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Abstract: Recently, monocular 3D human pose estimation (HPE) methods were used to accurately
predict 3D pose by solving the ill-pose problem caused by 3D-2D projection. However, monocular
3D HPE still remains challenging owing to the inherent depth ambiguity and occlusions. To address
this issue, previous studies have proposed diffusion model-based approaches (DDPM) that learn
to reconstruct a correct 3D pose from a noisy initial 3D pose. In addition, these approaches use 2D
keypoints or context encoders that encode spatial and temporal information to inform the model.
However, they often fall short of achieving peak performance, or require an extended period to
converge to the target pose. In this paper, we proposed HDPose, which can converge rapidly and
predict 3D poses accurately. Our approach aggregated spatial and temporal information from the
condition into a denoising model in a hierarchical structure. We observed that the post-hierarchical
structure achieved the best performance among various condition structures. Further, we evaluated
our model on the widely used Human3.6M and MPI-INF-3DHP datasets. The proposed model
demonstrated competitive performance with state-of-the-art models, achieving high accuracy with
faster convergence while being considerably more lightweight.

Keywords: 3D human pose estimation; diffusion; transformer; hierarchical structure

1. Introduction

The goal of monocular 3D human pose estimation (HPE) is to localize 3D body
joints from 2D images or video. This task is crucial in computer vision applications,
such as human–robot interaction [1], autonomous driving [2], the metaverse [3], and
VR [4]. In recent years, coupled with the success of deep learning, the performance of
monocular 3D HPE has made notable progress [5–9]. The lifting-based approach [10]
involves mapping from a 2D pose to a 3D pose. This approach does not estimate the 3D
pose directly from the image, thereby achieving high performance with less influence from
background and lighting conditions. The dilated temporal-based approach [11] uses a
fully convolutional model dependent on dilated temporal convolutions over 2D keypoints
to effectively estimate 3D poses in videos. By learning the trajectory of a 2D keypoint’s
movement over time, this approach facilitates the forecasting of the sequential movement
of each joint within the human anatomy across successive frames of a video. Furthermore,
the transformer-based approach [7] was proposed to learn the temporal trajectories by
capturing the surrounding sequences and the long-range associations of the input sequence.
These approaches have made significant contributions to improving the performance of 3D
HPE. By leveraging the capabilities of these methods, the accuracy and reliability of pose
estimation have been considerably improved. However, despite advancements in 3D HPE,
monocular 3D HPE faces challenges in terms of depth ambiguity and various occlusion
scenarios, which result in the reconstruction of incorrect 3D poses.

To overcome these limitations, previous studies have proposed methods utilizing
diffusion models. Diffusion models have facilitated the realization of imposing perfor-
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mance. Representatively, denoising diffusion probabilistic models (DDPMs) [12] have
rendered image generation plausible by gradually denoising sampled data from a Gaussian
distribution. Intuitively, the DDPM mechanism entails treating the incorrect data in 3D
poses, which are caused by occlusion, as noise. Based on the gradual denoising of this
noise via small iterative steps, the correct 3D pose can ultimately be converged. However,
reconstructing the correct 3D pose using only the incorrect 3D pose sampled from the pure
a Gaussian distribution is challenging owing to the lack of sufficient evidence to predict the
correct 3D pose from an incorrect one. Moreover, the learning process for reconstructing the
correct 3D pose is time-consuming owing to the numerous steps involved in the denoising
process. Therefore, in the denoising process, the conditions are vital for providing guidance
for the transition from an incorrect 3D pose towards the correct 3D pose. This study focused
on manipulating conditions to guide 3D poses more accurately and quickly.

Currently, 3D HPE using diffusion involves two distinct methods for providing
conditions. The first approach [13] is the provision of a simple 2D pose. This method
provides evidence through a 2D pose, thus enabling the 3D pose sampled from pure
Gaussian noise to be guided towards the correct 3D pose. However, a simple 2D pose
does not yield high performance, as it cannot capture the temporal information between
frames in a 2D pose sequence. The second approach [14] is a context encoder that includes
spatial and temporal information and can outperform simple 2D poses. This method can
outperform the first approach because it captures correlations in 2D pose joints and frames.
However, this method requires more training steps to converge to optimal performance,
resulting in longer training times.

