforcement learning); thermal condition, power
generation, and terramechanics [11] (Dijkstra); uncertainty of the information [12] (RRT*);
and hazard risk and collision avoidance [13] (A*), [14] (MDP), [15] (A*). These studies em-
phasize the importance of carefully selecting mathematical models and algorithms based on
the specific purpose and constraints to be taken into account in the path planning process.

In the context of lunar surface exploration mission scenarios involving a compact
rover with resource constraints, careful consideration must be given to a range of pivotal
design factors. One of the key factors is the rover terramechanical constraint. Due to size
constraints, many small rovers are equipped with small wheels, limiting their ability to
climb slopes [16]. Also, due to the limited battery capacity of small rovers, it is essential to
find an energy-efficient path to avoid excessive power consumption [4,5]. Consequently, it
is of high importance to search an optimal path from a terramechanical cost point of view.

Another important factor is an increased sensitivity to thermal and luminous condi-
tions on the lunar surface. As the size of rovers decreases, thermal capacitance and battery
size are reduced. As a result, small rovers will cause immediate change in temperature and
battery status in accordance with local lunar surface temperature as well as the sun position,
which constantly changes over the course of the mission period. Therefore, it is essential to
control when to move (timings of relocation), as well as where to move (path), to circumvent
the variation in thermal and luminous conditions the rover will encounter [7–11].

There are fundamentally two possible ways to consider thermal and power constraints
in the path planning process. One option is to use extrinsic conditions, such as lunar
surface temperature and luminous environmental conditions, to determine immediate
traversal/untraversal areas, such as those described in [7–11]. In this research, this sce-
nario is called environment-based path search. Depending on the temporal characteristic
of environmental conditions, constraints become either time-variant or static. The other
option is to directly consider the rover’s intrinsic status, such as the internal temperature
and battery power, in determining possible paths, which has not been explored in the
existing literature. In this research, this scenario is called rover resource-based path search.
Theoretically, the rover resource-based path search will result in more flexible path selection,
as the rover’s thermal and power system have a capacitance and a short period of exposure
to a harsh environment, which may be avoided if the path search is performed based on the
environmental conditions that can be circumvented. Therefore, using the rover resource
status rather than environmental conditions for path planning can increase flexibility and
optimality of the path search. Rover resource status is dependent on its previous status
and, as a result, elicits path-dependent constraints. To perform the rover resource-based
path search, the path planning framework must cope with not only static and time-variant
constraints, but also path-dependent constraints.

Upon closely examining the most related work, Oikawa et al. [11] addressed ther-
mal and power constraints within the path planning process by approximating them as
time-fixed costs and solving the problem using Dijkstra’s algorithm. Another approach, as
presented by Hu et al. [10], involved applying reinforcement learning to a graph after ex-
tracting slope and illumination features of the map of the moment. While these approaches
offer a good approximation in relatively stable environments, the reliability of path search
results diminishes when underlying assumptions are not upheld, necessitating a repeat of
the path search. Essentially, these methods are not suitable when searching for an optimal
path over an extended duration in time-variant environments. Otten et al. [7], Hu et al. [8],
and Ji et al. [9] incorporated power constraints by integrating the time-variant lunar surface
luminous condition through the expansion of the graph in the temporal direction (in other
words, generating a 3D binary array composed of stacked 2D maps for each time step).
They addressed this using either the A* algorithm or the multi-speed spatiotemporal A*
algorithm. While these methods are efficient in solving their specific challenges, these
approaches cannot account for path-dependent constraints. As a result, they cannot directly
utilize the internal resource status of the rover in the path planning and the path searches
they employ may lead to less economical paths.
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To address the limitations of the existing work, this research proposes a reinforcement
learning-based approach that can directly handle path-dependent constraints and, conse-
quently, enables the rover resource-based path search. To the best of our knowledge, the
integration of rover thermal and power resource considerations into the reinforcement
learning-based path planning framework within the domain of lunar rover missions is
new. The proposed approach is capable of incorporating static, time-variant, and path-
dependent constraints onto a grid map using a penalty function. Subsequently, it utilizes a
reinforcement learning framework to solve a resource-constrained shortest path problem
(RCSP) over the generated map. Importantly, all constraints are simultaneously applied
to a graph, eliminating the need for a hierarchical structure. This feature serves as a key
enabler in comprehending the inter-relationships among constraints and path selection.
Additionally, the proposed framework can also consider rover motion transition probability
(the rover may go to locations not originally planned with a certain probability), which is
critical to small rover systems due to the fact that their navigational sensor system may be
limited by their size and power capacity. A comparison of the aforementioned global path
planning methods is depicted in Table 1.

Table 1. Comparison of global path planning approaches.

Items Proposed Method Dijkstra, A*

Type of constraints Static, time-variant, and path-dependent Static and time-variant 1

Type of managements Environment-based and resource-based Environment-based only
Motion transition probability Yes No

1 To cope with time-variant constraints using the A* algorithm, a time-variant environment must be represented
by a 3D binary array composed of stacked 2D maps for each time step.

To summarize, the major advantages of the proposed method over the existing re-
search are: (1) the proposed method can consider path-dependent constraints, which can
produce more flexible path selections than the case of only using static and time-variant con-
straints; (2) the proposed method can deal with various types of constraints simultaneously,
without relying on a hierarchical architecture, enabling understanding of inter-relationships
between these constraints and path selection; and (3) the proposed method can consider
rover motion transition probability during the path planning, which is critical for the case
of small rovers whose navigational sensors are low performance.

The remainder of the paper is organized into six sections. Section 2 presents the
problem formulation and proposed architecture. Section 3 provides detailed mathematical
models. Section 4 summarizes numerical simulation details and results. In Section 5,
a comparative analysis is presented. Section 6 offers further insights into the proposed
architecture based on simulation results or additional simulations. Finally, Section 7
provides concluding remarks.

