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Abstract: Photoelectric smoke detectors are the most cost-effective devices for very early warning
fire alarms. However, due to the different light intensity response values of different kinds of
fire smoke and interference from interferential aerosols, they have a high false-alarm rate, which
limits their popularity in Chinese homes. To address these issues, an embedded spatial–temporal
convolutional neural network (EST-CNN) model is proposed for real fire smoke identification and
aerosol (fire smoke and interferential aerosols) classification. The EST-CNN consists of three modules,
including information fusion, scattering feature extraction, and aerosol classification. Moreover,
a two-dimensional spatial–temporal scattering (2D-TS) matrix is designed to fuse the scattered light
intensities in different channels and adjacent time slices, which is the output of the information fusion
module and the input for the scattering feature extraction module. The EST-CNN is trained and
tested with experimental data measured on an established fire test platform using the developed
dual-wavelength dual-angle photoelectric smoke detector. The optimal network parameters were
selected through extensive experiments, resulting in an average classification accuracy of 98.96% for
different aerosols, with only 67 kB network parameters. The experimental results demonstrate the
feasibility of installing the designed EST-CNN model directly in existing commercial photoelectric
smoke detectors to realize aerosol classification.

Keywords: embedded spatial–temporal convolutional neural network (EST-CNN); optical scattering;
fire smoke; interferential aerosols; aerosol classification

1. Introduction

Very early fire detection and alarm systems are of great importance for disaster risk
reduction. They prevent loss of life and reduce the economic and material impact of
disasters. Since the release of smoke is the most obvious characteristic of very early
fire [1], fire smoke monitoring is considered to be the most effective means of fire warning.
Therefore, the most common commercial fire detectors available are mostly based on smoke
detection, such as image-based [2–5] and photoelectric smoke detectors [6,7]. Image-based
smoke detection technologies determine the presence of smoke and the occurrence of
fire in a target area by analyzing and processing video image information captured with
a camera [8,9]. These methods focus on a large target area, and the smoke recognition
algorithms are computationally intensive, resulting in a large overhead hardware for the
detection system, which is usually used in outdoor areas such as forests [10]. In contrast,
photoelectric smoke detectors, which are more sensitive and responsive to smoke, are better
suited for indoor fire rapid alarms [11]. At present, they are widely used in households due
to the simple detection principle and their small size and the low price of the detection core
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components. However, existing smoke detection techniques actually monitor all aerosols,
including real fire smoke and interferential aerosols, and do not have the ability to identify
real fire smoke. This leads to a high incidence of false detector alarms [12]. For image-based
detectors, images sent to the monitor can be used to identify real and fake fires remotely
and manually. Due to the rapid development of computer vision, deep-learning-based
techniques for detecting and recognizing real fire smoke in images are well established [13],
though these techniques are extremely demanding in terms of computing performance. As
for photoelectric detectors, when an alarm is set off by interfering aerosols, the fire cannot
be recognized remotely as false in time, leading to a waste of rescue resources.

Photoelectric smoke detection technology is based on the optical scattering theory,
in which scattered light intensity is related to the size, refractive index, shape, and con-
centration of the particles [14–16]. However, to simplify the detection principle, it is often
assumed that the intensity of the scattered light obtained by the receiver is approximately
proportional to the concentration of aerosol particles entering the measurement area in
practical applications [14]. Then, a fire is considered to have occurred when the smoke
concentration increases to the point where the scattered light intensity reaches the alarm
threshold [15]. In fact, non-fire interfering aerosol concentrations can also cause the scat-
tered light intensity to reach the alarm threshold if it is high enough, thereby triggering a
false fire alarm [17]. Obviously, recognizing and classifying aerosols of real fire smoke and
interfering aerosols is an effective way to reduce false detector alarms. In addition, even
for real fire combustion smoke, the intensity of scattered light at the same concentration
varies by smoke type. This means that a preset threshold of fixed scattered light intensity is
not satisfactory for timely and accurate alarms in all fire situations, whereas it is helpful to
increase the detector’s alarm accuracy by considering types of smoke and then adaptively
adjusting the threshold of scattered light intensity that triggers the alarm for each type of
smoke. In conclusion, to reduce the rate of false and missed alarms for fires, photoelectric
smoke detectors need to have the ability to classify aerosols.

