
Citation: Alam, L.; Kehtarnavaz, N.

Improving Recognition of Defective

Epoxy Images in Integrated Circuit

Manufacturing by Data

Augmentation. Sensors 2024, 24, 738.

https://doi.org/10.3390/s24030738

Academic Editor: Jiachen Yang

Received: 14 December 2023

Revised: 10 January 2024

Accepted: 21 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving Recognition of Defective Epoxy Images in Integrated
Circuit Manufacturing by Data Augmentation
Lamia Alam and Nasser Kehtarnavaz *

Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA;
lamia.alam@utdallas.edu
* Correspondence: kehtar@utdallas.edu

Abstract: This paper discusses the problem of recognizing defective epoxy drop images for the
purpose of performing vision-based die attachment inspection in integrated circuit (IC) manufacturing
based on deep neural networks. Two supervised and two unsupervised recognition models are
considered. The supervised models examined are an autoencoder (AE) network together with a multi-
layer perceptron network (MLP) and a VGG16 network, while the unsupervised models examined
are an autoencoder (AE) network together with k-means clustering and a VGG16 network together
with k-means clustering. Since in practice very few defective epoxy drop images are available on an
actual IC production line, the emphasis in this paper is placed on the impact of data augmentation on
the recognition outcome. The data augmentation is achieved by generating synthesized defective
epoxy drop images via our previously developed enhanced loss function CycleGAN generative
network. The experimental results indicate that when using data augmentation, the supervised
and unsupervised models of VGG16 generate perfect or near perfect accuracies for recognition of
defective epoxy drop images for the dataset examined. More specifically, for the supervised models
of AE+MLP and VGG16, the recognition accuracy is improved by 47% and 1%, respectively, and for
the unsupervised models of AE+Kmeans and VGG+Kmeans, the recognition accuracy is improved
by 37% and 15%, respectively, due to the data augmentation.

Keywords: vision-based inspection in IC manufacturing; epoxy drop images for die attachment; data
augmentation via enhanced CycleGAN; supervised and unsupervised recognition of defective epoxy
drop images; impact of data augmentation on recognition accuracies

1. Introduction

Integrated circuit (IC) manufacturing is a multi-stage and intricate process in which
defects can be introduced at each stage [1]. Vision-based inspection systems are frequently
used in IC manufacturing for the identification or recognition of defects. A typical vision-
based inspection system consists of three main parts: a camera to capture images of interest,
a computer to run a recognition module or software, and a sorter to separate defective from
non-defective ICs. Deep neural network (DNN)-based classifiers are increasingly being
used as the recognition module or software. Figure 1 depicts the workflow of a typical
automated vision-based inspection system.

Die attachment is an important stage in the production of ICs. Proper die attachment
demands thermal/electrical efficiency and mechanical dependability. A commonly utilized
die attachment technique involves using adhesive or epoxy [2]. Excessive or insufficient
epoxy must be avoided as it leads to poor or defective die attachment. Therefore, an
inspection is needed to identify defective epoxy drops placed on substrates to which dies
get attached [3,4]. An illustration of die attachment is provided in Figure 2. A vision-based
inspection system is used to identify dies that have an adequate amount of epoxy deposit.
In other words, the epoxy deposit needs to be carried out such that a die neither tilts nor
overflows its substrate, and the bond line maintains an optimal thickness. Dies that meet
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these criteria are labeled as non-defective or good and are passed through the inspection
system without rejection. On the other hand, dies that exhibit excessive, inadequate and
missing epoxy drop are labeled as defective and are rejected. Figure 3 shows a sample
image of a non-defective or good epoxy drop image and a sample image of a defective or
excessive epoxy drop image.
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Most of the works in the literature have focused on identifying defective solder joints
in printed circuit boards (PCBs), e.g., in [5–8] conventional machine learning techniques
and in [9–11] deep learning networks were used for recognition of defective solder joints.
Not much work has been reported in the literature on recognition of defective epoxy drops.
In [12], conventional image processing techniques consisting of Canny edge detector and
Hough transform were used to identify skewed, drained, and offset dies. In [13], seven
machine learning approaches were examined for their ability to identify faults related to
either an excessive or insufficient amount of glue on PCBs.