2. Methods
2.1. Problem Statement

This study addresses the challenge of identifying energy-constrained shortest paths,
framing it as a RCSP problem. This problem falls within the realm of combinatorial
optimization, specifically defined on a graph. The objective is to determine a feasible
optimal path between two specified nodes while adhering to predefined constraints. In
our case, constraints include static type (terrain slope) and path-dependent type (rover
thermal and power status), whereas environmental inputs (heat flux and illumination on
the moon) are time-variant. The planning is performed in multi-objective planning rather
than minimum-time planning. Since environmental inputs are time-variant, the rover is
permitted to wait (i.e., stay in the same position until the next time step) to avoid excessive
heat input. As a result, the first-in-first-out (FIFO) property, which essentially states that
delaying departure time can never result in earlier arrival, is violated.
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2.2. Proposed Learning Architecture

Figure 1 shows the architecture of the proposed path planning approach using re-
inforcement learning. Reinforcement learning is a learning-based method for optimal
decision making and control. The agent acquires control profiles through the exploration of
an environment using a trial-and-error process. Deep Reinforcement Learning (DRL) is the
combination of reinforcement learning and deep learning [17]. It is also the most trending
type of machine learning, because it can solve a wide range of complex decision-making
problems that were previously out of reach. DRL has been applied to the path planning and
control problems of mobile robots [18,19], unmanned aerial vehicles [20], and underwater
robots [21]. In particular, this research utilizes the Deep Q-Network (DQN), which is a subset
of DRL. It is a model-free, online, off-policy reinforcement learning method [22]. DQN
combines Q-learning with deep neural networks, using a neural network to approximate the
Q-function and enabling it to handle high-dimensional input spaces. DQN is a popular choice
for discrete action spaces, and is also suitable for graph-based path-planning problems.

Slope map Sun vector
Lunar surface 
temperature

Previous 
rover  thermal and 

power status

State s: time tk, position Xk, rover temperature T , and rover battery power B%

Rover thermal & power model

Reward calculation

Critic

Actor
action u

state s

reward Re

value

Learning Agent

Environment

Position Time

Rover thermal status  T 
Rover power status  B% 

Status update
Position

Time

Greedy orientation control

Xk tk

Figure 1. Proposed learning framework.

As the mathematical framework solved with DQN, the Markov Decision Process (MDP)
was utilized. MDP is a mathematical model used to describe decision-making problems
in situations where an agent interacts with an environment. MDP is characterized with a
4-tuple (S, U, Pa, Re), where S is a set of states, with each state represented by s ∈ S; U is
a set of actions, where each action is denoted as u ∈ U; Pa is the state-transition function,
which provides the probability of a transition between every pair of states given each action;
and Re is a reward function that assigns a real value to each state/action pair. The solution
to a MDP involves finding an optimal policy that maximizes the expected sum of rewards
over time.

In this research, the state s and action u were defined using discrete variables. The state
s was designed to incorporate the rover position (Xk), time (tk), rover thermal status (TTT),
and rover power status (B%), thus forming s = {Xk, tk, TTT, B%}. By definition, state s was
designed to satisfy the Markov Property, meaning that the current state can be determined
solely by using the input to the current time step and its immediate previous state (i.e., a
memoryless system). The reward function is defined in accordance with the Markov reward
process, wherein the reward function provides a numerical score based on the state of the
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environment. Each element of both the state model and reward model is described in detail
in Section 3.

2.3. Environment

The environment module was implemented over a graph; more particularly, a grid
world map representing a rover mission scenario, where the rover explores a specific point
on the lunar surface on a designated date and moves from a defined starting point to a
predetermined goal. Details of the map structure are described in Section 3.1.

Depending on the rover’s location and time-epoch, the module determines the slope
angle, sun vector, and lunar surface temperature, which will then be applied to the rover
for the current time step. Subsequently, the rover’s thermal and power status of the time
step is calculated, taking into account the determined slope angle, sun vector, lunar surface
temperature, and the rover’s thermal and power status from the previous time step, using a
designed rover thermal and power model. Finally, the reward value Re is computed based
on the updated state s, which is then provided to the learning agent. Using these values,
the learning agent determines a new action u, which dictates whether the rover should stay
in its current position or relocate for the next time step. Detailed mathematical models for
the sun vector and lunar surface temperature are provided in Section 3.2, while the rover
thermal and power models are elaborated on in Section 3.3.

2.4. Limitations and Scope

The actual performance may vary based on the accuracy of the environment model
and rover model. This research utilized realistic data to the best extent possible. For
example, the slope data are derived from a real lunar digital elevation model with high
accuracy. Moreover, it is well-established that the sun vector and lunar surface temperature
can be accurately predicted using a mathematical model, given the absence of atmosphere
and the low conductivity of the lunar surface.

However, it is conceivable that certain parameters related to the lunar surface, such
as absorptivity and emissivity, may require calibration, especially in the presence of small
topological features like craters, considering the age of the terrains.

The rover model is based on a real flight project [23], which has undergone calibration
through a thermal balance test conducted in a vacuum chamber. It is important to note that
the rover model may need adjustments for different rover projects.

In order for the rover to execute the chosen global path on the lunar surface, it needs
to be aware of the time epoch, direction, and location. Therefore, it is necessary to equip the
rover with corresponding onboard sensors. Additionally, temperature and battery power
will be utilized in posture control as described in Section 3.3.3. This research assumes
that these sensors are standard for rover missions and readily available. The absence of
sensor information may result in the rover being unable to accurately follow the selected
global path.