To address the issues highlighted, this study proposed a hierarchical diffusion 3D
human pose estimation (HDPose). We aimed to learn to guide the denoising model to
clean the 3D pose in a precise and rapid manner by passing detailed spatial and temporal
information to it in a hierarchical structure. We were inspired by the method proposed
by Lu et al. [15], wherein the HDAE [15] exploited the low-level-to-high-level feature
hierarchy. This method can efficiently and deterministically transform a semantic image
from Gaussian noise. Therefore, we designed a hierarchical conditioning model inspired
by the above literature. The proposed method utilized the context encoder described
previously. This effectively encapsulated the context encoder of the final layer output, which
integrated skip connections and spatio-temporal features, thereby seamlessly capturing
both spatial and temporal features at diverse scales. Consequently, we hierarchically
aggregated the last features extracted from the conditional model to each encoder of the
denoising model. This enabled the neural network to learn more efficiently and converge
rapidly. We compared the performance of various methods that feed features from the
condition model to the denoising model. Empirically, we found that the most effective
approach was to hierarchically aggregate the holistic representation produced by the final
encoder of the condition. In addition, compared to previous models [13,14], we observed
that we achieve significantly better performance by using a pre-trained condition model.

We experimented with different conditional model structures, including simple 2D
pose sequences, non-hierarchical structure, pre-hierarchical structure, and post-hierarchical
structure. Our model was easily trainable and could more accurately predict 3D poses that
matched 2D poses with high-quality poses. Moreover, it quickly converged to the optimal
3D pose during the learning process and was a more lightweight model than the previous
approach [7,16]. In summary, the primary contributions of this study are as follows:

• We propose a novel hierarchical diffusion-based (HDPose) method that can converged
to a fast and accurate 3D pose by aggregating spatio-temporal information to all layers
of the denoising model.

• We performed experiments with various conditioning methods, including simple 2D
pose, non-hierarchical, pre-hierarchical, and post-hierarchical structure. Through em-
pirical observation, we identified the model structure that yielded the best performance.
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• Our proposed hierarchical model, when compared to state-of-the-art methods, demon-
strated competitive results. It maintained a lightweight model, showcasing its effec-
tiveness on the Human3.6M and MPI-INF-3DHP datasets.

2. Related Work

2.1. 3D Human Pose Estimation

Monocular 3D human pose estimation methods can typically be divided into two cate-
gories: frame-based approaches and sequence-based approaches. Many prior approaches
to frame-based methods have employed either a CNN to directly regress the 3D pose from
the image [17–19] or an off-the-shelf 2D pose detector to predict the 2D pose, followed
by a lifting process to obtain the 3D pose, e.g., [9,10,20–24]. Pavlakos et al. [25] directly
regressed the 3D coordinates of each joint in a pose by transforming the pose into a 3D
volume and training a CNN to predict the likelihood of each joint being located within each
voxel of the volume. Martinez et al. [10] proposed a method to detect 2D poses and then
lifted them to 3D poses to ensure that they were less sensitive to changes in background
and lighting.

The sequence-based method predicts a consistent 3D pose by using temporal infor-
mation from a sequence of 2D human poses, e.g., [7,8,26–29]. Pavllo et al. [11] proposed a
fully convolutional neural network architecture that utilized dilated temporal convolutions
over 2D keypoints to estimate the 3D pose in a video sequence. Zheng et al. [7] proposed a
transformer-based approach for accurate 3D human pose estimation from videos.

In contrast to the frame-based approach, the sequence-based approach utilizes tem-
poral information to infer consistent 3D poses even when body joints are occluded in
individual frames. The current state-of-the-art model by Zhang et al. [16] further enhances
performance through a sequence-to-sequence (seq2seq) approach built upon the Trans-
former architecture. This advancement addresses limitations found in the previously
proposed seq2frame approach. The seq2frame method, which predicts individual frames
based on long-range temporal information processed by the transformer, necessitates the
repetitive input of 2D keypoint sequences with substantial overlap to deduce the 3D pose
for all frames. This leads to the issue of redundant computations. To resolve this chal-
lenge, Zhang et al. [16] introduced a novel transformer-based 3D human pose estimation
method utilizing the seq2seq approach, enabling the prediction of consecutive frames
more efficiently. We were inspired by the work of Zhang et al. [16]. Our approach in-
tegrates transformer-based 3D human pose estimation to effectively harness long-range
temporal information within videos. We adopt a seq2seq approach, building upon the
foundations laid by Zhang et al. [16]. This allows us to more accurately capture the nuances
of human motion over extended periods, enhancing the overall effectiveness of our pose
estimation framework.

