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Abstract: Remote sensing data represent one of the most important sources for automized yield
prediction. High temporal and spatial resolution, historical record availability, reliability, and low
cost are key factors in predicting yields around the world. Yield prediction as a machine learning
task is challenging, as reliable ground truth data are difficult to obtain, especially since new data
points can only be acquired once a year during harvest. Factors that influence annual yields are
plentiful, and data acquisition can be expensive, as crop-related data often need to be captured
by experts or specialized sensors. A solution to both problems can be provided by deep transfer
learning based on remote sensing data. Satellite images are free of charge, and transfer learning
allows recognition of yield-related patterns within countries where data are plentiful and transfers the
knowledge to other domains, thus limiting the number of ground truth observations needed. Within
this study, we examine the use of transfer learning for yield prediction, where the data preprocessing
towards histograms is unique. We present a deep transfer learning framework for yield prediction
and demonstrate its successful application to transfer knowledge gained from US soybean yield
prediction to soybean yield prediction within Argentina. We perform a temporal alignment of the
two domains and improve transfer learning by applying several transfer learning techniques, such as
L2-SP, BSS, and layer freezing, to overcome catastrophic forgetting and negative transfer problems.
Lastly, we exploit spatio-temporal patterns within the data by applying a Gaussian process. We are
able to improve the performance of soybean yield prediction in Argentina by a total of 19% in terms
of RMSE and 39% in terms of R2 compared to predictions without transfer learning and Gaussian
processes. This proof of concept for advanced transfer learning techniques for yield prediction and
remote sensing data in the form of histograms can enable successful yield prediction, especially in
emerging and developing countries, where reliable data are usually limited.

Keywords: remote sensing; yield prediction; deep learning; transfer learning; regularization;
Gaussian process

1. Introduction

Yield prediction is a challenging machine learning task. The relations determining
the yearly yields are complex and depend on a variety of different factors. To predict
yields, we need to measure plant condition and climatic states over an extended period
of time. This monitoring is usually very costly and is dependent on domain experts or
expensive sensors. A cost-effective solution is provided by using remote sensing data.
Utilizing satellite images provided by huge organizations like NASA is free of cost and
gives an extensive coverage of the phenological conditions of plants and the climatic state
nearly worldwide. The second difficulty for yield prediction is the availability of historic
ground truth yield data for training machine learning models. New data points can only
be acquired once a year, so to train yield prediction models, we are reliant on historical
databases that capture former yield quantities. Although databases like this are often
available in developed countries, data are increasingly hard to come by for others. The aim
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of this study is to remove the gap in performance for yield prediction between countries
with many data available and countries with few data available, especially since countries
with fewer options to capture data are often also lacking other resources and could therefore
greatly benefit from increased planning capabilities, which naturally arise from better yield
prediction. As a solution to this problem, we leverage the concept of transfer learning to
limit the number of ground truth yields needed for accurate predictions. The main idea is to
use deep learning to adapt to the underlying relations that determine the yearly yields from
remote sensing images and ground truth data in countries where data are plentiful, and to
transfer this knowledge to yield prediction in countries with limited data. The difficulty of
knowledge transfer for deep learning is determined by how close the two domains chosen
to transfer knowledge are to each other. In this study, we explore the transfer of knowledge
from the prediction of soybean yields in the US to the prediction of soybean yields in
Argentina. The main difference between the two domains comes from the location of the
two countries in different hemispheres of the globe and the two countries showing different
climatic conditions and growth patterns for soy fields. We prepare the two datasets for
transfer learning by performing a spatial-temporal alignment. Additionally, we adapt to
common transfer learning problems such as catastrophic forgetting and negative transfer
by applying the state-of-the-art regularization methods L2-SP and Batch Spectral Shrinking
(BSS). Furthermore, we find that a Gaussian process attached to our convolutional neural
network (CNN) improves the accuracy of the yield prediction even further.

1.1. Related Work

The related work that influences our research can be categorized into three main
groups. First, the general developments in transfer learning, as it is mostly used for
computer vision tasks. Second, the advances of machine learning for yield prediction. And
third, the advances of transfer learning for remote sensing applications.

1.1.1. General Transfer Learning

Transfer learning is a topic of increasing popularity in different research areas. Most
commonly, computer vision tasks are solved with the help of deep learning networks that
are pretrained on huge task-agnostic datasets, before being fine-tuned to solve specific
problems. Plested and Gedeon [1] give an in-depth survey of the state of transfer learning.
Due to the versatile applicability of CNNs, the application of transfer learning methods to
CNNs represents a well-known study objective. In image classification, transfer learning
methods achieve significant success [2]. In this work, we examine whether this success
can be translated into yield prediction while we follow the insights of the community.
Huh et al. [3] found out that a larger dataset for pretraining results in a better model
performance. Furthermore, the number of layers that should be transferred during the
training process depends on the similarity between the target and the source dataset [4].