Chaudhry et al. [18] developed a system for obtaining the scattered and transmitted
light intensity of fire smoke with five wavelengths in the deep ultraviolet (UV) to near-
infrared range to identify burning material based on a Random Forest algorithm. This
method is impractical for commercial photoelectric detectors due to the large size and
complexity of the light intensity measurement device and the requirement of scattering in-
formation in the deep UV for classification. Qu et al. [19] classified four classes of European
standard fires and typical interfering aerosols using a combination of multiple parameters,
such as temperature, smoke, and CO concentration. Similarly, Yu et al. [20] proposed
multi-detector, real-time fire alarm technology to classify oil fumes and multiple types of
real fire smoke. These methods require multiple detectors to work simultaneously, which
increases the cost of detection. Liu et al. [21] proposed the use of detection information from
multiple smoke detectors that are already spatially interconnected to determine whether
there is a real fire based on Bayesian estimation. This method also relies on multiple smoke
detectors being installed in a connected space and cannot classify different kinds of fire
smoke. Zheng et al. [22] used the parameter of aerosol asymmetry ratio at two wavelengths
and two angles to classify black smoke, white smoke, and interference aerosols. However,
this method can only distinguish dust, which has significantly different physical characteri-
zation parameters from fire smoke, and cannot identify oil fumes. In summary, aerosol (fire
smoke and interferential aerosols) recognition and classification methods based on multiple
channels and multiple detectors using machine learning and deep learning algorithms have
attracted extensive attention. However, practical applications require methods that can
be directly applied to existing single photoelectric detectors without additional overhead
hardware. In detail, a practical approach needs to satisfy the following two requirements:
First, the computational complexity of the classification algorithm needs to be so low that it
can be used with common commercial detectors. Second, the data samples required for
classification cannot exceed the actual number of channels in the detector.
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To satisfy these demands, an embedded spatial–temporal convolutional neural net-
work (EST-CNN) model for fire smoke recognition and classification is proposed. The EST-
CNN model consists of three modules: information fusion of spatial–temporal scattered
light intensity, scattering feature extraction, and aerosol classification. In the information
fusion module, the two dimensional spatial–temporal scattering (2D-TS) matrix of the
aerosol is obtained based on the scattered light intensities in different channels and adjacent
time slices. The 2D-TS matrix is the input of the feature extraction module consisting of
multi-layer convolutional neural networks (CNN), and the output features are based on
a fully connected network (FCN) for aerosol classification. Moreover, a dual-wavelength
dual-angle smoke detector is developed to acquire the aerosol datasets on combustion
experimental platform for training and testing the EST-CNN model. The contributions of
this study are as follows.

(1) An EST-CNN model that can be directly used in existing commercial photoelectric
smoke detectors is established for interferential aerosol recognition and real fire classification.

(2) A 2D-TS matrix is created to describe the smoke scattering distribution infor-
mation in spatial and temporal to obtain sufficient characterization parameters during
aerosol generation.

(3) Methods for constructing and pre-processing the scattered light intensity datasets
of real fire smoke and interferential aerosol are provided.

(4) The detector and experimental platform are designed to measure the scattered light
intensity information of standard fire smoke and interference oil fumes.

The remaining parts of the paper are organized as follows: Section 2 introduces
the mechanism of aerosol detection, the datasets used for classification, and the EST-
CNN model. Section 3 presents the experimental platform for acquiring the datasets and
discusses the performance of the EST-CNN model. Section 4 is the conclusion of this study.

