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Abstract: Compared with traditional two-level inverters, multilevel inverters have many solid-
state switches and complex composition methods. Therefore, diagnosing and treating inverter
faults is a prerequisite for the reliable and efficient operation of the inverter. Based on the idea of
intelligent complementary fusion, this paper combines the genetic algorithm–binary granulation
matrix knowledge-reduction method with the extreme learning machine network to propose a fault-
diagnosis method for multi-tube open-circuit faults in T-type three-level inverters. First, the fault
characteristics of power devices at different locations of T-type three-level inverters are analyzed,
and the inverter output power and its harmonic components are extracted as the basis for power
device fault diagnosis. Second, the genetic algorithm–binary granularity matrix knowledge-reduction
method is used for optimization to obtain the minimum attribute set required to distinguish the state
transitions in various fault cases. Finally, the kernel attribute set is utilized to construct extreme learn-
ing machine subclassifiers with corresponding granularity. The experimental results show that the
classification accuracy after attribute reduction is higher than that of all subclassifiers under different
attribute sets, reflecting the advantages of attribute reduction and the complementarity of different
intelligent diagnosis methods, which have stronger fault-diagnosis accuracy and generalization
ability compared with the existing methods and provides a new way for hybrid intelligent diagnosis.

Keywords: inverter; fault diagnosis; knowledge reduction; open circuit

1. Introduction

The multilevel inverter is a power electronic device that generates output voltage
waveforms and current waveforms using a variety of direct current (DC) voltage sources
and power switches [1]. Multilevel inverters are widely used in low-voltage situations and
mid-frequency switching frequency scenarios due to their advantages of low switching
transient voltage change rate, small harmonic distortion, and high power conversion
efficiency [2], and have become indispensable electronic devices in power systems as
modern industry develops in the direction of scale, accuracy, systematization, automation,
and intelligence. The complexity of the T-type topology and the abundance of power
semiconductor devices have recently raised questions about the ability of the system to
operate reliably in comparison to the traditional two-level inverter [3].

Because semiconductor power devices are relatively fragile, open-circuit (OC) faults
and short-circuit (SC) faults of insulated gate bipolar transistors (IGBTs) can be distin-
guished based on their external behavior [4]. SC faults cause short circuits and abnormal
overcurrent states, causing other components to be damaged. It is necessary to isolate the
problematic component or to immediately shut down the whole system, for instance, using
desaturation detection in the door driver or fast fuses [5]. On the contrary, OC fault may not
immediately cause system failure but may cause current distortion and secondary damage
to other components due to increased noise and voltage stress. As a result, effective OC
fault diagnosis is critical for improving power system reliability.
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At present, more methods based on signal processing are being developed to decom-
pose, convert, or lower the dimension of system detection data according to the signal
analysis strategy and extract feature information from it. Fault diagnosis and identification
are achieved by comparing the changing pattern of feature information before and after the
fault. The authors in [6] proposed a non-invasive diagnostic strategy to detect the near-field
voltage signal of the inverter DC bus through the antenna and extract the spectral features
of the collected signal using fast Fourier transform (FFT) as a basis for fault classification.
However, due to the limitation of the amount of diagnostic information, this method can
only achieve the diagnosis of the clamping diode open-circuit fault. A discrete wavelet
transform-based fault feature extraction strategy for microgrid inverters was proposed
by the authors in [7]. The authors in [8] propose a fault-diagnosis method based on the
average modulation voltage model for multi-current sensor disordered grid-connected
inverters, which establishes the average modulation voltage model of three-phase steady-
state coordinates and estimates the difference between the measured value and the actual
value of the current by the model. Then, the fault is found. The experimental results show
that the method can accurately locate the fault and perform fault-tolerant control when
multiple sensors have offset faults at the same time. By symmetrically reconstructing the
phase current signal, the effect of load variation is eliminated while retaining the main
features of the fault. Then, multi-scale feature extraction is performed on the signal, and
the energy coefficients of each group of current signals at different frequencies obtained
are used as diagnostic classification information. However, the selection of wavelet bases
will directly affect the extraction effect of fault features, which increases the difficulty of
applying this method. To accurately detect IGBT switching faults, a new method based on
an enhanced version of the variable mode decomposition algorithm (EVMD) combined
with wavelet packet analysis (WPA) and scalar indicators is proposed by the authors in [9]
to detect OC faults, which also shows how effective the suggested method is at diagnosing
OC faults. For three-level active neutral-point-clamped (3LANPC) inverters, the authors
in [10] established a predictive current model and seamlessly integrated the residuals of the
predicted current vectors between the measured and predicted currents into the backward
optimization of the MPC to diagnose inverter faults, which reduces the complexity of
inverter fault identification, while the authors defined the counting function within each
current cycle, which enhances the robustness of the algorithm. However, the method
proposed in the article was based on generalized current residuals and a fault hypothesis
prediction model. In [11], a method based on an average voltage vector was proposed, in
which the threshold value is established by vector trajectory prediction, and the diagnostic
variables include neutral point potential, eigenvector angle, and eigenvector modulus.
These methods, however, all rely on signals provided by the system controller, resulting in
a lengthy diagnosis time. To address this issue, the authors in [12] proposed using simple
logic circuits to process the voltage and switching signals of the upper bridge transistors,
as well as adding hardware to the inverter to provide transient fault information, but
this introduced additional costs and complexity. Following that, a model simulation that
infers system operation is proposed. For example, consider the hybrid logic dynamic
diagnosis model, which is made up of a two-level inverter and an NPC inverter [13,14].
The diagnostic signal is defined as the difference between the sampling and estimated
currents, and the fault location is determined by the residual change rate. In [15], branch
level and equipment level faults are identified hierarchically using the DC-link model, and
parameter errors like inductance error and sampling error are processed to ensure accurate
diagnosis results while also enhancing diagnosis speed and robustness. However, OC
faults in different inverter transistors can produce similar fault characteristics [16].