A common problem in transfer learning is the negative transfer of knowledge [5].
Negative transfer occurs when the source dataset used for pretraining and the target
dataset are not well related, and transfer learning has a negative impact on the model
accuracy. According to Plested and Gedeon [1], greater similarity between the domains
of transfer learning improves the ability to transfer knowledge between domains. If the
domains are not well aligned, the key to overcoming negative transfer is regularization
which restricts the amount of knowledge that can be lost during the fine-tuning step
of transfer learning. The L2-SP regularization method achieves success in dealing with
negative transfer through an L2 regularization with the origin parameters of the more
general model [6]. In our use case, this means that features that are extracted from the
patterns of remote sensing data can be preserved during the transfer learning. Similar
results can be achieved with DELTA regularization [7], following the idea of only altering
CNN channels that are not already useful for the target task. Batch Spectral Shrinkage (BSS)
is another regularization method that often successfully eliminates negative transfer by
suppressing non-transferable spectral components [8]. Chen et al. [8] report that BSS will
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never negatively affect performance in a given dataset and it is therefore also considered
within our work to stabilize transfer learning.

Our work is the first to examine the extended use of regularization and transfer
learning on hyperspectral remote sensing data presented as histograms, investigating how
ideas developed for classical computer vision can help us with remote sensing applications.

1.1.2. Remote Sensing in Yield Prediction

More and more studies are addressing the investigation of yield prediction using
machine learning [9,10]. In traditional machine learning, random forests, neural networks,
and gradient boosting trees represent the most common methods of yield prediction [10].
Deep learning methods, especially CNNs and LSTMs, provide better feature extraction and
generally lead to higher performance [9]. The basis for the data provided is mainly satellite
imagery, which in many cases is enhanced with additional features [9]. You et al. [11]
propose a novel and widely adopted dimensionality reduction technique to prepare irregu-
larly shaped hyperspectral remote sensing images for regression tasks with deep learning.
Remote sensing data from the Moderate-Resolution Imaging Spectroradiometers (MODIS)
installed upon the NASA Terra and Aqua satellites are processed toward histograms, and
both a CNN and an LSTM network are combined with a deep Gaussian process to perform
a soybean crop forecast. The success of the deep Gaussian process built on an LSTM is
confirmed by Kaneko et al. [12] for even sparser datasets, again using MODIS observations
as input. Moreover, an LSTM trained in several countries without a Gaussian process
results in a similar performance in predicting the districts of individual countries as the
same model trained only in the country of prediction [12], showing the capabilities of the
Gaussian process. Wang et al. [13] use, again, the same MODIS observations and data
preprocessing to train an LSTM network to perform simple transfer learning in the form of
pre-initialization of weights by a model trained on Argentina to predict soybean yields in
Brazil. Similarly, Khaki et al. [14] use a CNN with a common backbone to simultaneously
predict corn and soybean yields in the US. Regarding gradient boosting trees, the work of
Huber et al. [15] shows on-par performance when compared with deep learning methods
to predict soybean yield in the US based on MODIS data, while highlighting the improved
explainability of gradient boosting trees and the reduced resources needed to train mod-
els. Gradient boosting trees is used along with a comparison including deep learning by
Desloires et al. [16] to predict corn yield in the US based on Sentinel-2 satellite images.

The related work clearly suggests to us to also present MODIS observations in the
form of histograms to our deep learning architecture. The data sources we consider for
our study are also in line with other research in the field, including multiple wavelengths
of surface reflections and surface temperature data from the MODIS satellites [10,11,13].
However, none of the previous works aimed to transfer knowledge between countries in
different hemispheres of the globe. As different climatic conditions are challenging, this
allows us to use the most extensive source of historic yield data in the US [17] to help with
yield prediction all around the world.

1.1.3. Transfer Learning for Remote Sensing Applications

Transfer learning for remote sensing applications is a widely investigated topic. A
recent extensive survey on transfer learning on remote sensing data is done by Ma et al. [18].
Most commonly, the task of land use/land cover classification is improved by starting from
pretrained models. Dastour and Hassan [19] give an in-depth analysis of different deep
learning architectures for this task. In general, all CNNs tested are pretrained on the well-
known ImageNet dataset [20] and applied to land cover classification on Sentinel-2A images.
ResNet50 [21] was found to be the best architecture for transfer learning in this scenario.
Li et al. [22] show that a ResNet architecture again works best on the HSRRS dataset
for scene classification in urban built-up areas after being pretrained on the ImageNet
dataset. Similar results are shown in the work of Alem and Kumar [23] where a ResNet50
architecture pretrained on ImageNet data shows high accuracy for land cover classification
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on remote sensing data. Tseng et al. [24] use the pretrained ResNet architecture inside
Faster R-CNN as a backbone for rice seedling detection in RGB images outperforming a
support vector machine. Chen et al. [25] use the same pretrained architecture, the Faster
R-CNN network. First, features are learned on the ImageNet dataset before the network is
fine-tuned to detect objects in high-resolution satellite images. Hilal et al. [26] extend the
idea of a pretrained ResNet50 for land cover classification by including discrete local binary
patterns to the ResNet features for the final classification. In very recent advances, Ma
et al. [27] improve the idea of Domain-Adversial Neural Networks (DANNs) [28], where
transfer learning is extended by projecting the input features of each domain into a common
subspace. Their proposed partial DANN (PDANN) applies weights to the source samples
according to their estimated yield distribution in the target domain and is used to improve
the transfer learning of soybean and corn yields between different regions in the US.

Our work is quite distinguishable from the approaches described above. As our input
data are processed to be represented by histograms and include multiple hyperspectral
image channels and our target is not a classification but a regression, it is not possible to
use huge image datasets like ImageNet as a source domain for transfer learning. Even in
our source domain, we have relatively small numbers of training data when compared
with modern image classification tasks. We need to overcome this issue by using deliberate
regularization methods during knowledge transfer.