2.2. Generative 3D Human Pose Estimation

Generative methods have emerged as a promising approach for addressing the chal-
lenges of occlusion and depth ambiguity in 3D human pose estimation. Recently, methods
using many generative models, such as GAN [30], CVAE [31], and Normalizing Flows [32],
have been proposed. Barsoum et al. [33] proposed a novel sequence-to-sequence model
for probabilistic human motion prediction. Sharma et al. [34] addressed the ambiguity
of 2D-3D lifting by generating multiple 3D posture possibilities. Wehrbein et al. [35] ex-
plored ambiguous 2D-3D inverse problems using a regularized flow-based approach with
deterministic 3D-2D mapping and uncertainty modeling from 2D detectors.

Recently, methods utilizing diffusion have been proposed. Diffpose [36] considered the
cross-correlation between the joints, which was not considered as a condition in previous
studies. Using an embedding transformer as a condition, it is provided as a condition to
the diffusion model through a joint-wise embedding vector. The study by Choi et al. [13]
uses GCN [37] as a denoising model that captures the spatial anatomy of the person
well, and utilizes 2D keypoints as a condition. However, this work is only optimized for
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frame-by-frame 3D HPE operations, which has the limitation of not exploiting important
temporal trajectories in video sequences and thus does not achieve high performance. To
improve on this, the work of Rommel et al. [14] utilizes spatial and temporal context by
using pre-trained models as conditionals, but this method also requires significant time
for convergence to the desired pose. Therefore, we provide a hierarchical aggregation of
spatial and temporal context using pre-trained conditionals to enable faster convergence.

3. Proposed Method: Hierarchical Diffusion 3D Human Pose Estimation (HDPose)

3.1. Diffusion Model

The diffusion model learns to gradually denoise a sampled 3D pose starting from pure
noise. A diffusion process can be divided into two processes: forward and reverse processes.

• Forward Process can be modeled as a Markov chain [38] wherein Gaussian noise is
gradually added to the ground truth 3D pose x0 at each subsequent step t until the state
attains a Gaussian distribution. It is denoted as N (0, I). To train the diffusion model
to denoise a 3D pose in a progressive manner, it must be provided with supervisory
signals in the form of ground truth distributions. We can generate samples from these
distributions using the forward diffusion process iteration, starting with the ground
truth 3D pose distribution and gradually adding noise. This process can predefine
q(x1:T |x0) through variance noise scheduler βt and step t as follows :

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βt I) (2)

We used the cosine noise variance schedule [39] to control the amount of noise added
to the 3D pose at each step of the diffusion process. We enabled a reparameterization
trick to make the diffusion process more efficient by enabling direct sampling from
the noise distribution. Following DDPM [12], this process can be expressed as:

xt :=
√

ᾱtx0 +
√

1 − ᾱtϵ (3)

where αt := 1 − βt, ᾱt := Πt
s=1αs and ϵ ∼ N (0, I) Gaussian noise ϵ. We can optimize

L by randomly sampling t during training, thereby exploiting these properties.
• Reverse Process is a process of reconstruction of the correct 3D pose from an incorrect

3D pose. The task of accurately reconstructing a 3D pose from a random distribution
remains a significant challenge. To address this, we adapted the diffusion process
based on the context information derived from the 2D sequence. This approach
ensured the attainment of a deterministic 3D pose that aligns with the spatial and
temporal embedding vectors. Reverse processes can also be expressed as a joint
distribution pθ(xt−1|xt), which describes the probability of observing a 3D pose xt−1
at timestep t.

pθ(xt−1|xt) := N (xt−1; µθ(xt, c, t), Σθ(xt, c, t)) (4)

In the DDPM [12], Σθ(xt, c, t) was fixed as constant. Considering the mean parameter
µθ(xt, c, t), we can compute the distribution of the previous timestep xt−1 using the µθ

function, which is defined as follows.

µθ(xt, c, t) :=
1√
αt
(xt −

βt√
1 − ᾱt

ϵθ(xt, c, t)) (5)

Therefore, the only remaining task is to predict ϵθ . However, in the above method,
timestep t is typically set to a value greater than 100 to ensure that the model can
accurately learn the diffusion process. As a result, this can make the reverse diffusion
process computationally expensive. Instead of predicting the noise, we approximated
the reverse diffusion process using DDIM [40] to reduce the computational cost, which
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required fewer iterations. Therefore, we directly predicted the correct 3D pose x̃0 from
the trained network.

x̃0 = fθ(xt, c, t) (6)

3.2. Training and Sampling Process

Training process. Initially, we randomly selected a timestep t ∼ U (1, ..., T) and sample
noise ϵ ∼ N (0, I). xt was obtained by gradually adding noise to the ground truth 3D
pose, with the noise level being dependent on the specific timestep t. We processed the
pose denoising by inputting xt, condition c, and timestep t into the denoising model fθ , as
defined in Equation (6). This model was responsible for reconstructing the predicted 3D
pose x̃0. Subsequently, we applied gradient descent steps to Equation (7) until convergence
to the correct 3D pose was achieved:

L = Et∼[1,T],x0,c[||x0 − x̃0||2] (7)

Throughout the training, the entire diffusion process is supervised. We optimize the
denoising model using a mean squared error (MSE) between the ground truth 3D pose and
the predicted 3D pose.