Some artificial intelligence methods are used for state feature classification and are
becoming a prominent research area as machine-learning (ML) technology and computing
capacity grow. The authors in [17] made improvements to convolutional neural networks
using a global average pooling layer instead of a fully connected layer, and the improved
method reduces the number of model parameters of traditional neural networks greatly,
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which is beneficial to achieving fast fault diagnosis of inverters. To further optimize the
diagnostic performance and improve diagnostic accuracy, its integrated processing and
collaborative analysis are used for inverter fault diagnosis, which is a common information
fusion process. The combination of different algorithms is used to enhance the extraction
of fault feature information and to improve the classification and discrimination of fault
features at the same time. The authors in [18] carried out data processing and model
construction for inverter open-circuit faults. In order to increase the number of samples,
the authors used a Conditional Variational Auto-Encoder for data enhancement of the fault
samples and Wavelet Packet Decomposition to eliminate the noise in the samples; then,
the authors constructed an improved residual network with a channel attention module
as a fault-diagnosis model, and the simulation results show that targeting the inverter
has higher diagnostic accuracy, faster convergence speed and shorter iteration period in
fault diagnosis. However, the methodology used by the authors is more stringent on
the accuracy of the dataset. Any deviation or error present in these initial fault datasets
may affect the accuracy of the final fault diagnosis. The authors in [19] proposed a neural
network diagnosis strategy based on a circuit resolution model. This method combines
the advantages of both circuit analysis and data-driven diagnostic strategies, derives
diagnostic signals that directly reflect circuit fault patterns through the parsing model, and
then uses Artificial Neural Network (ANN) to identify and classify the feature information
in the diagnostic signals, avoiding complex fault analysis, rule specification, and threshold
selection problems. Abdo, Ali, and colleagues proposed improving fault classification
accuracy by optimizing the data itself [20]. In [21], a long short-term memory (LSTM)
neural network and a clustering algorithm were used to create a neural network model
for fault detection. To locate faults, the authors in [22] combined a deep convolutional
network with network topology. Zhou et al. then used a granular Markov model to detect
anomalous behavior after being inspired by the thought of information granularity [23]. For
neutral-point-clamped inverters, the authors in [24] proposed a data-driven inverter fault-
diagnosis method based on the design of labels to simplify the traditional labeling method
and one-dimensional depth-separable convolution (1D-DSC) and global maximum pooling
(GMP) methods to process the data. Then, the TensorRT framework is used for model
compression and optimization. Simulation results show that the proposed method can
reduce the number of model parameters by more than 90% and has better online application
potential for fault diagnosis. The authors in [25] combined two methods of chaotic adaptive
gravity search algorithm (GSA) and back propagation neural network (BPNN) optimized
by particle swarm optimization(PSO) algorithm to establish a fault-diagnosis model based
on chaotic adaptive GSA-PSO-BPNN, which improved the fault classification performance,
and the feasibility and effectiveness of the algorithm was demonstrated. Although the
above literature does not require the analysis of the circuit operation mechanism or the
creation of an accurate circuit model, the diagnosis time for faults is generally long. This
is because complex calculations are generally performed on many diagnostic signals to
accurately identify fault characteristics, a process that requires long data acquisition time
and signal processing time.