2. Materials

In this Section, we describe the two sources of data used within the study. We obtained
ground truth yields for both countries from the relevant agricultural departments and used
remote sensing data provided by the NASA Moderate-Resolution Imaging Spectoradiome-
ter (MODIS) satellites for prediction.

2.1. Yield Data

Soybean yield data are taken from the US Department of Agriculture (USDA) for the
US during the period 2010 to 2020, inclusive [17]. In Argentina, yield data are taken from
the Ministerio de Agricultura [29] over the 2010/11 to 2020/2021 seasons, inclusive. This
leaves us with a total of 8465 data points in the US and 1542 data points in Argentina.
An overview of the yield data can be seen in Figure 1. Generally, we see that the yield
data in the US and Argentina show similar patterns, with the relative yields in Argentina
consistently lower than in the US. Both datasets show a positive linear trend that indicates
higher soybean yields in recent history. This is caused mainly by technological innovations
that lead to more efficient agriculture [30].

As described in Section 1.1.1, greater similarity between the domains of transfer
learning improves the ability to transfer knowledge between domains. Here, the data for the
US denote the source domain, and the data for Argentina denote the target domain. In order
to keep the similarity of the data as high as possible, the same data cleansing procedure
is used for both domains. In our case, data cleansing serves to ensure a sufficiently large
input dataset. First, we select the regions of each country where soybeans are grown. This
is the northeastern part of the US and the north of Argentina. Then, on the one hand, data
points that cannot be assigned to a county due to missing information and counties with
no yield specified or with a yield per hectare of zero are removed. On the other hand, all
counties that have fewer than 2000 pixels of crop mask are removed. This is necessary to
ensure a significant amount of soybean cropland for every data point and to reduce the
number of noise from other sources. Figure 2 shows the counties used and discarded as
a result in northeast Argentina and the eastern part of the US, leaving us with the main
agricultural producers.
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Figure 1. Visualization of the ground truth yield data in the US (red) and Argentina (blue). Average
yields are indicated by the points and standard deviation is shown by the relevant lines, both in
bushels per acre. The dark red and blue lines indicate the linear trend in the data.

Figure 2. Average number of cropland pixels over the 11 years from 2010 to 2020 in the eastern part of
the US and the northeast of Argentina. The pink to purple areas show the counties used. No cropland
pixels or yield data were found in the gray areas, and too few in the white areas.

2.2. Remote Sensing Data

The use of satellite imagery for yield prediction is one of the main sources of reliable
and cost-effective yield prediction. The MODIS satellite images we used were acquired on
NASA’s Terra and Aqua satellites and are listed in the Google Earth Engine catalog. We
used three different types of remote sensing data.

The surface reflections of light are captured in a range starting from the visible spec-
trum (459–479 nm) to the invisible infrared spectrum (2105–2155 nm) and are captured
by 7 different channels. Each channel is referred to as a band in the context of remote
sensing images. Specifically, we used version 6.1 of the MOD09A1 dataset [31] for surface
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reflectance corrected for atmospheric conditions. The final product is an 8-day composite
of the images taken by the satellites with a resolution of 500 m by 500 m.

To monitor climatic conditions, we use a remote sensing dataset consisting of measured
surface temperatures during day- and nighttime. The dataset used is version 6.1 of the
MYD11A2 dataset [32]. The original resolution of 1 km by 1 km is resampled to match the
resolution of 500 m by 500 m of the surface reflection data.

A cropland mask is used to filter out pixels that are not related to crop growths. Version
6 of the MCD12Q1 dataset [33] offers a yearly classification of several types of land cover
with a resolution of 500 m by 500 m. Areas consisting of more than 60% cultivated fields
are classified as croplands and will be the focus of our study.

Lastly, we crop the satellite images for the individual counties. Therefore, we require
district assignments labeled with the county names. In the United States, the TIGER dataset
from the United States Census Bureau [34] is used for this purpose. In Argentina, we use
the county (Departamentos in Argentina) mapping used by Wang et al. [13], which contains
all counties relevant to soybean cultivation.

3. Methods

We use multiple different tools to achieve the best accuracy for yield prediction on a
smaller dataset. To allow for successful transfer learning, we align our two data sources
first, before we apply multiple regularization techniques, and subsequently append a
Gaussian process to recover the information lost due to histogramization. An overview of
the process is shown in Figure 3.

MOD09A1

Surface Reflectance

MYD11A2

USA

MYD11A2

Argentina

Normalized Histograms

Surface Reflectance

Cropland Mask (Red)

MOD09A1

Cropland Mask

CNN trained on US domain

CNN fine tuned on Argentina domain

Weights
Frozen

Fine
Tuning

No
Transfer

Gaussian
Process

First Prediction

Final Yield Prediction

Spatio-Temporal
Alignment

Surface Temperature

CNN'sRemote Sensing Data

Surface Temperature

Figure 3. Overview of our approach for leveraging remote sensing data for yield prediction with
deep transfer learning. The two boxes on the left side show the kind of input data that we use,
consisting of surface reflectance data, surface temperature data, and the cropland mask for each of the
two domains (Section 2). The data is spatio-temporally aligned as preparation for transfer learning
(Section 3.1), before being processed toward normalized histograms (Section 3.2). The middle section
of the figure shows some of the transfer learning techniques used: frozen weights, fine-tuning with
regularization, and the initialization of the dense layer at the end of the network (Section 3.2). Lastly,
on the right-hand side, we show an example of refining the prediction results by applying a Gaussian
process (Section 3.3).
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3.1. Spatio-Temporal Alignment