2. Materials and Methods
2.1. Aerosol Optical Classification Mechanism

Photoelectric smoke detection technology is based on the Mie scattering theory [23],
in which the scattered light intensity IS is related to the incident light intensity I0, dimen-
sionless particle size α (the ratio of the particle size x to the incident light wavelength λ),
and the scattering angle θ, as shown in Equation (1).

IS =
λ2

8π2r2 |S(m, α, θ)|2 I0, (1)

where r is the distance between the receiver to the particle, m is the refractive index, and
S(m, α, θ) represents the amplitude function of the scattered light. It can be seen that in
Equation (1), x and m are determined by the original characteristics of the particles, while
λ, θ, and r are determined by the design of the detector. Generally, r is the coefficient of the
scattered light intensity, which is taken as a fixed constant.

However, the actual scattered light intensity ISR of real-life aerosol is controlled by
multiple variables simultaneously, such as particle size distribution (PSD). The production
of fire smoke (or oil fumes) is a process of continuous aerosol generation and aggregation.
The size of the freshly generated particles is very small and gradually increases with
aggregation. Thus, the particle size of aerosol obeys a distribution f (x) rather than the
monodisperse system with single value. Then, ISR is written as Equation (2).

ISR = N
xmax

∑
xmin

IS(λ, θ, x, m) f (x), (2)

where N is the total number concentration of real-life aerosol, (xmin, xmax) is the particle
size range, and IS(λ, θ, x, m) denotes the scattered light intensity of a single particle with
size x. According to Equations (1) and (2), the inherent property parameters (m, f (x)) of
different classes of aerosol particles are variable, leading to differences in scattered light
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intensity ISR. This means that the aerosol class information is involved in the scattered light
intensity; however, it cannot be directly separated. Thus, the multi-channel scattered light
intensity information feature analysis method is utilized for aerosol classification, which is
based on the specificity in the scattering features of each class of aerosol under different
conditions. To apply this method, the smoke detector receivers are required to obtain the
scattered light intensity at different wavelengths of incident light and scattering angles.

2.2. Dataset for Classification

The smoke from the real fires used in this study complies with European standard fires,
such as beech wood smoldering fire (TF2), cotton smoldering fire (TF3), polyurethane open
flame (TF4), and n-heptane open flame (TF5) [19,24–28]. Moreover, a survey by the National
Fire Protection Association (NFPA) reported that the most likely cause of false alarms by
detectors is oil fumes because their particle sizes as well as their refractive indices being
very close to that of real fire smoke [29]. As a result, oil fumes are used as one class of typical
interferential aerosols. In addition, water mist and dust, which are the most frequent causes
of false alarms in day-to-day life, also act as interferential aerosols. For aerosols, scattered
light intensity under different scattering channels constitutes spatial feature vector data.
Considering that the proposed classification method is expected to be directly applicable
to existing photodetectors, data from four detection channels with dual wavelengths and
dual angles are used. Moreover, as mentioned in the previous subsection, aerosols are
continuously generated and aggregated during measurement; thus, the scattered light
intensity at different times constitutes the temporal feature vector data. To ensure that the
scattering feature matrix is a square matrix, the temporal feature vector has the same length
as the spatial feature vector, i.e., it consists of the scattered light intensity data at the current
time point and the three previous time points. The classes of the aerosols (real fire smoke
and interferential aerosols) and each aerosol dataset used for classification are shown in
Tables 1 and 2. The labels in Table 1 show the seven aerosol classes (four standard real fire
smoke classes and three interferential aerosols) in the classification task of the network. As
shown in Table 2, the elements of the feature dataset matrix Di

mn represent the scattered
light intensity of the detector under the nth optical channel at the mth time point for the
ith aerosol.

Table 1. The class of real fire smoke and interferential aerosol.