Sampling process involves estimating the correct 3D pose using the trained denoising
model fθ . We initiated the process by sampling the initial 3D pose x0,T from a Gaussian
noise distribution corresponding to timestep T. The pose x0,0 was directly predicted from
x0,t and then fed into the denoising model to produce the incorrect 3D pose x0,t−1 for the
subsequent timestep. This procedure is described by the following equation, which outlines
the DDIM [40] process:

x0,t−1 =
√

ᾱt−1 · x̃0,0 +
√

1 − ᾱt−1 − σ2
t · ϵt + σtϵ (8)

ϵt =
x0,t −

√
ᾱt · x̃0,0√

1 − ᾱt
(9)

In accordance with Equation (3), ϵt is derived. As σt nears zero, its determinate nature
intensifies. We commence at timestep T with x0,T and recursively predict the 3D pose for
the next timestep using the denoising model defined in Equation (6). At each timestep, the
predicted 3D pose serves as the input for the denoising model, facilitating the prediction of
the subsequent 3D pose. This process is iteratively conducted N times, where N belongs to
the range [1, T] and satisfies N < T.

3.3. Pre-Trained Model of Conditioning

In general, obtaining a correct 3D pose solely from the incorrect 3D data derived
from a Gaussian distribution is challenging. To address this, we integrated additional
conditions to more precisely steer the 3D pose reconstruction process. Nevertheless, the
denoising process, when implemented using only basic 2D pose conditions, cannot achieve
optimal results. The reasons for the suboptimal results when using only basic 2D pose
conditions in the denoising process are as follows. First, utilizing simple 2D poses fails
to effectively capture temporal information, which leads to an inability to accurately
predict the appropriate trajectories for each joint, thus not achieving the best possible
performance. Second, even when context information containing spatial–temporal data
is provided to enhance the process, there is an issue with the prolonged time required
for convergence to the optimal pose. When using a transformer as the backbone of a
condition model, the self-attention mechanism has the ability to effectively capture long
sequences. While this is an advantageous property for modeling complex sequences, it
does require significant computational resources. This computational intensity comes
from computing the interactions between all the elements in the sequence, and for the
3D HPE task, using long-range associations of the input sequence to capture temporal
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information between sequences improves accuracy, but requires computational complexity
and significant memory to store the attention weights.

Therefore, we use a pre-trained [41] spatio-temporal transformer as the condition
model. This method helps save learning time and resources and plays an important
guiding role for more accurate 3D pose estimation. We pass the spatial and temporal
context to the diffusion model in a hierarchical manner, which allows the diffusion model
to converge faster.

3.4. Hierarchical Conditioning Diffusion for 3D Human Pose Estimation

This section presents an overview of conditional diffusion applied to 3D HPE, as
illustrated in Figure 1.

Figure 1. An overview of various conditioning structures. This framework comprises 4 distinct
conditioning structures. (a) In the Simple 2D Pose Structure, prior to the diffusion process, x3D

sampled from the Gaussian distribution and simple x2D are concatenated and used as the input.
(b) The Non-Hierarchical Structure aims to improve upon the limited performance of simple x2D

by extracting spatial-temporal context information. This information is then concatenated with
x3D for use as input. (c) The Pre-Hierarchical structure aggregates x3D and the output E2D

F from
each layer, incorporating both low-level and high-level information via a fusion module. (d) The
Post-Hierarchical structure is a denoising model that utilizes the holistic representation E2D. In this
structure, x3D is projected to a higher dimension via linear projection. Next, It feeds spatial and
temporal encoders with hierarchical conditioning aggregation. This process is repeated N times,
ultimately converging to a refined 3D pose when t = 0.