The geographical distance between the US and Argentina accounts for some differ-
ences in soybean cultivation in both countries. Specifically, we need to adjust for different
crop growth cycles. In the US, we monitor the growing conditions from March 23 to Decem-
ber 4. In Argentina, due to different climatic conditions, we monitor the crop growth cycle
from November 26 to August 9. Both periods extend beyond harvest time, so that we can
leverage the capabilities of our models to determine important input data themselves. As
soybean yield prediction is especially valuable during the early stages of soybean growth,
we examine a second in-season forecast to test our models. For this case, the time period
only contains the first 14 of the 8-day intervals. The time periods used, as well as the
underlying crop calendars [35], can be seen in Figure 4.

Figure 4. Crop calendar of Argentina and USA (data from USDA [35]). The data of the long period
are shown in purple. The data of the short period are shown in blue.

After data cleansing, a histogramization is performed, as was first done by You et al. [11].
For each band and each satellite image, the pixels masked as cropland within a county are
summed for each record. Subsequently, these sums are transformed into a normalized his-
togram with 32 bins of the frequency distributions of the records in the vertical and the
associated time in the horizontal. The resulting data point consists of 9 times 34 histograms, a
county name, and a season year.

3.2. Model Design and Transfer Learning Techniques

At the center of our predictive model is a CNN, as was first used for yield prediction
by You et al. [11]. As a baseline for our implementation, we started from the work of
Tseng [36]. The CNN consists of 6 convolutional layers and the following dense layer.
As a result of histogramization of the input data, we need an alternative solution to the
usually used pooling layers in conjunction with the convolutional layers. The solution is
convolutional layers with a stride of 2 to prevent locational invariance due to pooling. In
addition, we use dropout layers, early stopping, and batch normalization when training
the CNN. Primarily, to apply transfer learning, this CNN is trained in the US domain
and will be referred to as the US model in the following. The most natural way to apply
transfer learning is to fine-tune the US model in the Argentine domain. This corresponds
to initializing the weights of the CNN for the Argentine domain with the weights of
the US model. By assuming a similar distribution of the US domain and the Argentine
domain, the starting point of the Argentine model will thus be chosen closer to the desired
model, and the hypothesis space will be constrained by limiting the hyperparameters of
the training. Furthermore, since it is known through extensive research that later layers
have greater domain-specific significance while early layers extract general properties,
it may be useful to distinguish the approach based on layer depth [1]. The first way to
treat layers differently is to freeze some of them. The frozen layers keep their weights
unchanged during fine-tuning and are effectively not trained directly on the new domain.
In our case, this means that the frozen layers are trained only on the larger US domain to
contribute to a prediction on the Argentine domain. Due to the high generalization of the
front layers, this procedure is applied to the front convolutional layers and thus adopts the
basic framework of the US model for feature extraction. This serves, in particular, to avoid
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catastrophic forgetting [37]. Catastrophic forgetting is one of the two major problems in
transfer learning and is the tendency of neural networks to abruptly lose the knowledge
of previous tasks when learning a new task [38]. Later convolutional layers are initialized
with the weights of the US model but retain their ability to adapt to the Argentine domain.
To name this retraining on top of the source domain, we overload the term fine-tuning,
which also refers to the complete retraining of the net on the Argentine domain on top
of the US model. Last, we use the ability to completely retrain layers independent of the
US model so that they can fully adapt to the Argentine domain. This complete retraining
is used in the dense layers to account for their strong specialization to the target domain
associated with their depth.

Transfer-specific regularization methods are suitable to further limit catastrophic
forgetting and to avoid negative transfer. Regularization influences CNN training by an
additional summand Ω to the loss. The widely known L2 regularization, also known as
weight decay, penalizes large weights in the CNN. In this process, as seen in Equation 1,
the vector w of weights of the CNN is normalized, squared, and parameterized by α to set
the regularization strength:

Ω(w) =
α

2
∥w∥2

2. (1)

Based on this, Xuhong et al. [6] modifies the starting point of this regularization so
that instead of a deviation of the weights from zero, a deviation of the weights from the
US model is penalized. Thus, the hypothesis space is again restricted to the surroundings
of the US model, making catastrophic forgetting less likely. Since for the deviation of
the target model from the source model an equal structure of both networks is required,
Xuhong et al. [6] extends the model with the option to regularize non-transferable and
especially newly added parts of the model with the L2 regularization. Equation (2) shows
the corresponding formula, where α and β set the strengths of the regularization of the
constant and newly added parts:

Ω(w) =
α

2
∥wS − w0

s∥2
2 +

β

2
∥wS̄∥2

2, (2)

where wS is a weight vector of the constant structures of the target model, w0
s is a weight

vector of the constant structures of the source model, and wS̄ is the weight vector of the
newly added structures of the target model. We exploit the application of L2 regularization
for greater adaptability of the dense layer, so that dense layers are effectively regularized
with L2 regularization even when L2-SP regularization is applied. This means in particular
that the vectors of the constant structures are equal to the convolutive layers and the newly
added structures are equal to the complete reinitialization of the dense layers.