Power inverters, on the other hand, are more complex systems, making it challenging
to collect complete experimental data for fault diagnosis. Rough set theory is a new
mathematical tool that can be used to deal with fuzzy and uncertain knowledge and has
strong qualitative analysis capabilities. Rough sets can be directly analyzed and reasoned
from experimental data to discover a large amount of implicit information knowledge and
reveal the inherent law. Rough set attribute reduction has been used to help diagnose
power transformer faults in recent years, with some success [26,27].

To summarize, artificial intelligence-based approaches may learn the nonlinear rela-
tionship between faults and fault features from data and have better diagnostic detection
capabilities. However, when the neural network method is applied in the field of fault
diagnosis, training samples are not easy to obtain, and it is difficult to perfectly integrate
all expert experience and knowledge, making the diagnosis inaccurate and low precision.
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Integrated artificial intelligence and signal processing combine the advantages of different
strategies. The required data are fewer, and the diagnostic model structure is relatively
simple, but it still takes more than half the fundamental wave period to locate the fault.
This speed is difficult to meet on some occasions that require high real-time performance of
fault protection isolation or fault tolerance. In contrast, the most important feature of the
rough set method is that it can objectively describe and process uncertain events without
requiring subjective a priori information outside the data-set, and the core element of the
method is attribute parsimony. In inverter fault diagnosis, rough set attribute simplification
is usually used to reduce the dimensionality of feature quantities and reduce the size and
complexity of the system. Therefore, the use of rough set theory in combination with neural
networks can reduce the size of the system and decrease the time of fault diagnosis, which
will achieve more desirable results in fault diagnosis.

As a result, this paper processes an ELM network model for comprehensive inverter
fault diagnosis using a knowledge-reduction method based on rough set (RS) theory.
This paper’s main contributions are as follows: (1) Each internal IGBT operational state
is determined by examining the power value changes associated with the positive and
negative half-waves of each phase current of the three-level inverter. (2) A genetic algorithm
(GA)-based binary granular matrix knowledge-reduction method is proposed. The decision
attributes of the problem are derived through knowledge reduction under the assumption
that the classification ability of the information system remains unchanged. (3) Create
a fault detection model that combines GA-GrC and ELM neural networks, replace all
attributes with reduction results, improve the classification performance of the ELM neural
network, and thus improve the diagnosis speed, accuracy, and real-time performance of
the detection system.

2. T-3L Inverter OC Fault Analysis
2.1. PWM Modulation and Operation Mode

Figure 1 depicts the circuit topology of a T-3L inverter. The A-phase bridge arm is
used as an example, with four IGBTs and four freewheel diodes in reverse parallel with the
IGBT to provide a current reverse conduction loop. The output voltage of the inverter is
routed to the load via the LC filter. The three-phase bridge arm of the inverter contains 12
IGBTs, the switching state of which is controlled by the gate signal. When the gate signal is
1, the IGBT is turned on. When the gate signal is set to 0, the IGBT is turned off.

Figure 1. T-3L inverter topology.