Aerosol Beech Smoke
(TF2)

Cotton Smoke
(TF3)

Polyurethane
Smoke (TF4)

N-Heptane
Smoke (TF5)

Oil Fume
(Interferential
Aerosol)

Dust
(Interferential
Aerosol)

Water Mist
(Interferential
Aerosol)

Label 0 1 2 3 4 5 6
Feature
dataset


D1

11 · · · D1
14

...
. . .

...
D1

41 · · · D1
44




D2
11 · · · D2

14

...
. . .

...
D2

41 · · · D2
44




D3
11 · · · D3

14

...
. . .

...
D3

41 · · · D3
44




D4
11 · · · D4

14

...
. . .

...
D4

41 · · · D4
44




D5
11 · · · D5

14

...
. . .

...
D5

41 · · · D5
44




D6
11 · · · D6

14

...
. . .

...
D6

41 · · · D6
44




D7
11 · · · D7

14

...
. . .

...
D7

41 · · · D7
44



Table 2. The dataset of aerosol beech smoke used for classification.

Beech Smoke Optical
Channel 1

Optical
Channel 2

Optical
Channel 3

Optical
Channel 4

Time 1 D1
11 D1

12 D1
31 D1

41
Time 2 D1

21 D1
22 D1

32 D1
42

Time 3 D1
31 D1

32 D1
33 D1

43
Time 4 D1

41 D1
42 D1

34 D1
44

2.3. Embedded Spatial–Temporal Convolution Neural Network

The EST-CNN model consists of three modules: data preprocessing, feature analysis,
and classification. The data preprocessing and feature analysis modules use CNN and the
classification module uses FCN. The overall flow diagram and network logic schematic of
the EST-CNN model are shown in Figures 1 and 2, respectively. Limited by the processor
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performance of the photoelectric smoke detector, the overall number of parameters of the
model is required to be as limited as possible, i.e., the number of layers and nodes of the
network are required to be tailored as much as possible. Therefore, in data preprocessing,
both the spatial and temporal data of the scattered light intensity are extracted with one
layer of CNN to extract the corresponding feature vectors, respectively. The scattering
feature extraction network is composed of three CNNs with convolutional kernels of the
following sizes: 3 × 3, 3 × 3, and 2 × 2. Aerosol classification network is a single fully
connected layer with a SoftMax function.
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As shown in Figure 2, the 2D-Data matrix recodes the original scattered light intensity,
whose row and column vectors are convolved to obtain the temporal and spatial features
vector of the scattered light intensity. Then, the spatial–temporal fusion scattering feature
matrix (2D-TS matrix) is obtained by the vector outer product. The 2D-TS matrix is the
input of the feature extraction network which contains three CNNs, each consisting of
a convolutional layer, a normalization layer, and a rule activation layer. The last level
output is extended to a 1D vector as the input of FCN. The network model is trained and
tested with the actual measurements of scattered light intensity from photoelectric smoke
detectors. The PR curve is used to evaluate the training performance of the model, and
the larger area of the curve and the area enclosed by the coordinate axis indicates the
better training performance. The confusion matrix heat map is used to demonstrate the
classification accuracy of the trained model for smoke (oil fumes). On the PR curve, P and
R are the accuracy and recall of the classification prediction results, respectively, which are
defined as shown in Equations (3) and (4).

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

where TP, FP, and FN represent true positive, false positive, and false negative, respectively.
In fire alarms, they represent true fire, false alarm, and missed alarm, respectively. A larger
area enclosed using the PR curve indicates a better balance between false alarms and missed
alarms. The F1 score is employed to quantify the general performance of the PR curve, as
shown in Equation (5).

F1 =
2 × P × R

P + R
. (5)

Additionally, FLOPs is employed to evaluate the time complexity of the network. The
larger the FLOPs, the slower the model training and inference. For CNN, the computational
complexity of each convolutional layer is shown in Equation (6).

FLOPs_CNN =
[(

Ci × k2
)
+

(
Ci × k2 − 1

)
+ 1

]
× Co × W × H, (6)

where Ci and Co are the number of the input and output channels, k is the convolutional
kernel size, and W and H are the size of the feature maps. And for FCN, the computational
complexity of each convolutional layer is shown in Equation (7).