It is also important to note that, in the proposed architecture, the map used for the
training process and evaluation must be the same. In other words, a trained agent is not
expected to work with an entirely new environment. While the agent is trained to perform
efficiently in the presence of uncertainties within the selected map, it is not anticipated
to function effectively in a completely different environment. This is due to variations in
slope distributions across different maps, indicating that appropriate actions for a given
state differ in distinct maps.

3. Model
3.1. Map Overview

Among many representation options for rough terrain, this research uses a two-and-a-
half dimensional (2.5D) grid map for its efficiency in processing and data storage. The 2.5D
grid map is represented as a collection of terrain properties (e.g., height, slope) over a uniform
grid, while the 3D (three dimensional) map is profiling of objects in three dimensions to map



Sensors 2024, 24, 844 6 of 22

the objects in the real world. This research implemented a grid map with information on
slope angles.

A path planning problem was solved over a generated grid map where the rover starts
from an initial node of X0 traveling incrementally to a goal node of X f while generating a
path ΨΨΨ. This path is generated in a time sequential manner from {X0, . . . , Xk, . . . , X f }. The
rover’s position Xk is defined by unique grid coordinates corresponding a two-dimensional
grid position, e.g., (x,y). The rover can move in any of the four directions on the map to
node Xk+1, as shown in Figure 2. It is important to note that action u also includes stay
action, which allows the rover to stay in the same grid position for one time step.

𝑋𝑋𝑘𝑘+1

𝑋𝑋𝑘𝑘 𝑋𝑋𝑘𝑘+1

𝑋𝑋𝑘𝑘+1

𝑋𝑋𝑘𝑘+1

𝑦𝑦 + 1

𝑦𝑦

𝑦𝑦 − 1

𝑥𝑥 + 1𝑥𝑥𝑥𝑥 − 1
Figure 2. Rover motion model.

It is also important to note that this research also considers rover motion transition
probability during the path planning. The transition probability for rover motion can be
represented by Pa in an MDP framework. In this research, the transition probability Pa
was defined such that the rover relocates to the planned location with a probability of pt,
regardless of state s. Alternatively, it may take another random action, including relocation
to an unplanned location or staying in the same grid, with a probability of 1 − pt.

This work used a 5 m resolution digital elevation model (DEM) based on a data
product of the Lunar Orbiter Laser Altimeter (LOLA) instrument [24]. Based on the DEM, a
grid-based map was implemented with one grid corresponding to 5 m. The height data of
the DEM was used to compute a local slope angle and normal vector of the lunar surface at
each grid point.

3.2. Lunar Environment
3.2.1. Sun Vector

Due to the Moon’s synodic period averaging around 708 h, a singular lunar day
corresponds to approximately 29.5 Earth days [25]. In regions with non-polar latitudes, this
results in alternating cycles of daylight and darkness, each lasting an average of 14.75 Earth
days. Sun vector is determined by the Sun’s position as viewed from a rover local latitude
and longitude on the Moon at the moment of interest by using vector math.
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3.2.2. Lunar Surface Temperature

The thermal conditions on the lunar surface are extremely challenging. The absence
of an atmosphere, combined with low surface conductivity and high emissivity, results in
temperature fluctuations spanning from 100 K to 380 K [26]. According to [11], when the
heat input from sunlight, i.e., Qsun,m, and radiation heat transfer from the lunar surface to
outer space, i.e., Qsp,m, are balanced, the following equation was obtained:

Qsun,m = Qsp,m (1)

where Qsun,m and Qsp,m can be modeled as

Qsun,m(Xk, tk) = αmFsun,m AmD (2)

Qsp,m(Xk, tk) = σϵmFsp,m Am(Tm
4 − Tsp

4) (3)

α is the absorptivity of the corresponding node, ϵ is the emissivity of the corresponding
node, Fa,b is the view factor from node a to node b, A is the surface area of the corresponding
node, D is the solar irradiance constant, σ is the Stefan–Boltzmann constant, T is the
temperature of the corresponding node, ·m indicates that the parameter is regarding the
Moon (lunar surface) node, ·sun indicates that the parameter is regarding the Sun node, ·sp
indicates that the parameter is regarding the outer space node.

Equations (1)–(3) can be solved with respect to the lunar surface temperature Tm as
shown in (4), and provides a reasonably approximated lunar surface temperature at lunar
daytime (not valid for night-time) under the assumption that the lunar surface is composed
of low-conductive material (i.e., regolith) and internal conductive heat transfer within the
lunar soil can be ignored.

Tm(Xk, tk) =
4

√
αmFsun,mD + σϵmFsp,mTsp

4

σϵmFsp,m
(4)

As indicated in (4), lunar surface temperature changes depending on the view factor
from the lunar surface to the sun, i.e., Fsun,m.

3.3. Rover Model
3.3.1. Thermal Model

This research employed a thermal node model proposed by [11] for rover temperature
prediction. The effectiveness of the proposed architecture is dependent on the accuracy of
the rover model. Ref. [11] presents a thermal model used in the implementation of a real
flight project [23], which has been calibrated through a thermal balance test conducted in a
vacuum chamber. It is important to note that different rover projects may necessitate the
use of a different thermal model.