Negative transfer refers to a loss of performance due to the transfer of knowledge
and occurs due to a lack of transferability of some features caused by differences in the
domains [1,8]. To reduce negative transfer, we use the Batch Spectral Shrinkage (BSS)
regularization method. Chen et al. [8] observed that large datasets lead to highly general-
ized models, while at the same time these models suppress small singular values of the
extracted features. To exploit this behavior of generalized models, Chen et al. [8] used
artificial suppression of small singular values. Specifically, they introduced the concept
of relative angles between domains that can be used to measure the transferability of
eigenvectors in the weight matrices. Subsequently, they found out that in later layers of
the network only eigenvectors corresponding to relatively large eigenvalues produce small
angles and hence are well suited for knowledge transfer. Here, the feature maps fi of
the input xi are vectorized and aggregated into a feature matrix F = [ f1... fb] per batch of
size b. Subsequently, the singular value decomposition is applied to this feature matrix,
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and the k smallest singular values are used to suppress the associated poorly transferable
eigenvectors. The BSS regularization is thus given by

Ω(F) = Lbss(F) = η
k

∑
i=1

σ2
−i,

where η as a hyperparameter specifies the strength of the regularization and k specifies the
number of smallest singular values σ−i to be penalized. k is set to 1 according to Chen et al. [8]
and the regularization is completely adjusted via η. The use of BSS and L2-SP has the
advantage that both regularization methods can be applied simultaneously [8].

3.3. Deep Gaussian Process

To extend the CNN to include spatio-temporal features, You et al. [11] propose the
use of a Gaussian process on top of the CNN. For a data point x, the deep Gaussian
process uses the input of the last dense layer of the CNN h(x) and a Gaussian process
f (x) ∼ GP(0, k(x, x′)) to make a harvest prediction:

y(x) = f (x) + h(x)T β

f (x) ∼ GP(0, k(x, x′)) is distributed from a Gaussian process with zero mean and covari-
ance defined by the squared exponential kernel

k(x, x′) = σ2 exp

(
∥gloc − g′loc∥

2
2

2r2
loc

−
∥gyear − gyear′∥2

2

2r2
year

)
σ2

e δg,g′

where gloc and gyear indicate the spatial and temporal data of the associated data point x
and δg,g′ is the Kronecker delta as noise factor over g = (gloc, gyear) parameterized by σe.
σ, σe, rloc, and ryear are hyperparameters. In summary, f (x) distributed from a Gaussian
process is a collection of random variables with a joint Gaussian distribution. The next
summand for the prediction is given by a set of basis functions h(·), corresponding to the
last layer, and a random variable β. β is distributed from a normal distribution with the
weight vector of the last layer as mean and σb I as variance with the hyperparameter σb.

The choice of β and h(x) results in a distribution around the CNN prediction. The
second summand then results from the covariance of the training data with the test data
formed over the RBF kernel multiplied by the differences of the prediction h(x)T β on the
training data and the ground truths of the training data, which are weighted again with the
help of their covariance. This forms f (x) ∼ GP(0, k(x, x′)), which reduces the error values
depending on the local and temporal relationships of the underlying data. For a deeper
insight into the calculations, we recommend a look at the implementation of Tseng [36] and
the explanations of Williams and Rasmussen [39].

3.4. Performance Metrics and Hyperparameter Tuning

Two main metrics are used to quantify the performance of the prediction. We measure
the overall error by applying the Root Mean Square Error (RMSE), calculated as follows:

RMSE(ŷ, y) =
√

MSE(ŷ, y) =

√
1
n

n

∑
i=1

(ŷi − yi)
2. (3)

Here, y represents the ground truth values and ŷ the prediction values. Furthermore,
we measure the variability in the target variable explained by the models with the coefficient
of determination (R2):

R2(ŷ, y) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (4)
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where ȳ is the mean of the ground truth values y. All models are evaluated over four runs
each to account for the random factors of the model.

The models are trained from season 2010, respectively, 2010/2011 until one season before
the prediction. The hyperparameters of the model are determined using the Optuna hyper-
parameter optimization framework [40]. Within Optuna, the number of adjusted hyperpa-
rameters is kept low to save computational resources and is estimated using a tree-structured
parzen estimator algorithm. The search space of the hyperparameters was determined using
Plested and Gedeon [1]. The remaining hyperparameters, such as those of the Gaussian
process, are taken from Tseng [36]. Due to the required US data for information-breach-free
application of transfer learning, the hyperparameters of the US model are derived using the
three seasons from 2012 to 2014, resulting in an average number of 2457 training data points
during hyperparameter tuning. For the Argentine model and the transfer learning parameters
shown in Table 1, the seasons 2015/16 to 2017/18 are used to estimate the hyperparameters,
resulting in an average number of 776 training data points during this step. The test data
contain the years from 2018/19 to 2020/21 and contain 1268 training data points on aver-
age for Argentina and 7008 data points on average for the US. For every seasonal forecast
in Argentina, we first train the US model with data from 2010 up to the previous season.
This ensures that we have no information breach regarding temporal dependencies caused
by transfer learning but always have the same data available that would be accessible in a
real-world scenario.