The design or training of a DNN-based classifier for the inspection of epoxy drop
demands having a large number of image samples for both defective and non-defective
cases. However, in practice, defective image samples occur rarely and thus an adequate
number of defective epoxy drop images is not available for the design or training of a DNN-
based classifier. To address the problem of not having an adequate number of defective
epoxy drop image samples, data augmentation techniques can be utilized to generate
synthesized defective image samples. For example, in [14], CycleGAN [15], a variant of
generative adversarial network (GAN) [16,17], was used to generate realistic defective
wafer maps. In this paper, defective epoxy drop images, which are generated by our
previously developed improved CycleGAN generative network in [18], are used for data
augmentation as part of a framework to recognize defective epoxy drop images.

Basically, the work reported in this paper examines the benefit of data augmentation
for separating defective and non-defective cases. More specifically, both supervised and
unsupervised recognition or classification are carried out to distinguish between defective
and non-defective epoxy images. Two supervised models are considered which are (i) an
autoencoder (AE) network [19] together with a multilayer perceptron (MLP) network [20]
and (ii) a VGG16 network [21]. Furthermore, two unsupervised models are considered
which are (i) an AE network together with k-means clustering [22] and (ii) a VGG16 network
together with k-means clustering. The recognition outcomes are evaluated using widely
used performance metrics.

The rest of the paper is organized as follows: Section 2 describes our recognition
framework consisting of supervised and unsupervised models. The recognition results
without and with data augmentation are then presented and discussed in Section 3. Finally,
the paper is concluded in Section 4.

2. Methods

This section covers our recognition framework for identifying defective epoxy drop
images in an automated way. The recognition is carried out both in a supervised and an
unsupervised manner. Data augmentation plays a key role in the developed recognition
framework. Figure 4 illustrates how synthesized images generated by data augmentation
are used to set up training and testing sets for the recognition models presented later. As
shown in this figure, after carrying out data augmentation of defective images, all of the
samples of defective and good images are randomly divided with no overlap into 60%
training, 10% validation, and 30% testing subsets.
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2.1. Data Augmentation

In this paper, a dataset of o-shaped epoxy drop images from an IC manufacturer is
examined to show the benefit of data augmentation. A predetermined region of interest
(ROI) in the vision-based inspection system containing the epoxy is extracted which is of
size 128 × 128 × 3 with 3 denoting the number of color channels. Among the images, only
16 epoxy drop images are labelled as defective while 8850 images are labelled as good or
non-defective. Regardless of what recognition or classifier model is utilized, the rarity of
the defective images as well as the imbalance number of samples between the defective and
good cases would pose difficulties in reaching high recognition or classification accuracies.
That is why it is essential to carry out data augmentation for this recognition problem.

The data augmentation technique we previously developed in [18] is used here. This
technique is based on an improved CycleGAN generative network. Our improved Cycle-
GAN involves an enhanced loss function. In [18], it was shown that by incorporating the
measures of learned-perceptual-image-patch-similarity (LPIPS) and structural-similarity-
index-metric (SSIM) into the standard CycleGAN loss function, more realistic or higher-
quality synthesized epoxy drop images were generated. The CycleGAN optimization
framework combines two losses: adversarial loss (Ladvers) which measures the difference
between generated images and target images and cycle consistency loss (Lcyc) which avoids
conflicts between the learnt mappings. The total loss can be expressed as follows:

L
(

Gg→d, Gd→g, Dg, Dd

)
= Ladvers

(
Gg→d, Dd

)
+ Ladvers

(
Gd→g, Dg

)
+ Lcycle

(
Gg→d, Gd→g

)
(1)

where Gg→d & Gd→g denote the mapping functions for converting good images to defective
images and vice versa, and Dd & Dg denote the associated adversarial discriminators.
Cycle consistency loss is defined as the combination of forward (LF_Cycle) and backward
(LB_Cycle) cycle consistency losses, that is

LCycle

(
Gg→d, Gd→g

)
= LF_Cycle

(
Gg→d

)
+ LB_Cycle

(
Gd→g

)
(2)
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In our enhanced CycleGAN loss function, the following losses together with the
standard CycleGAN L1 loss are used

LF_Cycle
(

Gg→d

)
= αLF_Cycle

L1
+ βLF_Cycle

LPIPS + γLF_Cycle
SSIM (3)

LB_Cycle
(

Gd→g

)
= αLB_Cycle

L1
+ βLB_Cycle

LPIPS + γLB_Cycle
SSIM (4)

with α, β, and γ denoting the weights assigned to each loss function. For more details, the
reader is referred to [18].

The improved CycleGAN is thus used here to generate a dataset of defective epoxy
drop images consisting of 1400 images by using a very small number of real defective epoxy
drop images (16 of them). More synthesized images can be generated but 1400 images
were found to be adequate for training and testing of the recognition models. Interested
readers are referred to [18] for the details of this improved generative network and samples
of synthesized defective images.