• Pre-Hierarchical Structure
In Figure 1c, this architecture is inspired by the work of Sun et al. [42]. Their work
showed that connecting feature maps of varying depths allows networks to integrate
and utilize multiscale information, which can lead to a more nuanced understanding
of the input data. Instead of using a simple 2D pose as a condition, we use an E2D

consisting of a spatial encoder ES and a temporal encoder ET . The spatial encoder
ES learns the spatial correlations between all joints in the ith frame. This approach
allows the model to gain a more accurate understanding of the actual structure of the
body and the natural connections between joints, leading to more precise and realistic
pose estimation. Initially, the 2D pose x2D is transformed into a higher-dimensional
embedding vector X ∈ RF×J×D via linear projection. This vector X is combined with
the learnable spatial location sign Es ∈ RF×J×D and then input to ES. The output of
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ES is processed by ET , which captures the joint correlation of each frame. As observed
in [16], there are significant differences in the motion trajectories of the joints from
frame to frame, so it is essential to learn a distinct trajectory pattern for each joint in
each frame.

E2D
F = Concat(ES

1 , ET
1 , ...ES

L, ET
L )WF (10)

The depth of the encoder is denoted by L. In this framework, the fusion module uses a
linear projection to align the dimensions of the concatenated features (ES

i , ET
i ) with

the dimensions of the spatial encoder used for denoising. In the denoising model
fθ(E2D

F , x3D
t , t), the input features include both the condition E2D

F and the incorrect
3D pose x3D

t and the time interval t. The incorrect 3D pose is then merged with the
associated condition feature E2D

F and jointly trained. The training process described in
Section 3.2 is then performed.

• Post-Hierarchical Structure
As shown in Figure 1d, we introduce a post-hierarchical structure as an efficient way
to accurately and quickly guide the construction of the correct 3D pose. From our
observations, we found that spreading the final extracted features in a hierarchical
structure to each encoder layer of the denoising model yields the most effective results.
Similar to (b), we extract E2D from the final layer of the condition model. We then pass
this feature, which covers the entire spatial and temporal information, to the denoising
model fθ(E2D, x3D

t , t). In traditional 3D HPE methods using diffusion, it is common
to associate the condition with x3D only in the initial encoder, whereas our approach
incorporates it in all encoder layers. The incorrect 3D pose x3D

t is transformed into
a high-dimensional embedding vector, which is then added along with a spatial
position embedding Es and a time interval embedding t. At each encoder step, this
embedding vector is further aggregated with the global features of the condition
model E2D to produce global condition information. The output of the spatial encoder
ES is combined with the temporal position embedding Et. The combined features
are then reshaped in the RJ×F×D dimension and provided as input to the temporal
encoder ET . This procedure is repeated on all encoder layers to the final depth to
extract the final 3D pose x0:t. The x3D

t is utilized to generate a noisy 3D pose x0:t−1
to be input to the denoising model as the next step, which is input via DDIM [40].
This procedure is repeated N times. The goal is to progressively refine the pose to an
accurate 3D structure. This process is repeated N times, progressively refining the
pose to an accurate 3D reconstruction. Figure 2 shows the detailed architecture of the
Post-Hierarchical Structure.

Figure 2. Detailed architecture of the post-hierarchical structure method. Beginning with the condition
model, the 2D pose with dimensions (243, 17, 2) undergoes a linear projection, transforming its
dimensions to (243, 17, 512). After being processed multiple times through the spatial and temporal
encoders, a dimensional transformation to (243, 17, 256) is carried out. This allows the resulting features
to be integrated with each corresponding spatial and temporal encoder within the denoising model.
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4. Experiment Results

4.1. Datasets and Evaluation Metrics

We conducted our experiments using datasets commonly adopted in previous stud-
ies. To perform a comprehensive evaluation of our proposed method, we used well-
known benchmark datasets for human pose estimation: Human3.6M [43,44] and MPI-INF-
3DHP [45].

Human3.6M is a comprehensive and challenging dataset for 3D human pose es-
timation in indoor environments. The dataset was captured using four synchronized
high-resolution cameras operating at 50 Hz, providing high-quality data for a wide range
of human poses and activities. Our model is trained on five subjects (S1, S5, S6, S7, S8) and
evaluated on two subjects (S9, S11).

MPI-INF-3DHP is a widely used large-scale dataset for 3D human pose estimation,
involving both indoor and complex outdoor scenarios. It features eight actors performing
eight distinct activities captured from 14 synchronized cameras. The dataset comprises
over 1.3 million frames meticulously collected from these cameras. We split a training
set containing eight subjects and a test set containing seven subjects, the same as in the
previous study [7,8,16].

Evaluation Metrics. The performance of the proposed method was evaluated using
the same metrics as in previous methods. First, the proposed models were evaluated
on Human3.6M using standard protocols (i.e., Protocol 1, Protocol 2). Protocol 1 used
mean per-joint position error (MPJPE), which is the average of the Euclidean distance
in millimeters between the ground truth pose and the predicted pose. Protocol 2 used
P-MPJPE, applied to the alignment between the ground truth pose and the predicted pose.
The MPI-INF-3DHP reports the percentage of correct keypoints (PCK), Area Under the
Curve (AUC), and MPJPE as evaluation metrics.