The T-3L inverter has three states when it is operating normally, as shown in Table 1.
In this paper, pulse width modulation (PWM) is used to control the inverter switching state.
Command signal 1 signifies switch-on, while 0 indicates switch-off. Activating switches Sa1
and Sa2 creates switching state P, resulting in a corresponding pole voltage VAO = +Vdc/2.
Switching state O is formed by turning on either Sa2 or Sa3, depending on the current
direction, with the corresponding pole voltage VAO = 0. Activation of switches Sa3 and Sa4
produces switching state N, with a corresponding pole voltage VAO = −Vdc/2. When the



Sensors 2024, 24, 1028 5 of 22

T-type inverter is operational, VC1 and VC2 oscillate at a low frequency in Vdc/2 , with an
oscillation period of 1/3 current cycle.

Table 1. The connection between output level and switch-on/off.

Output State Output Level Sa1 Sa2 Sa3 Sa4

P Vdc/2 1 1 0 0
N 0 0 1 1 0
O −Vdc/2 0 0 1 1

2.2. T-3L Inverter OC Fault Characteristics

To elucidate the operation of various fault diagnostic approaches, this section discusses
the operation of a single-phase three-level T-type inverter topology. It is assumed that the
current flowing from any one of the DC-link terminals to the inverter pole is considered a
positive direction of the current. The red arrows in Figure 2 depict the current paths for
different switching states in the positive and negative current scenarios.

(a) (b) (c)

(d) (e) (f)

Figure 2. Switching state circuits based on the current direction for phase A: (a) Switching states P
for i > 0. (b) Switching states O for i > 0. (c) Switching states N for i > 0. (d) Switching states P for
i < 0. (e) Switching states O for i < 0. (f) Switching states N for i < 0.

Due to the symmetry of the circuit, only phase A is analyzed. The current direction
from the inverter to the grid is considered positive (i > 0). The figures below depict the
current circuit of each switching device in the T-3L inverter in the event of an OC fault.
The solid line represents the actual current flow path, while the dashed line illustrates the
current flow path of Sa1 assuming normal conduction.

2.2.1. An OC Fault Occurs on a Single IGBT

As shown in Figure 3a, when Ia > 0, the open circuit of Sa1 causes the A-phase output
state of the inverter change from P to O, and the discharge capacitance to change from C1
to C2, establishing VC1 > VC2. At this point, the current can only be output after passing
through Sa2 and Sa3 to the neutral point, where it quickly attenuates to zero, and the output
power approaches 0W. When Ia < 0, Figure 3b shows that the A-phase output state of the
inverter will not change due to the open circuit of Sa1. The A-phase output current of the
inverter will flow out from the negative terminal via the reverse shunt diode of the IGBT
on the lower side, creating a charging situation to the direct current (DC) side. At this point,
the power associated with the positive half-wave current will be negative.

When Sa2 fails, as shown in Figure 3c, and Ia > 0, the open-circuit Sa2 has no effect
on the output state of phase. When the current is negative, it is routed back to the DC
side power supply via the inverse shunt diode on Sa4. At this point, only C2 will dis-
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charge, and the output state will change from O to P, resulting in a halving of the output
power amplitude.

(a) (b)

(c) (d)

Figure 3. Single IGBT fault: (a) Ia > 0, Sa1 fails. (b) Ia < 0, Sa1 fails. (c) Ia > 0, Sa2 fails. (d) Ia < 0,
Sa2 fails.

2.2.2. An OC Fault Occurs on Two IGBTs in the Same Phase

Consider the open circuit Sa1 and Sa2 as an illustration. When the load current direction
is positive, as in Figure 4a, the current enters the negative terminal N of the DC bus and
exits through the switch tube Sa4. The voltage between the two points is currently −Vdc/2,
and the output terminal is connected to the negative terminal N of the DC bus. According
to Figure 4b, When the load current direction is negative, the current enters the output
end A of the inverter, passes through the inverse shunt diode of Sa4, and then enters the
negative polar end N of the DC bus. The A-phase current only has the negative half-wave
part, and the voltage is −Vdc/2. At the moment of the fault, the power of this phase
dropped suddenly, accompanied by a significant increase in harmonics in the B and C
phase currents, leading to varying degrees of power decline.

Experiments reveal that changes in current and power differ significantly from the
fault characteristics mentioned above when two internal switches or external switches fail
simultaneously. As an illustration, consider the OC fault between Sa1 and Sa4. According
to Figure 4c,d, when the load current is flowing in the opposite direction, the current input
end is different and exits through the reverse parallel diode of Sa2 and Sa3, respectively. As
a result, the output end A is connected to the midpoint O of the DC bus, the voltage is 0V,
and the power of this phase is 0W correspondingly.