2.2. Supervised Recognition

Two representative supervised recognition models of AE+MLP and VGG16 are utilized
to show the benefit of the data augmentation in reaching high recognition accuracies. What
is meant by supervised is that the training is conducted based on a labeled dataset. In
other words, every training image sample is labelled as defective or good/non-defective
by manual visual inspection.

2.2.1. Autoencoder with Multilayer Perceptron

The AE+MLP model which combines two networks of an autoencoder (AE) and a
multilayer perceptron (MLP) is utilized as the first supervised model. The AE network
performs feature extraction and the MLP network performs recognition or classification.
The AE part provides a representation of images by a set of features. It consists of an
encoder component which generates features from input images and a decoder component
which reconstructs images from features. A fully connected (FC) layer with 64 units is
used with the rectified linear unit (ReLU) activation function for the extraction of repre-
sentative features by the encoder. After encoding, the decoder also consists of a FC layer
with 49,152 units reconstructing the input image by using the sigmoid activation function.
The loss function is set to mean squared error (MSE) and the Adam optimizer is used
for training.

After training the AE, the MLP is used to distinguish between defective and non-
defective epoxy drop images by using the features extracted via the encoder. The MLP
consists of two hidden FC layers with 64 and 32 units, respectively, with ReLU as the
activation function, and an output FC layer with SoftMax as the activation function. The
binary cross-entropy (BCE) loss function and the Adam optimizer are used for training of
the MLP. Both of the networks are trained for 500 epochs determined by the validation set.
The architectures of the two networks of this model are displayed in Figure 5.

2.2.2. VGG16

The pretrained VGG16 model is utilized as the second supervised model. The pre-
trained VGG16 is trained via more than a million images for one thousand classes in the
ImageNet dataset. Only the output layer of this model is trained using the epoxy drop
images. This model uses 16 convolutional layers with 3 by 3 filters. It can cope with
3 channel images with dimensions of 224 by 224. The last max-pooling layer in the model is
linked to a 4096-unit FC layer, which is subsequently linked to a 1000 classification SoftMax
layer as shown in Figure 6a. For our purposes, the top layers are excluded and replaced
with a 512-unit FC layer and a SoftMax layer for our two-class recognition problem as
shown in Figure 6b. Before the training is conducted, the images are resized since VGG-16
requires an input image size of 224 × 224. The model is trained for 500 epochs determined
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by the validation set. During the training, only the added custom layers to the VGG16
model are updated and all of the layers of the pretrained VGG16 model are frozen. The
model is trained via the Adam optimizer based on the BCE loss function.

Sensors 2024, 24, 738 6 of 14 
 

 

 
Figure 5. Architecture of the AE+MLP supervised recognition model. 

2.2.2. VGG16 
The pretrained VGG16 model is utilized as the second supervised model. The pre-

trained VGG16 is trained via more than a million images for one thousand classes in the 
ImageNet dataset. Only the output layer of this model is trained using the epoxy drop 
images. This model uses 16 convolutional layers with 3 by 3 filters. It can cope with 3 
channel images with dimensions of 224 by 224. The last max-pooling layer in the model is 
linked to a 4096-unit FC layer, which is subsequently linked to a 1000 classification Soft-
Max layer as shown in Figure 6a. For our purposes, the top layers are excluded and re-
placed with a 512-unit FC layer and a SoftMax layer for our two-class recognition problem 
as shown in Figure 6b. Before the training is conducted, the images are resized since VGG-
16 requires an input image size of 224 × 224. The model is trained for 500 epochs deter-
mined by the validation set. During the training, only the added custom layers to the 
VGG16 model are updated and all of the layers of the pretrained VGG16 model are frozen. 
The model is trained via the Adam optimizer based on the BCE loss function.  

Figure 5. Architecture of the AE+MLP supervised recognition model.

Sensors 2024, 24, 738 7 of 14 
 

 

 
Figure 6. Architecture of the VGG16 supervised recognition model. Figure 6. Architecture of the VGG16 supervised recognition model.



Sensors 2024, 24, 738 7 of 13

2.3. Unsupervised Recognition

To take into consideration the situations when no manual visual inspection labeling
of image data is carried out or available, two unsupervised recognition models are also
considered in this work. In other words, the recognition is carried out without considering
which images in the dataset correspond to good ones and which images to defective ones.
K-means clustering is used once after the AE feature extraction and once after the VGG16
transfer learning to group or partition the epoxy drop images into two clusters of defective
and good.