4.2. Implementation Details

All experiments were conducted on individual NVIDIA GeForce RTX 3090 GPUs
(Geforce RTX 3090 GPUs is developed by NVIDIA, based in Santa Clara, CA, USA) . We
employed a batch size of 4 and performed 300 epochs in training. The initial learning rate
was set to 0.001 and weight decay was 7 × 10−6 per epoch. The Adam optimizer was used
for optimization. Data augmentation was performed by applying flipping and horizontal
transformations. The experiments used the PyTorch framework and the method proposed
by Zhang et al. [16] as the backbone for both the condition and denoising models. The
spatial and temporal encoders each had a depth of 8 and multi-head attention of 8. The
embedding dimension was set to 256. As a hyperparameter for diffusion, the number of
hypotheses H was set to 1, β started at 0.99 and decreased to 0.01, and cosine noise variance
schedule [39] was used. We experimented with a timestep of T 1000.

4.3. Quantitative Results

• Results on benchmark dataset. Table 1 demonstrates that our method yielded nearly
identical results to the previous SOTA models in terms of average MPJPE for Protocol 1
at 41.0 mm and for Protocol 2 at 32.8 mm, while outperforming other models. Specif-
ically, on the Human3.6M, our model exhibited an improvement of approximately
4.21% (1.8 mm) for Protocol 1 and 4.65% (1.6 mm) for Protocol 2, compared to the
method proposed by Shan et al. [46]. On the MPI-INF-3DHP, it exhibited a significant
enhancement of 38.45% (from 58.0 mm to 35.7 mm) compared to the method proposed
by Liu et al. [8]. For detailed information, refer to Table 2.

• Results on computational complexity. To evaluate the computational complexity of
our model, we compared the number of trainable parameters with those of previous
models. Despite its lightweight design, our model matched the performance of SOTA
models, with a reasonable number of floating-point operations per second (FLOPs).
The training process performed on a single GeForce 3090 GPU completes 100 epochs
in about 24 h. Further emphasizing its efficiency, a comparison of frames per second
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(FPS) during the inference process revealed real-time capabilities. These detailed
results are elucidated in Table 3.

• Results on comparison of convergence. We compared the convergence speed of
our proposed method HDPose and the state-of-the-art model [7,16], and the result is
reported in Figure 3. Comparing the optimal MPJPE performance over 100 epochs,
Zheng et al. [7] achieved 45.1 mm in 100 epochs and Zhang et al. [16] achieved 42.2 mm
in 96 epochs. On the other hand, we can see that our proposed model converges to
42.1 mm already in 60 epochs with a faster learning process. By comparing the
convergence speed with other state-of-the-art (SOTA) models, we found that our
proposed model outperforms others by up to 26% at peak performance. We found that
our model has a faster learning convergence speed than other models using pre-trained
conditioning models. The model was trained to recognize weights that were optimized
to recognize features that were already useful in a spatial and temporal context.

• Results on visualization. Figure 4 presents a comparison of the state-of-the-art (SOTA)
methods [7,16,28] and HDPose by visualizing their performance across three actions:
Sitting, Greeting, and WalkingDog in Subject S11 of Human3.6M. We found that our
proposed method generated more plausible poses than previous works and closely
resembled the ground truth 3D pose. We also presented visualization results on
MPI-INF-3DHP and on 3DPW [47], an “in-the-wild” dataset that reflects a real-world
environment with varying lighting, backgrounds, and camera angles. More details on
this can be found in the Appendix A.

Table 1. Quantitative evaluation of 3D human pose estimation methods using the standard evaluation
metrics MPJPE (mm) and PA-MPJPE(mm) on the Human3.6M dataset. Part of the data in Table 1 was
referenced from the respective papers [13,16,36,48]. (‡)—using the diffusion method. Bold: best.