FLOPs_FCN = [I + (I − 1) + 1]× O. (7)

where I and O are the input and output neurons.

3. Results and Discussion
3.1. Experimental Platform and Datasets

The experimental platform and the photoelectric detector are shown in Figure 3.
Figure 3a shows a complete view of the experimental area, including the experimental
platform, the hood, and the photoelectric smoke detector placed on the ceiling. Figure 3b
shows the physical appearance of the photoelectric smoke detector and the internal struc-
ture of the measurement chamber. Figure 3c shows a scheme of the measurement principle
of a photoelectric smoke detector. The detector consists of a dual-wavelength emitter LED
that can emit blue light with wavelength λ1 and infrared light with wavelength λ2 and
three photoreceivers with the scattering angle of θ1, θ2, θ3. LED emits two wavelengths of
light in sequence. The photoreceiver at the scattering angle of θ1 receives forward blue and
infrared light, the photoreceiver at the scattering angle of θ2 receives infrared light, and the
photoreceiver at the scattering angle of θ3 receives blue light. Thus, scattered light intensity
data can be obtained for four channels, namely (λ1, θ1), (λ1, θ2), (λ2, θ1), and (λ2, θ3), for
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each measurement. These channels are selected based on simulation calculations by substi-
tuting the typical characteristic parameters of seven classes (four real fire smoke types and
three interferential aerosols) of aerosols based on the Mie scattering theory.
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Figure 3. Experimental platform and the photoelectric detector. (a) appearance of the experimental
platform, (b) real smoke detector, (c) the schematic diagram of the detector measuring fire smoke.

Real fire smoke and interferential aerosols were generated as shown in Figure 4. Beech
wood smoke was obtained by heating in a resistance-heated furnace. Cotton smoke was
obtained under smoldering conditions. Polyurethane and n-heptane smoke were generated
by open flame combustion. Oil fumes were generated by frying minced pork. Water
mist was generated by a humidifier. Dust was produced by mixing Alexander’s Standard
Ash in an acrylic smoke box. Smoke and interferential aerosols naturally diffused into
the photoelectric smoke detector during the measurement. After each measurement, the
hood was turned on to remove the aerosol generated from the experiment. The scattered
light intensity value measured by the photoelectric smoke detector when there was no
smoke was used as a background. The values of scattered light intensities of smoke
and interferential aerosols were obtained by subtracting the background value from the
scattered light intensity measurement. Experiments show that beech and cotton smolder
slowly and generate a small amount of white smoke. Polyurethane and n-heptane combust
rapidly and generate large amounts of black smoke with a high carbon content due to
insufficient combustion. This means that the trend of the scattered light intensity over time
is directly related to the class of smoke (and interferential aerosols). Thus, multiple four-
channel samples of scattered light intensity are collected in chronological order for each
experiment during smoke (and interferential aerosols) generation to acquire the temporal
scattering feature.
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smoke), three class of interferential aerosols (oil fume, water mist, and dust), and the developed
smoke detector.

3.2. Classification Results

A total of 38,487 samples of beech, cotton, polyurethane, n-heptane smoke, oil fumes,
water mist, and dust were obtained by the experimental platform for classification and
were divided into training and test sets at a ratio of 7:3. The algorithms were run in
PyCharm (PyCharm Community Edition 2020.1) using a PC with an Intel (R) Core (TM)
and i7-10510U CPU @ 1.80 GHz 2.30 GHz. The EST-CNN model was trained and tested
using multiple sets of parameters to identify the optimum ones with low numbers of
network parameters and high classification accuracy. The EST-CNN model was trained for
300 epochs at each hyperparameter setting.