2.3.1. Autoencoder with K-Means Clustering

Unlabeled training samples are used to train an AE that consists of an encoder and a
decoder part. An input image regardless of its label is passed through the convolutional
layers of the decoder with increasing filter sizes. After each convolutional layer, a 2 by
2 max-pooling is applied to downsample the spatial dimensions. The final output of
the encoder or the last max-pooling layer form the input to k-means clustering. The
encoded features are passed through the decoder consisting of a series of convolutional
layers with decreasing filter sizes. After each convolutional layer, 2 by 2 upsampling is
applied to increase the spatial dimensions. The ReLU activation function is used in the
convolution layers except for the final layer which uses the sigmoid activation function. The
training is carried out based on the MSE loss function together with the Adam optimizer.
The AE network is trained for 1500 epochs determined by the validation set. Then, the
output features of the encoder are used to perform k-means clustering. Figure 7 shows an
illustration of the AE-based unsupervised model.
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2.3.2. VGG16 with K-Means Clustering

Here the pretrained VGG16 is utilized for feature extraction before performing k-
means clustering. As mentioned earlier, images with the dimensions of 224 × 224 × 3
need to be fed into the input layer, and the SoftMax layer provides 1000 output classes as
illustrated in Figure 6a. The portion of the network labeled 7 × 7 × 512 from the input
layer to the final max-pooling layer is considered to be the feature extraction portion of the
model and the remaining portion is considered to be the classification portion of the model.
Hence, for our purposes, the top layers are excluded (i.e., the FC and SoftMax layers) and
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only the convolutional and pooling layers are used for feature extraction. Using these
pretrained layers, extracted features are then fed into k-means clustering to partition the
unlabeled image samples. Figure 8 depicts the modified architecture of the VGG16-based
unsupervised model. For visualization of clusters, principal component analysis (PCA) is
applied to display the clusters using the two highest ranked principal components.
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Four distinct recognition models are employed here, each with its own training. The
AE+MLP model undergoes a sequential training process. It begins with an AE for initial
feature extraction followed by a MLP for recognition. The VGG16 model, a pre-trained
CNN, is fine-tuned for both feature extraction and recognition. In contrast, the AE+Kmeans
model adopts a sequential training where an AE is used for feature extraction followed
by k-means clustering for unsupervised recognition. Lastly, the VGG16+Kmeans model
combines the VGG16 network with transfer learning for feature extraction and k-means
clustering for unsupervised recognition. The unsupervised models provide an approach
for defect recognition without relying on the availability of labeled data samples.

3. Results and Discussion

In this section, we report our recognition results for the two supervised and the two
unsupervised models described above without and with data augmentation, i.e., without
and with using synthesized defective images generated by our improved CycleGAN. All
of the recognition models are implemented in Python using the TensorFlow and Keras
libraries. Our experimentations were carried out on a server running 64-bit Windows 10
with two Intel Xeon 2.40 GHz CPUs and two 256 GB RAM NVIDIA Tesla K40m GPU boards.

3.1. Evaluation Metrics

The widely used evaluation metrics of precision, recall, F1-score, and accuracy of
recognition models are reported here without and with the synthesized defective images.
Table 1 presents the confusion matrix entries. From this matrix, the evaluation metrics of
Recall, Precision, F1-score and Accuracy are computed as follows:

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1-score =
2 × Recall × Precision

Recall + Precision
(7)
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Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP (true positive) indicates when a defective image is correctly placed in the defective
class, TN (true negative) indicates when a good image is correctly placed in the good class,
FP (false positive) indicates when a good image is incorrectly placed in the defective
class, and FN (false negative) indicates when a defective image is incorrectly placed in the
good class. To balance the samples from the two classes of good and defective, 1400 real
good/non-defective images were selected randomly to match the number of synthesized
defective images.

Table 1. Confusion Matrix.