Protocol 1 (MPJPE) Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhao et al. [49] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Cai et al. [50] (N = 7) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [11] (N = 243) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Liu et al. [28] (N = 243) 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.1
Zeng [27] 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Shan et al. [51] (N = 243) 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3
Zheng et al. [7] (N = 81) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Chen et al. [52] (N = 243) 41.4 43.2 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
Li et al. [8] (N = 351) 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Shan et al. [46] (N = 243) 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
Zhang et al. [16] (N = 243) 37.9 40.7 37.8 39.6 42.3 50.2 39.9 39.9 51.6 55.6 42.1 39.9 40.8 27.9 28.0 40.9

Choi et al. [13] (H = 10) ‡ 43.4 50.7 45.4 50.2 49.6 53.4 48.6 45.0 56.9 70.7 47.8 48.2 51.3 43.1 43.4 49.4
Holmquist et al. [36] (H = 200) ‡ 38.1 43.1 35.3 43.1 46.6 48.2 39.0 37.6 51.9 59.3 41.7 47.6 45.4 37.4 36.0 43.3

Ours (N = 243, H = 1) 37.8 40.7 37.7 39.6 42.4 50.2 39.8 40.2 51.8 55.8 42.2 39.8 41.0 27.9 28.1 41.0

Protocol 2 (PA-MPJPE) Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Cai et al. [50] (N = 7) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Liu et al. [28] (N = 243) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Zheng et al. [7] (N = 81) 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Chen et al. [52] (N = 243) 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
Li et al. [8] 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
Shan et al. [46] (N = 243) 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
Zhang et al. [16] (N = 243) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6

Choi et al. [13] (H = 10) ‡ 35.9 40.3 36.7 41.4 39.8 43.4 37.1 35.5 46.2 59.7 39.9 38.0 41.9 32.9 34.2 39.9
Holmquist et al. [36] (H = 200) ‡ 27.9 31.4 29.7 30.2 34.9 37.1 27.3 28.2 39.0 46.1 34.2 32.3 33.6 26.1 27.5 32.4

Ours (N = 243, H = 1) 31.0 33.2 30.6 31.9 33.2 39.2 31.1 30.7 42.5 45.0 34.1 30.7 32.5 22.0 23.0 32.8
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Table 2. Quantitative evaluation of 3D human pose estimation methods using the evaluation metrics
PCK, AUC, MPJPE (mm) on the MPI-INF-3DHP dataset. Part of the data in Table 2 was referenced
from the respective papers [7,46,48]. Bold: best.

Method PCK↑ AUC↑ MPJPE↓
Pavllo et al. [11] (T = 243) CVPR’19 85.5 51.5 84.8
Wang et al. [53] (T = 96) ECCV’20 86.9 62.1 68.1
Chen et al. [52] (T = 25) TCSVT’21 87.9 54.0 79.1
Liu et al. [8] (T = 9) CVPR’22 93.8 63.3 58.0
Zhang et al. [16] (T = 243) CVPR’22 96.9 75.8 35.4

Ours (T = 243) Ours 96.5 75.6 35.7

Table 3. Analysis on computational complexity. Part of the data in Table 3 was referenced from the
respective papers [16,46].

Method MPJPE Params (M) FLOPs FPS

Zheng et al. [7] 44.4 9.5 1358 269
Shan et al. [46] 42.8 6.7 1737 3040
Zhang et al. [16] 40.9 33.6 645 4547
Ours 41.0 5.0 78.5 4054

Figure 3. Comparison of convergence speeds across state-of-the-art models.

Figure 4. Qualitative comparison of the proposed HDPose method with other SOTA approaches
using the Human3.6M.
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4.4. Ablation Study

Using pytorch profiler [54], we found that the total time taken to perform a CUDA
operation or task was 0.028 ms. We also analyzed the computational complexity according
to the embedding dimension, as shown in Table 4. We fixed the embedding dimension
of the conditioning model (dc) to 256 as the embedding dimension of the pre-trained
model, and compared the number of parameters and FLOPs with MPJPE while changing
the embedding dimension of the denoising model (dd), and found the most optimized
performance at 256. Comparing the FPS and CUDA computation speed of our model with
the 5.0 M of memory that can run on resource-intensive embedded devices, we believe that
our model is suitable for use on embedded devices such as robots. This evidence strongly
indicated that the proposed method was lightweight and efficient and rapidly converged
to accurate 3D poses, thereby offering competitive performance in the realm of 3D HPE.

Table 4. Ablation study computational complexity according to embedding dimension. Embedding
dimension of condition (dc), embedding dimension of post-hierarchical model (dd).

dc dd MPJPE Params (M) FLOPs

256 64 47.6 0.3 5.0
256 128 44.4 1.2 19.7
256 256 41.0 5.0 78.5
256 512 41.7 19.9 313.0

Performance differences in condition. Conditioning to demonstrate that the post-
hierarchical structure achieves the highest performance and efficiency, we compared four
different condition models for 100 epochs on the Human3.6M dataset with the same
hyperparameter settings, including the encoder depth of 8, and one hypothesis. The
post-hierarchical structure exhibited a significant improvement in MPJPE compared to
the simple 2D pose (43.29%, 72.3 mm → 41.0 mm), pre-hierarchical structure (9.69%,
45.4 mm → 41.0 mm), and non-hierarchical structure (3.53%, 42.5 mm → 41.0 mm). The
detailed results are presented in Figure 5.