CNN for feature learning and extraction typically have more than three convolutional
layers used to first increase and then decrease the dimensionality of the data. To realize the
model running on low-computing power-embedded chips, the number of parameters of
the model is required to be as small as possible. Therefore, the EST-CNN model applies
only three convolutional layers in the feature extraction network, and the input data size of
the first layer is 4 (number of optical channels) × 4 (sampling time points). The previous
input and final output channels of the feature extraction network are connected with the
2D-TS matrix and full connected classification layer, respectively, which are set to constant
values of 8 and 64. In this way, the main parameters that can be adjusted in the model
are the number of input and output channels in the middle layer, stride, and padding.
For the channels, the number of output channels in each layer of the network is required



Sensors 2024, 24, 778 9 of 13

to be the same as the number of input channels in the next layer. Stride represents the
amount of data that the convolution kernel moves over in each slide. Padding comprises
the complementary zeros around the boundaries of the input matrix. The parameters of the
partial sets of the feature extraction network are shown in Table 3, and the corresponding
training and testing results are shown in Figures 5–9. In these figures, labeled 0, 1, 2, 3, 4, 5,
and 6, represent beech smoke, cotton smoke, polyurethane smoke, n-heptane smoke, oil
fumes, dust, and water mist, respectively.

Table 3. The parameters of the feature extraction network.

Set Layer
Number

Layer
Type

Input
Channel

Output
Channel

Convolutional
Kernel Size Stride Padding Parameters FLOPs Classification

Accuracy

1
1 Conv 8 16 3 × 3 1 1

67 kB
0.15 M

98.96%2 Conv 16 32 3 × 3 1 0 1.81 M
3 Conv 32 64 2 × 2 1 0 15.75 M

2
1 Conv 8 32 3 × 3 1 1

158 kB
0.29 M

99.04%2 Conv 32 64 3 × 3 1 0 33.18 M
3 Conv 64 64 2 × 2 1 0 130.06 M

3
1 Conv 8 32 3 × 3 1 1

295 kB
0.29 M

99.09%2 Conv 32 128 3 × 3 1 0 66.36 M
3 Conv 128 64 2 × 2 1 0 1057.03 M

4
1 Conv 8 16 3 × 3 1 1

67 kB
0.15 M

98.89%2 Conv 16 32 3 × 3 2 1 0.67 M
3 Conv 32 64 2 × 2 1 0 15.75 M

5
1 Conv 8 16 3 × 3 1 1

67 kB
0.15 M

98.84%2 Conv 16 32 3 × 3 2 1 0.67 M
3 Conv 32 64 2 × 2 2 0 4.19 M
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As shown in Table 3, both the first convolutional layer and the second convolutional
layer of Set 2 have more output channels than those of Set 1. Similarly, those of Set 3
have more channels than those of Set 2. As a result, the number of parameters in Set 2
and Set 3 are, respectively, 2.4 and 4.5 times that of Set 1. However, it can be seen from
Figure 5a, Figure 6a, and Figure 7a that the F1 scores of Set 1, Set 2, and Set 3 are very
close to each other and all the F1 scores are higher than 0.9900. This demonstrates that
when trained under each set of parameters, the network model converges to a reliable
classification performance. Meanwhile, as shown in Figures 5b and 6b, test results indicate
that the classification accuracy of n-heptane smoke in Set 1 is slightly lower than that in
Set 2, and the other three classes of smoke have almost the same classification accuracy
under both Set 1 and Set 2. Thus, it is considered that the increased number of parameters
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in Set 2 is meaningless. Moreover, it can be seen from Figures 6b and 7b that the models
under the Set 2 and Set 3 of hyperparameters have the same classification accuracy for real
fire smoke as well as for interferential aerosols. Therefore, the number of input and output
channels of each layer in Set 1 is optimal.
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False alarms in traditional photoelectric smoke detectors occur mostly due to the
misrecognition of interferential aerosols as fire smoke. Therefore, whether or not the
disturbing aerosol is classified as real fire smoke is critical for evaluating the EST-CNN
network. As can be seen from the confusion matrix in Figure 5b, only 1% of the n-heptane
smoke (label 3) was misclassified as oil fumes (label 4) in all instances of real fire smoke
(labels 0 to 3). This proves that the real fire missing alarm rate of the proposed model is
only 0.25%, which is extremely low. In addition, none of the interfering aerosols (labels 4 to
6) were misclassified as real fire smoke classes. This indicates that the model classification
results are able to avoid false alarms.
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To further reduce the number of parameters, the stride and padding were adjusted, as
shown in Sets 4 and 5 in Table 3. The convolution process is essentially a multiplication of
two matrices; after the convolution process, the original input matrix will have a certain
degree of shrinkage; and when the stride is 1, the matrix length and width will be reduced
by 2. When the length and width of the original input matrix are small (e.g., 4 × 4 of the
2D-TS matrix), padding the data with zeros is required before the convolution operation in
order to keep the output matrix meaningful after each layer of convolution. As a result,
the stride and padding usually are adjusted simultaneously, and the larger the stride the
more zeros need to be padded. As shown in Table 3, Set 4 increases the stride of only
the second convolutional layer, while Set 5 increases the stride of both the second and
third convolutional layers. Nevertheless, the number of parameters in Set 4 and Set 5
are not reduced and remain at 66 kB. However, it can be seen in Figures 8 and 9 that the
classification accuracy of oil fumes in Set 4 and n-heptane in Set 5 is significantly reduced
compared to the accuracy of those in Set 1, as shown in the classification results in Figure 5.