In our definition, Qsun is the solar radiation from the sun, Qa is the surface albedo
effect, Qr is the radiative heat transfer, Qc is the conductive heat transfer, Qe is the dissipated
energy from on-board electronics or absorbed energy through solar power generation, and
Qsp is the radiation emitted to outer space. Assuming that each rover surface has a specific
nodal point, the following relation is derived from the first law of thermodynamics at a
time tk:

Micp i
dTi
dt

= Qsun,i + Qa,i + Qr m,i + Qc m,i + Qsp,i + Qe,i + Qr i,j + Qc i,j (5)

where i and j represent i-th and j-th surface node, Mi is the mass of the i-th node, and
cp i is the specific heat of the i-th node. Each heat transfer component is defined by the
following equations:
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Qsun,i(Xk, tk, θk) = αiFsun,i AiD − Wgen i (6)

Qa,i(Xk, tk, θk) = αiFm,i Ai(1 − αm)Qsun,m (7)

Qr m,i(Xk, tk) = σϵmϵiFm,i Ai(Tm
4 − Ti

4) (8)

Qc m,i(Xk, tk) = km,i Ac m,i(Tm − Ti) (9)

Qsp,i(Xk, tk) = ϵiFsp,i Aiσ(Tsp
4 − Ti

4) (10)

Qe,i(tk) = Wi (11)

Qr i,j(tk) = σϵiϵjFi,j Ai(Tj
4 − Ti

4) (12)

Qc i,j(tk) = ki,j Ac i,j(Tj − Ti) (13)

where Ac a,b is the contact area between the node a and node b, ka,b is the thermal contact
conductance between the node a and node b, W is the electronics heat dissipation of the
corresponding node, Wgen is solar power generation of the corresponding node, which is
only applicable to the surface covered by solar panels, and θk is the rover orientation at a
time epoch tk. It is important to note that the view factor from the i-th node to the sun, i.e.,
Fsun,i, changes depending on rover orientation θk. This indicates that rover’s temperature
(and power generation, as discussed in the next section) can be controlled by means of
rover orientation control.

This analysis decomposed the rover into six thermal nodes, Top, Right, Left, Front, Rear,
and Bottom. The temperature of each node, i.e., Ti, is calculated as

Ti(ΨΨΨk, θk) ≈ Ti(ΨΨΨk−1, θk−1) +
dTi
dt

· ∆t (14)

where ΨΨΨ is a rover path consisting of tuple of X and t, ∆t is an interval of one time step. As
indicated by (14), the rover temperature status Ti is a path-dependent variable. In order to
deal with the coupling heat transfer such as Qr i,j and Qc i,j, the equations must be solved
iteratively.

3.3.2. Power Model

Power generation at a time tk can be modeled by the following equation:

Wgen i(Xk, tk, θk) = pieQsun,i(Xk, tk, θk) (15)

where pi is a ratio of area covered by solar cells in relation to the entire surface area of
the node, e is the power conversion efficiency including solar cell efficiency and power
conversion loss. pi is set 0 when the i-th surface is not equipped with solar cells. It is
important to note that the power generation Wgen can be controlled by means of rover
orientation as Qsun,i is a function of Fs,i. Battery charging occurs when the generated power
surpasses the total power consumption:

Wavail = ∑
i

Wgen i − ∑
i

Wi (16)

where Wavail is available power for battery charging. When Wavail is a negative value, the
battery will be discharged. The remaining battery power B changes over time according to
the following equation:

B(ΨΨΨk, θk) = B(ΨΨΨk−1, θk−1) + Wavail · ∆t (17)

Then, the percentage of remaining power B% in relation to the maximum battery
capacity Bmax is calculated by:

B%(ΨΨΨk, θk) = B(ΨΨΨk, θk)/(Bmax) · 100 (18)

As indicated by (18), rover power status B% is a path-dependent variable.
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3.3.3. Rover Orientation Control

As indicated by Equations (14) and (18), the resulting rover thermal and power status
become different depending on the rover orientation. Therefore, rover orientation control
must be considered in addition to the rover’s location and relocation timing during the path
planning process. However, it will be computationally expensive if an additional parameter
in the path search process is considered, for instance, by adding rover orientation to the
state s.

Therefore, an optimal rover orientation control function was implemented within the
rover thermal and power model module. The function was named greedy orientation control,
as depicted in Figure 1.

In the rover system, the thermal model is not linear with respect to the rover orienta-
tion. Therefore, the conventional linear feedback approach such as proportional–integral–
derivative controller or linear quadratic regulator cannot be used to find an optimal rover
orientation. In this context, an exhaustive search algorithm was utilized to determine
the optimal rover orientation θ∗ that minimizes the sum of designed thermal and power
penalty function C:

min
θ

C(tk, θ)

C(tk, θ) = pethermal(tk, θ) + pepower(tk, θ)
(19)

where pethermal and pepower are thermal penalty and power penalty. In this function, an
optimal rover orientation is chosen with regard to the designed thermal and power penalty
function. The mathematical models of thermal and power penalty function are described
in detail in Section 3.4.

Consequently, Equations (14) and (18) can be expressed with using a uniquely deter-
mined optimal rover orientation θ∗ as

Ti(ΨΨΨk, θ∗k ) ≈ Ti(ΨΨΨk−1, θ∗k−1) +
dTi
dt

· ∆t (20)

B%(ΨΨΨk, θ∗k ) = B(ΨΨΨk, θ∗k−1)/(Bmax) · 100 (21)

In actual missions, it is realistic to assume that the rover is equipped with some sort
of on-board orientation control algorithm, enabling the implementation of the proposed
orientation control algorithm.

3.4. Rewards for Training

A reward function is used for the reinforcement learning process. A reward function that
consists of time penalty petime, terramechanical penalty peslope, thermal penalty pethermal ,
power penalty pepower, positioning reward repos, and goal reward regoal was designed:

Re(tk) = −petime − peslope − pethermal − pepower + repos + regoal (22)

3.4.1. Time Penalty

A fixed-value time-penalty tp was utilized for each step:

petime = tp (23)

3.4.2. Terramechanical Penalty

A terramechanical penalty is calculated based on the slope value of the rover position as

peslope =

{
Ks · Sl(Xk)

2, if |Sl(Xk)| > slth
Ks · Sl(Xk)

2 + Es, otherwise
(24)
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where Sl(·) returns a slope angle of the corresponding grid Xk, Ks is a scaling factor, slth is
a user-set slope angle threshold, and Es is an extra penalty which is only applied when the
slope exceeds the maximum traversable slope angle slth.