Classified Labels

Defective Good

Actual Labels
Defective TP FP

Good FN TN

3.2. Visualization of Unsupervised Training Samples

Figures 9 and 10 show the clustering of the training data using the unsupervised
recognition models without and with data augmentation along with true or actual labels of
the samples. Here, only the two highest ranked principal components are displayed for
visualization purposes. Good/non-defective samples are represented by dark color circles
and defective samples are represented by light color circles. Figure 9a,b show the true labels
of the training samples and their clustering outcome by the AE+Kmeans unsupervised
model without data augmentation, respectively, while Figure 9c,d show the true labels
of the training samples and the clustering outcome by the AE+Kmeans unsupervised
model with data augmentation, respectively. A similar set of figures are shown for the
VGG16+Kmeans unsupervised model in Figure 10. As can be seen from these figures, the
VGG16+Kmeans unsupervised model with data augmentation generated the best match
with the true labels. More specifically, the AE-Kmeans unsupervised model produced a
training accuracy of only 33% without data augmentation and a training accuracy of 78%
with data augmentation; whereas the VGG16+Kmeans unsupervised model produced a
training accuracy of 68% without data augmentation and a training accuracy of 97% with
data augmentation.
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3.3. Recognition Rates

Each of the recognition models were trained twice: once without data augmentation
(i.e., by using only the real defective epoxy drop images) and then with data augmentation
(i.e., by using the combination of the real and synthesized defective epoxy drop images
that were generated by our enhanced loss function CycleGAN). In both cases good/non-
defective images were kept the same. For the supervised recognition models, labelled
image samples were used while for the unsupervised recognition models, the labels of the
image samples were assumed to be unknown and were not used. Then, the trained models
were tested by the same testing samples. The testing samples consisted of 420 good images
and 425 defective images (real + synthesized).

Table 2 shows the recognition outcomes for the four models in terms of recall, preci-
sion, F1-score and accuracy. As can be seen from this table, the addition of the synthesized
defective images improved the recognition outcome for both the supervised and unsu-
pervised models. With data augmentation, it is seen that a perfect accuracy was obtained
by the VGG16 supervised model and close to a perfect accuracy for the VGG16+Kmeans
unsupervised model. Tables 3 and 4 display the confusion matrices or recognition rates
of the VGG16 supervised model and the VGG16+Kmeans unsupervised model with data
augmentation, respectively.

Table 2. Recognition rates for the supervised and unsupervised models.

Recognition Model Without Using Data Augmentation or
Synthesized Defective Images

With Using Data Augmentation or
Synthesized Defective Images

Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy

Supervised
AE+MLP 1.0 0.50 0.67 50% 0.99 0.96 0.97 97%

VGG16 1.0 0.99 0.99 99% 1.00 1.00 1.00 100%

Unsupervised
AE+Kmeans 0.74 0.48 0.58 47% 0.72 1.00 0.84 86%

VGG16+Kmeans 0.86 0.82 0.84 83% 0.97 1.00 0.98 98%

Table 3. Confusion matrix of the VGG16 supervised recognition model with data augmentation.

Classified Labels

Defective Good

Actual Labels
Defective 425 0

Good 0 420

Table 4. Confusion matrix of the VGG16+Kmeans unsupervised recognition model with data augmentation.

Classified Labels

Defective Good

Actual Labels
Defective 411 14

Good 0 420

In case of supervised recognition, although a high recognition rate was obtained
using the VGG16 model without data augmentation, the addition of data augmentation
provided a higher performance for both the VGG16 model and AE+MLP across all of the
metrics of precision, recall, F1-score and accuracy. In case of unsupervised recognition,
the performance of the models without data augmentation was poor while with data
augmentation, the VGG16+Kmeans model achieved very high performance across all
metrics. Hence, it is seen that data augmentation significantly improves the recognition
performance in both supervised and unsupervised cases.
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4. Conclusions

In this paper, both supervised and unsupervised recognition models were examined
to show the benefit of data augmentation for achieving a more effective recognition or
vision-based inspection of defective epoxy drop images in IC manufacturing. No previous
papers in IC manufacturing have considered a generative network for data augmentation to
conduct both supervised and unsupervised recognition. The supervised models considered
were AE-MLP and VGG16 and the unsupervised models considered were AE and VGG16
together with k-mean clustering. In both cases, the models were trained without and with
data augmentation using the same datasets. With data augmentation, the recognition results
indicate that VGG16 as a supervised recognition model and VGG16 with k-means clustering
as an unsupervised recognition model provide perfect or close to perfect recognition
accuracies. More specifically, the data augmentation allowed improving the recognition
accuracy of the VGG16 supervised model by 1% while it allowed improving the recognition
accuracy of the VGG16+Kmeans unsupervised model by 15%. Finally, it is worth pointing
out that the data augmentation recognition framework developed in this work is general
purpose in the sense that it can be applied to other similar recognition problems. In our
future work, it is planned to apply the same framework to other types of defects in the IC
manufacturing process.
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