Combining Table 3 and Figures 5–9 shows that the average classification accuracies of
fire smoke and interferential aerosols under the five sets of model parameters are 98.96%,
99.04%, 99.09%, 98.89%, and 98.84%, respectively, with the parametric quantities of 67 kB,
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158 kB, 295 kB, 67 kB, and 67 kB. In summary, due to the small size of the scattering feature
matrix (2D-TS matrix), the parameters that can be adjusted in the convolutional layer are
limited. The experimental results show that adjusting the parameters of the convolutional
operation (stride and padding) has almost no influence on the number of parameters of
the network model while decreasing the classification accuracy, and adjusting the number
of input and output channels is an effective method to reduce the number of parameters.
Therefore, the Set 1 parameters, which exhibit the best comprehensive performance, are
recognized as the actual parameters chosen for EST-CNN.

4. Conclusions

In this study, an embedded neural network named EST-CNN for the multi-class
aerosol classification of real fire smoke and interferential aerosol is proposed. In EST-CNN,
the information fusion module fuses the spatial and temporal scattered light intensity
information which contains the inherent physical properties of the aerosols. To acquire
the real aerosol scattered light intensity information, a detector with the same number of
channels as the common photoelectric smoke detectors in the market was developed and a
real fire test platform was established for experimental measurements. Then, the scattering
feature extraction network with three convolutional layers was applied to obtain the most
advantageous sample features in preparation for realizing aerosol classification in the last
layer of FCN. The experimental results show that the classification accuracy of beech smoke,
cotton smoke, polyurethane smoke, n-heptane smoke, oil fumes, dust, and water mist can
reach 99%, 100%, 99%, 97%, 100%, 100%, and 100%, while the number of parameters is only
at 67 kB using the network model with the selected optimal parameters.

Although the method proposed in this study has made significant contributions to the
area of aerosol classification and the accurate identification of smoke from real fires, there
are still many problems to be investigated in depth: for instance, how to set reasonable
alarm thresholds for each class of smoke after smoke recognition and classification in
order to achieve a truly very early and efficient alarm effect. In addition, the scattered
light reception sensitivity of photoelectric smoke detectors from different batches made
by different manufacturers is generally inconsistent, which leads to differences between
scattered light intensity measurements in the same cases. In machine learning, such
a situation is called distributional pair misalignment, which means that each detector
requires specific model parameters, which is impractical. Therefore, our next study will
adapt network models with better generalization ability.
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