3.4.3. Thermal Penalty

The goal of thermal systems design is to keep all of the electronics components within
their operating temperature thresholds, i.e., Tmin and Tmax, while the rover traveling over
the selected path. Accordingly, the success criterion of thermal control at a time tk is
determined by how well and whether the temperature of electronics is maintained within
the thermal safety thresholds. In our model, the temperature of the Top surface represents
the temperature of electronics, assuming that majority of the electronics boards are mounted
on the Top surface according to the micro-rover thermal design proposed by [23].

As shown in (25), the thermal penalty function is designed using a power function
with the power factor et, which increases the penalty exponentially based on the difference
between the user-set control target Tc and the Top surface’s temperature Ttop, and the
designed threshold Tth. Kt is a scaling factor.

pethermal = Kt ·
(∣∣∣Tc − Ttop(ΨΨΨk, θk)

∣∣∣
Tth

)et

(25)

Tc =

{
Tmin, if Ttop > (Tmin + Tmax)/2
Tmax, otherwise

(26)

It is important to note that pethermal is a function of path ΨΨΨk and orientation θk. How-
ever, θk is optimized and removed by the greedy orientation control, as mentioned earlier.

3.4.4. Power Penalty

Power management safety is determined by the battery depth of discharge (DoD). A
battery’s life is affected by the number of charge/discharge cycles, so a low DoD contributes
to the longevity of the battery. Accordingly, the success criterion of power control at a time
tk is determined by how well and whether the percentage of the remaining battery power
is kept beyond a certain threshold B% min.

Similarly to the thermal penalty function, the power penalty function is designed
using a power function with the power factor ep, which increases the penalty exponentially
based on the difference between the user-set control target B% c and current remaining
power percentage B%, and the designed threshold B% th. Kp is a scaling factor.

pepower = Kp ·
(∣∣∣B% c − B%(ΨΨΨk, θk)

∣∣∣
B% th

)ep

(27)

B% c is usually set high enough. As with the thermal penalty, pepower is a function
of path ΨΨΨk and orientation θk. However, θk is optimized and removed by the greedy
orientation control.

3.4.5. Positioning Reward

Position reward is calculated based on an Euclidean distance obtained at a time epoch
tk. It is designed to encourage the rover to approach the goal node, i.e., the closer the rover
gets to the goal node, the more reward will be awarded by the end of the episode.

repos = Kpos ·
(
||X f − Xk−1|| − ||X f − Xk||

)
(28)
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3.4.6. Goal Reward

The goal reward is provided by the following equation:

regoal =

{
g, if Xk corresponds to the goal grid X f

0, otherwise
(29)

where g is a goal reward which is given only when Xk corresponds to the goal grid X f .

4. Numerical Results and Analysis
4.1. Implementation Details

In this study, the simulation environment was constructed using MiniGrid [27]. Mini-
Grid is an open-source general grid environment that is compatible with the OpenAI Gym
platform [28]. It necessitates customization based on user scenarios, and in our case, it was
tailored for a lunar rover exploration scenario.

Next, the environment model was integrated into the grid map simulation. Initially,
each grid was assigned a slope value extracted from the 5 m resolution LOLA DEM of a
location of interest. Subsequently, the sun vector and lunar surface temperature for the
entire mission period were calculated for each grid using a fixed time step before initiating
the path search process. While environmental factors (slope, sun vector, and lunar surface
temperature) can be populated prior to the path search, the rover’s thermal and power
status are path-dependent and thus need to be calculated during the path search.

Time step interval ∆t (which is essentially how long it takes for the rover to take one
action on the Moon) was fixed to 30 min. The initial time epoch was set to approximately
75 h before local noon in order to create a challenging lunar thermal environment, where the
rover will experience a temperature increase at the beginning, reach its highest temperature
at noon, and then experience a temperature decrease as it approaches evening/night.

As for the implementations of the reinforcement learning algorithm, open source
software code called Stable Baselines3 [29] was utilized. Tuning of learning hyperparameters
plays a large role in eliciting the best results from learning algorithms. For instance, [30]
demonstrated the effects of specific hyperparameters on algorithm performance. In this
research, the choice of particular hyperparameters significantly influences both the training
efficiency and the subsequent performance of the trained agent. Therefore, they need to
be chosen carefully. In this regard, this research used the exhaustive grid search method,
which is currently the most widely used method, for parameter optimization [31]. Table 2
summarizes the hyperparameters used in our simulation. These hyperparameters were
defined in accordance with Stable Baselines3 standard definition. If hyperparameters are
not specified in the table, the default value used in Stable Baselines3 were used. The same
hyperparameters were used throughout all the simulations.

Table 2. Learning hyperparameters.

Item Value

Training time steps 2,000,000
Learning rate 0.0002
Learning starts 100,000
Discount factor (gamma) 0.995
Soft update coefficient (tau) 0.1
Net architecture [64 64 64 64]

The learning agent was then trained for a 100 × 100 grid map. The initial node was set
as X0 = (5, 5), and the goal node was set as X f = (95, 95). Table 3 summarizes the designed
reward parameters. The same parameters were used throughout all the simulations. After
the training, the acquired learning agent was applied to a new episode for evaluation.
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Table 3. Reward design parameters.