Table 1. Hyperparameter configuration for transfer learning-related hyperparameter. Hyperparame-
ters are either tuned via the tree parzen estimator (TPE) within the Optuna Framework or estimated
empirically. The optimal hyperparameters are rounded and refer to the application of all methods in
the long period, as shown in the last row of Table 2.

Hyperparameter Tuning Method Optimal Parameter

Number of frozen layer Empirical 4 ∈ [0, 6]

US init. of weight Empirical True ∈ [True, False]

L2-SP α TPE 0.23 ∈ [0, 1]

L2-SP β TPE 0.77 ∈ [0, 1]

BSS η TPE 0.07 ∈ [0, 1]

BSS k Empirical 1 ∈ [0, 1]

Table 2. Average RMSE in bu/ac and R2 as fraction of 1, of different model configurations for the
long period. The long period contains satellite images beyond the harvest time and thus includes the
full crop growth cycle. Bold numbers indicate the best scores. A full display of the results is shown in
Appendix A.

RMSE ↓ R2 ↑ RMSE + GP ↓ R2 + GP ↑

USA: CNN 5.94 0.583 6.81 0.439

Argentina without transfer 7.47 0.442 6.76 0.554

Argentina + freezing 6.94 0.526 6.85 0.547

Argentina + freezing and L2-SP 6.80 0.550 6.25 0.618

Argentina + freezing, L2 and BSS 7.05 0.516 6.43 0.593

Argentina + freezing, L2-SP and BSS 7.07 0.511 6.31 0.608

4. Results

To analyze the capabilities of transfer learning for yield prediction, we analyze the
accuracy of yield prediction models built with different configurations of regularization
techniques and use of the Gaussian process. First, we examine the models over the long
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period, including the full crop growth cycle, before conducting experiments on the perfor-
mance of an in-season prediction.

4.1. Full Growth Cycle Prediction

We compare the application of different transfer learning methods on the long period
covering the full crop growth cycle, with a summary of the results being shown in Table 2.
Additionally, a full overview of the results broken down to the performance each year is
displayed in Appendix A. To account for the influence of random parameters, all values
are determined over four runs each. For the Argentine models, the application of the
Gaussian process improves the accuracy in all cases by up to 10% in terms of RMSE and by
up to 25% in terms of R2. Transfer learning approaches with regularization improve the
results further. First, we examine the application of an initialization with the US model
for all six layers with a freezing of the parameters of the first four layers. We see initial
improvements compared to a model without any transfer learning applied that diminish
after the concatenation of the Gaussian process. Incorporating the regularization techniques
explained in Section 3.2 stabilizes the training and subsequently gives the best results. The
overall best configuration is an initialization with the weights of the US model, a freezing
of the first four layers, a fine-tuning using L2-SP regularization, and lastly the application
of the Gaussian process. Using BSS as an additional regularization slightly decreases the
average accuracy but stabilizes the training process, as can be seen in Figure 5.

Figure 5 shows the distribution of the RMSE in bu/ac for each method. The first
two boxplots show the basic drop in RMSE when the Gaussian process is applied. The
US initialization with freezing subsequently causes a wide dispersion of the error values.
While BSS places the center of these scattered error values at a low level, L2-SP causes the
values to be centered at a lower value, indicating a lower average error. The simultaneous
use of BSS and L2-SP further reduces the scattering of error values, indicating that the
predictions provide greater reliability.

Figure 5. Distributions of the averaged district errors of all runs in all test years as boxplots. In this
case, freezing implies the initialization of the 6 convolutional layers by the US model without further
fine-tuning of the first 4 layers.

4.2. In Season Prediction

As described in Figure 4, we examine a second shorter time frame of available infor-
mation for our prediction models. A model capable of inferring the estimated yield long
before harvest has a very high value for crop management. Table 3 shows a summary
of the prediction results in the short period. The full breakdown of the results for every
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individual year can be found in Appendix B. Here, the satellite images no longer include
the harvest and end before the first harvests begin. Training, evaluation, and testing are
performed exactly as in the long period. We used only the first 14 satellite images, instead
of 32 as done previously. This is reflected in a reduced performance compared to the long
period. At the same time, it can be seen that transfer learning methods, especially with
simultaneous application of the Gaussian process, result in an even greater increase in
performance.

Table 3. Average RMSE in bu/ac and R2 as fraction of 1, of different model configurations for the
short time period. Satellite image coverage ends before the start of the harvests. Bold numbers
indicate the best scores. A full display of the results is shown in Appendix B.