Figure 5. Ablation experiments based on different conditioning methods.

Visualization of self-attention matrix among joints and frames. We visualize the
spatial and temporal attention of the denoising model. As shown in Figure 6, the left side
is the attention matrix to understand the correlation between each joint, demonstrating the
capability of the model to distinguish between the left and right sides of a joint, and the
right side is the attention matrix between frames, normalized to a value in the range of
[0, 1]. It is easy to observe that our model has learned the connectivity between joints, even
when they are physically far apart, and is also good at learning long-range associations of
the input sequence.
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Figure 6. Visualization of spatial and temporal self-attention matrix. Each row and column shows the
index of the joint and frames. The left side indicates the number of joints. On the right side, the figure
denotes the number of frames.

Analysis depending on hierarchical structure. We compared the effect of hierarchical
methods on accuracy to assess the performance of the proposed model at various depths
of conditioning models. We observed a decline in the performance of the pre-hierarchical
structure with increasing depth. Conversely, the performance of the post-hierarchical struc-
ture improved at deeper levels. These findings are detailed in Figure 7. Considering that
the model’s input was a 2D pose, the integration of low-level and high-level conditioning
models did not significantly enhance the 3D pose reconstruction. Consequently, we opted
for a hierarchical broadcasting approach for denoising, which was centered on the final
comprehensive representation of the 2D pose. This method was found to surpass existing
techniques in terms of effectiveness.

Figure 7. Ablation study of conditioning depth on a hierarchical structure.

Spatio-temporal encoder of each component. In our approach to hierarchically
integrate the final comprehensive representation into a denoising model, we analyzed
the performance variances when aggregating solely the spatial encoder, the temporal
encoder, or a combination of both. These results are detailed in Table 5. It was observed
that aggregating all spatial encoders reduced the performance compared to the use of
concatenation methods. Aggregation of only the temporal encoder exhibited performance
on par with employing only the spatial encoder. However, the highest performance
was achieved when both the spatial and temporal encoders were aggregated together.
Ultimately, the model attained its peak performance through the aggregation of all spatial
and temporal encoders.
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Table 5. Analysis of performance based on hierarchical aggregation of denoising models.

Hiearchical Aggregation Spatial Temporal MPJPE

Spatial only ✓ × 45.9
Temporal only × ✓ 45.6

Spatial and temporal ✓ ✓ 41.0

4.5. Limitations and Discussion

Our method still has some unsolved problems, and an example of some failure cases
is shown in Figure 8. We perform 3D human pose estimation for a single person. However,
when many people pass by, they may overlap and be recognized as one person, making the
keypoints indistinguishable from each other. We designed a model that contains spatial
and temporal information as a condition model, which is passed to the diffusion model
to make the model more robust to occlusion. Here, the condition acts as a guide for the
diffusion model to restore the correct pose. Conversely, if it estimates the wrong pose, it
will reconstruct the wrong pose. Due to the nature of the camera, the image size is limited,
so if a part of the person is cropped out of the image, the temporal information is not
available and the model cannot handle severe occlusion.

Figure 8. Failure cases caused by multi-person overlapping and image cropping.

5. Conclusions

In this paper, we proposed HDpose, a new framework designed for hierarchical con-
ditioning in diffusion-based 3D human pose estimation. When performing 3D human pose
estimation with a diffusion model, the simple use of a 2D pose as the condition necessitates
several steps to converge to the correct 3D pose, often resulting in suboptimal performance.
Therefore, we emphasized the need for a method that rapidly converged to the correct 3D
pose. HDpose leveraged a condition model to generate a holistic representation, which
was then aggregated across all layers of the denoising model to ultimately converge to the
correct 3D pose. By comparing the convergence speed with other state-of-the-art (SOTA)
models, we found that our proposed model outperforms others by up to 26% at peak perfor-
mance. When evaluated against two widely used benchmark datasets in comparison with
state-of-the-art (SOTA) methods, our model demonstrated equivalent performance while
significantly reducing the model size by approximately 85.12%. Thus, a more lightweight
model was realized.
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Appendix A. Visualization of the HDPose in Various Environments

Figure A1. Qualitative comparison of the proposed HDPose method using the MPI-INF-3DHP.

Figure A2. Qualitative result of the proposed HDPose method with “in the wild” using the 3DPW.
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