Item Symbol Value Unit

Time penalty tp 0.01 -
Slope threshold Slth 15 deg
Thermal threshold Tth 40 degC
Power threshold B% th 37 %
Power control target B% c 100 %
Thermal exponent et 10 -
Power exponent ep 10 -
Scaling factor (position reward) Kpos 5 -
Scaling factor (slope penalty) Ks 0.01 -
Scaling factor (thermal penalty) Kt 2 -
Scaling factor (power penalty) Kp 2 -
Minimum operating temperature Tmin 0 degC
Maximum operating temperature Tmax 45 degC
Minimum operating battery power B% min 60 %
Extra penalty (slope penalty) Es 20 -
Goal reward g 100 -

4.2. Simulation Results

To test the applicability of the proposed architecture in various settings, the perfor-
mance of the architecture was evaluated with two different maps. Two maps were created
based on the lunar DEM of 45◦ latitude and 0◦ longitude, with a slight difference in location
of approximately 2 km, which were labeled as Scenario 1 and Scenario 2.

Figure 3 shows the path search results for Scenario 1, when the rover motion transition
probability pt was set to 0. In Figure 3, (a) the selected rover path shown in light-green color
starts from the initial node on top left and moves toward the goal node on right bottom,
where slope values are expressed in gray scale. Dark grids correspond to gentle slopes,
whereas bright grids correspond to steep slopes. It was observed that the rover successfully
chose a path by avoiding grids that have a large slope. The history of the slope angles (b),
rover’s temperature (c), and remaining battery power (d) were also plotted, respectively.
In each figure, the designed safety range is highlighted in green. It was confirmed that
the selected path satisfied the terramechanical, thermal, and power safety ranges at all
data points.

Figure 4 show the path search results for Scenario 2. In Scenario 2, due to the more
challenging lunar surface environment, characterized by higher lunar surface temperatures
and more undulating terrain, the total time epoch of the selected path became longer. To
further investigate the history of the rover’s motion, the relationship between the lunar
surface temperature profile and the selected path were examined. Figure 5 shows the
path search result over the lunar surface temperature map. In these figures, grids are
colored based on their temperatures. Red grids correspond to high temperatures, whereas
light-blue grids correspond to low temperatures. Black grids represent the selected rover
path. It was observed that the rover took stay actions in the middle of the mission period,
between Figure 5c and Figure 5d, in order to stay at relatively low-temperature grids until
the path toward the goal node became thermally available.
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(a) (b)

(c) (d)

Figure 3. Scenario 1 path search results: (a) the selected rover path over the terrain map, (b) history
of the slope angles, (c) history of the rover’s top temperature, (d) history of the rover’s battery power.

(a) (b)

(c) (d)

Figure 4. Scenario 2 path search results: (a) the selected rover path over the terrain map, (b) history
of the slope angles, (c) history of the rover’s top temperature, (d) history of the rover’s battery power.
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(a) (b) (c) (d) (e) (f)

Figure 5. Selected rover path over the lunar surface temperature maps. Each figure corresponds to a
different time epoch. (a) after 2 steps, (b) after 65 steps, (c) after 130 steps, (d) after 195 steps, (e) after
230 steps, (f) after 318 steps (arriving at the goal node).

4.3. Probabilistic Simulation

Next, the performance of the trained agents was evaluated with the rover motion
transition probability to gain a deeper understanding of their capabilities.

The training process accounts for rover probabilistic motion influenced by the ex-
ploration rate. Hence, the trained agent is anticipated to develop resilience in dealing
with uncertainties during the training process. During evaluation, the probabilistic rover
motion simulates scenarios in which the rover must take unplanned actions due to unex-
pected reasons. Consequently, the results offer insights into the trained agent’s ability to
withstand uncertainties.

Table 4 summarizes path search results with three selected rover motion transition
probabilities, pt = 0, pt = 0.02, and pt = 0.05, for the two cases discussed in Section 4.2.
Each data point represents the averaged performance of 10 different simulation runs using
the same trained agent.

Table 4. Simulation results with the rover motion transition probability.

Scenario Motion Probability
pt

Total Time Steps
Ave.

# of Thermal
Violation Ave.

# of Power
Violation Ave.

# of Slope
Violation Ave. Reward Ave.

1 0 180 0 0 0 469.9
0.02 184.0 0 0 0 466.3
0.05 188.1 0 0 0 457.3

2 0 318 0 0 0 −29.5
0.02 318.8 2.0 0 1.1 −66.7
0.05 319.3 7.0 0.4 1.8 −155.5

# of thermal/power/slope violation: a number of time steps violating the minimum operating temperature Tmin

or maximum operating temperature Tmax , or the minimum operating battery power B% min, or the slope threshold
Slth, respectively.

In some cases, the rover motion transition probability resulted in a violation of the
safety criteria. Since constraints are treated as costs, the proposed algorithm does not guar-
antee the satisfaction of the safety criteria. An alternative approach involves terminating the
episode as soon as any constraint is violated and imposing a very high penalty to enforce
strict compliance with the safety criteria. We will investigate this in our future work.

In addition, Scenario 2 exhibited a larger performance variance, resulting in more viola-
tions of safety criteria. This outcome suggests that addressing Scenario 2 effectively within
the context of probabilistic rover motion may be challenging. It is suspected that the range of
paths free from violations is narrower and more prone to infringement when the transition
probability of rover motion is higher in Scenario 2. In essence, the proposed architecture
successfully demonstrated the sensitivity of path search to unforeseen uncertainties.
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5. Comparative Analysis

In this section, a comparative analysis will be conducted to underscore the advantages
of the rover resource-based path search over the environment-based path search, an aspect that has
not been explored in existing research.

As mentioned in Section 1, the existing research relies solely on environmental con-
straints, such as terramechanics, luminous, and thermal constraints, as analyzed in [7–9].
Consequently, a map encompasses both static and time-variant constraints. Therefore,
methods designed to handle only static constraints, such as Dijkstra, are not directly appli-
cable to the generated map. Moreover, A* is inefficient for solving maps with time-variant
constraints, since it requires the map to be extended in the time-direction, imposing a
significant computational burden on the solver. Instead, this research proposes emulating
the environment-based path search within the proposed framework by adjusting both the
state s and the reward function Re. We believe this is a straightforward yet valid approach
to confirming the advantages of resource-based path search over the environment-based
path search.