RMSE ↓ R2 ↑ RMSE + GP ↓ R2 + GP ↑

USA: CNN 7.12 0.394 7.00 0.414

Argentina without transfer 9.36 0.140 8.37 0.314

Argentina + freezing, L2-SP and BSS 8.20 0.349 6.92 0.537

5. Discussion

With our experiments, we are able to confirm the capabilities of CNNs for yield pre-
diction when they are trained on MODIS observations that are preprocessed to resemble
histograms. The approach is tested within the literature for several yield prediction sce-
narios, as described in Section 1.1. The addition of the Gaussian process for predicting
US yields is beneficial for the short prediction period, while it decreases accuracy for the
long prediction period. For the Argentine yield prediction without transfer learning, the
Gaussian process improves the results by ca. 10% in terms of RMSE for the long period
and the short period. Similar results are discovered by Kaneko et al. [12] where a Gaussian
process improves the results of predictions based on small datasets up to a level similar
to that which can be observed when training with more data. The same effects are shown
when examining the first step of transfer learning for Argentina, where the CNN weights
are initialized with the US model’s weights and the first four layers are frozen. Although
the improvement without a Gaussian process is about 7% in terms of RMSE, the results
are worse when the Gaussian process is included. Obtaining worse results with a machine
learning model after application of knowledge transfer, like we have in the case of our
model when the Gaussian process is included, can be described as negative transfer and is
well anticipated in the literature (Section 2.1). As yield prediction is a research area that
suffers from data scarcity, the selection of a source domain for pretraining is prone to a
known tradeoff. On the one hand, more data for pretraining improves the results, while
on the other hand, less similarity between the domains endangers the knowledge transfer.
Our experimental setup tends to emphasize the amount of training data for pretraining
over the similarity of the domains, as in real-world yield prediction applications it is often
not possible to produce more training data close to the target domain. Despite this choice,
the first transfer experiments indicate that features extracted from remote sensing data can
be transferred similarly to those obtained in many computer vision tasks. This claim is
supported by the fact that we were able to freeze the first four layers in our CNN which
commonly condense high-level features from the data and improve the model accuracy
without the Gaussian process.

The negative transfer that is prevalent when we evaluate the models with the Gaussian
process can be addressed by regularization techniques. Our results support the claim that
regularization techniques designed for commonly used image features have similar effects
on remote sensing data presented as histograms. The L2-SP regularization together with
the Gaussian process gives the best results in terms of average RMSE and R2, removing
the negative transfer that occurred without regularization. As indicated by Chen et al. [8],
the inclusion of BSS gives us a small decrease in average performance by 2.8% in terms of
RMSE but stabilizes the knowledge transfer. As can be seen in Figure 5, the worst error
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values are closer to the average RMSE than in any other constellation, which makes us
recommend the combination of layer freezing, L2-SP, and BSS for transfer learning tasks,
including remote sensing data represented by histograms. The same constellation also
works well when considering the short prediction period (Table 3).

Regarding the specific transfer of knowledge between the US and Argentina, we can
analyze Figure 6, providing an overview of the distribution of errors in Argentina after
applying different procedures for the long prediction period. The graphics shown are
taken from the first run of 2019 as an example. The area shown includes soybean acres in
northeastern Argentina. Training or test data are missing for the gray areas. On the basis of
the lower saturation of the districts, it can be seen that the Gaussian process reduces the
error values. The application of transfer learning leads to low saturation in many districts
in advance and a more balanced distribution of overestimates and underestimates. At the
same time, especially in transfer learning, some districts with a worse forecast are visible.
We need to assume that the relations learned in the US domain do not carry over to these
districts, due to local dependencies or different crop management techniques. All in all, we
find the regularized transfer learning to be beneficial and generally reduce the error on our
datasets.

Within the wider literature context, the first parallel between our work and related
work also considering yield prediction with remote sensing data is the use of MODIS
satellite data as a primary data source, as is done, for example, by [11,13,14]. While all those
works report good results, it is worth mentioning that alternative data sources exist. The
authors of [41] also use the Sentinel-2 satellite to achieve state-of-the-art results, exploiting
the fact that the images are available at a higher resolution. Furthermore, the literature is
beginning to investigate the use of non-fixed time steps during histogram creation as input
for machine learning procedures [16], which may be useful to increase alignment between
the two domains used for transfer learning in the future. When considering the literature
for yield prediction in general, our results improve on state-of-the-art performance, as we
can deduce from our comparison to successfully deployed deep learning architectures [11]
trained and evaluated in our data. This increase in performance comes from enabling the
US, as the biggest repository for ground truth yield data, as the source domain for transfer
learning, even for a country in a different hemisphere. This builds on the work of [13],
where transfer learning is first used to improve yield prediction via transfer learning, but
the two countries used, i.e., Argentina as source and Brazil as target, are much more closely
related than in our case.

However, it is important to mention that the improvements come at the price of many
additional hyperparameters that have to be tuned. Tuning hyperparameters in a deep
learning context is always difficult, since the impact of a hyperparameter can mostly only
be observed after a significant number of computations. This makes it so that research
often turns to empirical values or educated guesses. Regularization and transfer learning
include an additional six important hyperparameters to adjust: L2-SP, BSS, the number
of frozen layers, and the initialization of the non-frozen layers with parameters of the
source model, as can be seen in Table 1. In our experiments, the number of four frozen
layers indicates that many features learned from remote sensing data in our target domain
can be directly transferred to the new task. The high transferability is also indicated by
the advantageous initialization with the source weights for the non-frozen layers. The
L2-SP hyperparameter α with a value of 0.23 quantifies the punishment for altering the
weights of the source models. This value being relatively low means that the non-frozen
layers must be able to be highly adjustable to the new task, hinting that the yield-related
patterns utilizing the frozen features of the first layers are quite different for both our yield
prediction tasks. The high L2-SP hyperparameter β is the standard L2 punishment for high
weights suppressing overfitting. The BSS hyperparameters η and k and their respective
values 0.07 and 1 indicate that the strength of the regularization is relatively low and the
smallest singular value is penalized. For all these hyperparameters, small adjustments can
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alter the models’ performance, increasing the risk of a bad model due to careless handling
of the hyperparameters compared to a simpler model without transfer learning.