5.1. Environment-Based Path Search

In the environment-based path search, rover temperature will be controlled based on
environmental conditions by adding a high penalty to extreme lunar surface temperature.
For this purpose, a new penalty function peenv was defined as

peenv(tk) =

Ke ·
∣∣∣Tm c − Tm(Xk, tk)

∣∣∣, if Tm min < Tm and Tm < Tm max

Ke ·
∣∣∣Tm c − Tm(Xk, tk)

∣∣∣+ Ee otherwise
(30)

Tm c =

{
Tm min, if Tm > (Tm min + Tm max)/2
Tm max, otherwise

(31)

Ee =

Ke2 ·
(

Tm(Xk, tk)− Tm max

)
, if Tm > Tm max

Ke2 ·
(

Tm min − Tm(Xk, tk)
)

, if Tm min > Tm
(32)

where Tm is a lunar surface temperature of the rover location, Tm c is a control target, which
is chosen either from Tm min or Tm max, depending on which is closer to the current lunar
surface temperature, and Ke and Ke2 are user-set scaling factors. The designed penalty
consists of two elements, Ke· | Tm c − Tm(Xk, tk) | and Ee, where the first element is given
proportional to how much a lunar surface temperature of the new location deviates from
the control target Tm c, and the second element is an extra penalty which is only applied
when a lunar surface temperature of the rover location exceeds the target range.

Penalty function peenv can also contribute to the rover power status control. As the
designed rover only has solar arrays on its side panels (i.e., Right and Left), low power
generation occurs when the sun inclination angle is high, which is equivalently when the
lunar surface temperature is high. Therefore, poor luminous conditions can be avoided by
avoiding extremely high lunar surface temperature.

As a result, overall reward function for the environment-based path search is defined
by updating (22) to:

Re(tk) = −petime − peslope − peenv + repos + regoal (33)

where other penalty and reward functions, including petime, peslope, repos, and regoal , remain
the same. Also, the state s was modified to only accommodate rover position Xk, time
epoch tk, and lunar surface temperature of the rover location Tm.

Finally, training was performed over the same map according to the updated state s
and reward function Re. The selected reward design parameters are summarized in Table 5.
The same learning hyperparameters in Table 2 were used.
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Table 5. Reward design parameters for the environment-based case.

Item Symbol Value Unit

Time penalty tp 0.01 -
Slope threshold Slth 15 deg
Scaling factor (position reward) Kpos 5 -
Scaling factor (slope penalty) Ks 0.01 -
Scaling factor (environment) Ke 0.025 -

Ke2 10 -
Minimum lunar surface temperature Tm min 0 degC
Maximum lunar surface temperature Tm max 85 degC
Extra penalty (slope penalty) Es 20 -
Goal reward g 100 -

5.2. Comparison Results

Figure 6 is the comparison between the rover resource-based path search and the
environment-based path search. Table 6 displays a quantitative comparison of the perfor-
mance. It is crucial to note that the reward designs differ, implying that a direct comparison
of reward values between the two path search methods is not meaningful.

In Scenario 1, the distinction between the rover resource-based path search and the
environment-based path search is not significant, as both exhibit similar performance in
terms of total time steps and violation of safety criteria. In contrast, the rover resource-
based path search outperformed the environment-based path search in Scenario 2, with an
increased number of total time steps in the environment-based path compared to the rover
resource-based path search. This result suggests that the rover utilized its thermal and
power capacitance to temporarily navigate through excessively challenging environmental
conditions encountered in Scenario 2, indicating that the rover resource-based path search
has the potential to generate better-optimized paths.

(a) (b)

(c) (d)

Figure 6. Comparison between the rover resource-based path search and the environment-based
path search. Figures (a–d) depict the selected rover paths for different search methods and scenarios,
where (a) corresponds to the rover resource-based path search in Scenario 1, (b) corresponds to
the environment-based path search in Scenario 1, (c) corresponds to the rover resource-based path
search in Scenario 2, and (d) corresponds to the environment-based path search in Scenario 2. (a) is a
duplicate of Figure 3a, while (c) is a duplicate of Figure 4a.
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Table 6. Comparative analysis with the rover motion transition probability.

Environment-Based Path Search

Scenario Motion
Probability pt

Total Time
Steps Ave.

# of Thermal
Violation Ave.

# of Power
Violation Ave.

# of Slope
Violation Ave. Reward Ave.

1 0.0 180 0 0 0 335.4
0.02 181.4 0 0 0.2 328.9
0.05 185.3 0 0 0 326.2

2 0.0 364 0 0 0 -13.2
0.02 365.6 0 0 2 -87.9
0.05 362.6 0.5 0 4.1 -224.9

Resource-Based Path Search *

Scenario Motion
Probability pt

Total Time
Steps Ave.

# of Thermal
Violation Ave.

# of Power
Violation Ave.

# of Slope
Violation Ave. Reward Ave.

1 0 180 0 0 0 469.9
0.02 184.0 0 0 0 466.3
0.05 188.1 0 0 0 457.3

2 0 318 0 0 0 −29.5
0.02 318.8 2.0 0 1.1 −66.7
0.05 319.3 7.0 0.4 1.8 −155.5

* Resource-based search is a duplicate of Table 4.

It is worth mentioning again that existing approaches, such as A*, cannot be used
to address path-dependent constraints, and should be considered limited compared to
the rover resource-based path search conducted in this research, particularly in terms of
the variety of constraints that can be considered. A* is capable of handling time-variant
constraints by extending the map in the time dimension. Therefore, A* can perform
competitively with the environment-based path search conducted in this research.

6. Discussions
6.1. Reproducibility of the Training Results

Due to random variables introduced in the proposed architecture, such as the rover’s
random actions influenced by the exploration rate, trained agents exhibited variances in
performance. This not only impacts performance evaluation, as mentioned in Section 4.3,
but also influences the training process itself.

Figure 7 depicts the transition of received rewards during the entire training process.
The green dots represent rewards received at the end of each episode, while the red line
depicts a moving average taken over every 5000 time steps. The training profile indicates
that low reward values (in other words, large penalties) observed initially have successfully
converged to better values through the training process. Additionally, in Scenario 2, greater
variance was observed at the end of training compared to Scenario 1, in both rover resource-
based and environment-based searches. As mentioned in Section 4.3, the higher complexity
of the Scenario 2 environment contributed to this increase in variance.

For practical applications, additional refinement of rewards, adjustment of hyperpa-
rameters, or the adoption of more sophisticated learning algorithms could mitigate the
variance in path search results. An alternative strategy involves terminating the episode
during training promptly upon any constraint violation, and imposing a very high penalty,
which is deemed valuable to enhance constraint satisfaction. These aspects will be explored
further in our future work.
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(a)

(b)

(c)

(d)

Figure 7. Reward transition during training processes in various scenarios. (a) corresponds to the
rover resource-based path search in Scenario 1, (b) corresponds to the environment-based path search
in Scenario 1, (c) corresponds to the rover resource-based path search in Scenario 2, and (d) corre-
sponds to the environment-based path search in Scenario 2.

6.2. Reward Tuning

The design of the reward function has an impact on the resulting path selection. For
instance, the balance of scaling factors, namely Ks, Kt, and Kp, affects which constraints
must be prioritized in consideration for the orientation control and path search.

As an example, Figure 8 depicts the path selection and the resulting history of the
rover’s resource status in the rover resource-based path search in Scenario 1. Two different
combinations of scaling factors are presented: (a), (c), and (e) represent the case with Kt = 4
and Kp = 2 (i.e., thermal prioritized), while (b), (d), and (f) represent the case with Kt = 2
and Kp = 20 (i.e., power prioritized). The values of Kt and Kp were chosen to be sufficiently
distinct to yield noticeably different results, while an excessively extreme value can lead to



Sensors 2024, 24, 844 19 of 22

inefficient path selections. The thermal and power profiles of the generated paths exhibited
intriguing characteristics; one showed a superior power history compared to the other,
while both thermal histories had minor differences. This result suggests that improving
the rover’s thermal status is more challenging, even when sacrificing the power profile,
under the selected conditions. This example effectively demonstrates how the proposed
method can enhance our understanding of the interrelationships among the constraints
and path selection.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Path search results with different combinations of Kt and Kp. (a,c,e) represent the case with
Kt = 4 and Kp = 2 (i.e., thermal prioritized), while (b,d,f) represent the case with Kt = 2 and Kp = 20
(i.e., power prioritized).
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6.3. Map Size and Computation Time

In an assumed mission scenario, calculations are executed in a mission operation
center prior to a mission, and the results will be utilized either by ground operators for
manual operation or uploaded to space rovers through telecommands for autonomous
operation. Consequently, the proposed system is not constrained by the performance of
on-board rover computation. However, in scenarios where mission re-planning is necessary
recursively, the intensive computation required may introduce delays in mission operations.
This concern is anticipated to be addressed in the future, given the potential availability of
high-performance cloud-based computing services to the public within a few years.

6.4. More Assumptions for Realistic Missions

In this research, rover motion was constrained to four cardinal directions and sta-
tionary actions. In a more realistic scenario, diagonal motion could prove beneficial for
shortening the travel path. Additionally, the paper assumed a uniform time for the rover to
move across a cell. However, the time required for cell traversal depends on factors such
as slope, friction, and battery level. Thus, these conditions should be considered when
calculating the travel time at each cell. In the current framework, the values of sun vectors
and lunar surface temperature for the entire mission period are precalculated with a fixed
time step to reduce computational time during path search, as described in Section 4.1.
However, this approach cannot be applied if the traveling times for each grid/action are
different, leading to a significant increase in computational time. While anticipated ad-
vancements in computer science technology are expected to alleviate the computational
load, we acknowledge the necessity of addressing this aspect in our future work.

6.5. Potential Application

When traveling in shadowed regions on Moon, thermal and power resource manage-
ment becomes more constrained. The rover will explore shadowed regions by alternately
traveling in illuminated and unilluminated regions, which induces more dynamic varia-
tions in thermal and power environmental conditions. In such a situation, a path search
based on environment conditions may not work effectively, and the necessity of the rover
resource-based path search is increased to improve the exploration range.

7. Conclusions

This research has introduced an innovative approach to global path and resource man-
agement planning for lunar rovers. Our proposed method incorporates static, time-variant,
and path-dependent constraints into a grid map as a penalty function, utilizing a reinforce-
ment learning framework to tackle a resource constrained shortest path problem.

To assess the performance of our proposed approach, lunar rover path search problems
that encompass three distinct constraints (rover terramechanics performance, thermal status
management, and power status management) were formulated. Subsequently, the proposed
learning architecture was applied to these designed path search problems for evaluation.
The simulation results demonstrate the effectiveness of our architecture in successfully
identifying a rover path, while consistently meeting user-defined safety criteria related
to terramechanical, thermal, and power considerations at all positions and time intervals.
Additionally, through comparative analysis, it was verified that our proposed approach
outperforms a conventional method that solely relies on static and time-variant constraints.

To enhance the performance of the proposed architecture in realistic mission scenarios,
additional efforts need to be undertaken. Specifically, there is a need for the implementation
of more flexible rover motion in terms of direction and length of the time step, along with
an analysis of its impact on computational time.
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