Figure 6. Comparison of different results in the first run of the long period of 2019. Districts without
ground truth are grayed out. An overestimate is indicated in red and an underestimate is indicated
in blue. The lower the saturation, the better the prediction.
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6. Conclusions

Overall, our proof of concept shows that transfer learning can lead to improved crop
prediction using CNNs, in particular through a joint application of several methods with
careful determination of the hyperparameters. In addition to the usual procedures of
initializing the weights by a model trained on a larger dataset and fixing these weights,
transfer-specific regularization methods with simultaneous application of the Gaussian
process particularly lead to improved prediction. For prediction over the full crop growth
cycle, performance was improved by an RMSE of 0.51 bu/ac compared to the CNN with
Gaussian process and without transfer learning by using a US initialization of the weights,
fixing four convolutional layers, and applying L2-SP. The same procedure results in a
performance increase of 1.35 bu/ac for the in-season prediction. The BSS regularization
method is not directly beneficial to model performance, as is the case for L2-SP, but it helps
to stabilize the training process and prevents a particular bad prediction. We see that we
can utilize transfer learning methods designed for other deep learning tasks, such as image
classification, for yield prediction with remote sensing data in the form of histograms as
input. Future work includes investigations in other countries, especially with even smaller
yield databases, to further confirm these methods. In general, our approach for leveraging
remote sensing data for yield prediction with deep transfer learning shows that:

• Spatio-temporal alignment can be performed even between two varying remote sens-
ing data sources to allow for transfer learning.

• The capabilities of transfer-specific regularization methods L2-SP and BSS together
with Gaussian processes for transfer learning translate to the context of yield prediction
and hyperspectral remote sensing data in the form of histograms.

• Regularized transfer learning can improve yield predictions in regions where fewer
data are available and should be considered as an alternative to state-of-the-art ap-
proaches, especially for smaller study areas.
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Appendix A

Table A1. Yearly average RMSE in bu/ac and R2 as fraction of 1, of different model configurations for
the long time period. The long period contains satellite images beyond the harvest time and therefore
includes the full crop growth cycle. Each year is averaged over 4 runs and the overall average is
averaged over each individual run.

USA: CNN

Year RMSE R2 RMSE + GP R2 + GP

2015 5.57 0.639 6.89 0.290
2016 6.64 0.375 8.47 −0.071
2017 4.85 0.737 5.12 0.801
2018 6.77 0.567 7.04 0.479
2019 5.24 0.635 6.04 0.545
2020 6.58 0.545 7.28 0.480
AVG 5.94 0.583 6.81 0.439

Argentina without Transfer

Year RMSE R2 RMSE + GP R2 + GP

2018 7.44 0.567 7.65 0.543
2019 8.15 0.360 6.70 0.572
2020 6.83 0.400 5.91 0.549
AVG 7.47 0.442 6.76 0.439

Argentina + Freezing

Year RMSE R2 RMSE + GP R2 + GP

2018 7.54 0.557 8.13 0.487
2019 7.15 0.513 7.48 0.468
2020 6.13 0.507 4.95 0.685
AVG 6.94 0.526 6.85 0.547

Argentina + Freezing, L2-SP

Year RMSE R2 RMSE + GP R2 + GP

2018 7.55 0.552 6.80 0.640
2019 7.23 0.503 6.30 0.623
2020 5.62 0.594 5.64 0.592
AVG 6.80 0.550 6.25 0.618

Argentina + Freezing, L2 and BSS

Year RMSE R2 RMSE + GP R2 + GP

2018 7.82 0.523 6.71 0.650
2019 7.83 0.414 7.62 0.445
2020 5.51 0.610 4.96 0.684
AVG 7.05 0.516 6.43 0.593

Argentina + Freezing, L2-SP and BSS

Year RMSE R2 RMSE + GP R2 + GP

2018 7.61 0.548 6.58 0.664
2019 7.55 0.459 6.44 0.606
2020 6.06 0.527 5.90 0.553
AVG 7.07 0.511 6.31 0.608
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Appendix B

Table A2. Yearly average RMSE in bu/ac and R2 as fraction of 1, of different model configurations
for the short time period. Satellite image coverage ends before the start of harvests. Each year is
averaged over 4 runs and the overall average is averaged over each individual run.

USA: CNN

Year RMSE R2 RMSE + GP R2 + GP

2015 6.75 0.471 6.58 0.541
2016 8.33 0.021 8.35 0.018
2017 6.15 0.580 6.02 0.590
2018 7.69 0.445 7.52 0.429
2019 7.32 0.289 7.11 0.381
2020 6.504 0.556 6.38 0.586
AVG 7.12 0.394 7.00 0.414

Argentina without Transfer

Year RMSE R2 RMSE + GP R2 + GP

2018 10.73 0.086 9.08 0.356
2019 9.23 0.189 8.73 0.273
2020 8.12 0.146 7.30 0.312
AVG 9.36 0.140 8.37 0.314

Argentina + Freezing, BSS and L2-SP

Year RMSE R2 RMSE + GP R2 + GP

2018 9.53 0.293 8.49 0.440
2019 8.43 0.321 6.45 0.604
2020 6.64 0.434 5.81 0.567
AVG 8.20 0.349 6.92 0.537
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