Similarly, when the two internal switches Sa2 and Sa3 re disconnected, the gate-emitter
bias voltage of Sa2 and Sa3 does not cause large oscillations of Vce, resulting in reverse
recovery characteristics similar to diodes for Sa1 and Sa4. The reverse recovery current and
voltage peak fall and the loss is extremely low. Therefore, the A-phase power drops to 0W
in an instant and then returns to a stable state. As a result, the magnitude of power is only
second to the B and C phases.
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(a) (b)

(c) (d)

Figure 4. Two IGBTs fault in the same phase: (a) Ia > 0, Sa1 and Sa2 fails. (b) Ia < 0, Sa1 and Sa2 fails.
(c) Ia > 0, Sa1 and Sa4 fails. (d) Sa1 and Sa4 fails.

2.2.3. An OC Fault Occurs on Two IGBTs in the Different Phase

If Sa1 and Sb1 were to be disconnected, for instance, the current could only flow from
the middle point O to the output end of phase A via the anti-parallel diodes of Sa2 and Sa3.
The open circuit of Sa1 and Sb1 also affects phase B and phase C current, preventing the
current from reaching Sc1 from the P end. As a result, the output power is 0W, and the
current quickly decays to 0A. When the current direction is negative, the current flows into
the output end, and Sc1 is normally switched on, whereas the output state of the other two
places does not change due to the open circuit, allowing only negative half-wave current
can occur and the output amplitude decreases. Therefore, the output power only fluctuates
around 0W.

From the above fault characterization, it is clear that a fault in the power device will
force a change in the current path of the faulty phase in the inverter, resulting in a change
in its operating state, and this transfer between operating states can be represented and
tracked using a finite state machine. Define the current direction and the power switch
fault as state transfer rules, which are represented by logical variables δ(+/−) and FSXk,
respectively. When the current direction is positive, δ(+) = 1 , and vice versa, δ(−) = 1.
FSa1 = 1 means Sa1 has an open circuit fault, FSa1 = 0 which means Sa1 is working normally.
Taking phase A of the inverter as an example, the transfer of the circuit operation status in
each operating mode is concluded in Table 2.
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Table 2. Summary of T-inverter A-phase operation status under normal and fault conditions.

Initial State Transfer Rules Current Flow through
Nodes Output Level End State

Mode I:State [P]

FSa1 = FSa2 = 0 O-P-Ua 0.5Vdc [P]
FSa1 = 1, δ(+) = 1 O-Ua 0 [O]

FSa2 = 1 O-P-Ua 0.5Vdc [P]
FSa1 = FSa2 = 1, δ(+) = 1 O-N-Ua −0.5Vdc [N]

Mode II:State [O]
FSa2 = FSa3 = 0 O-Ua O-Ua [O]

FSa2 = 1, δ(+) = 1 O-N-Ua −0.5Vdc [N]
FSa3 = 1, δ(+) = 1 O-Ua 0 [O]

Mode III:State [N]

FSa3 = FSa4 = 0 Ua-N-O −0.5Vdc [N]
FSa4 = 1, δ(−) = 1 Ua-O 0 [O]

FSa3 = 1 Ua-N-O −0.5Vdc [N]
FSa3 = FSa4 = 1, δ(−) = 1 Ua-P-O 0.5Vdc [P]

Mode IV:State [O]
FSa2 = FSa3 = 0 Ua-O 0 [O]

FSa3 = 1, δ(−) = 1 Ua-P-O 0.5Vdc [P]
FSa2 = 1, δ(−) = 1 Ua-O 0 [O]

Based on the analysis above, the characteristics of single and double-tube faults can be
used to diagnose other fault types and locate the fault phase and fault tubes.

3. Fault Characteristic Selection

The factors influencing the occurrence of faults are complex, and the fault sample data
have many attributes and large dimensions, which leads to long data-processing time and
makes fault classification difficult. Furthermore, there are a significant number of similar
attributes in the fault data, and these similar attributes have an approximate influence
on the fault classification results, with little difference. As a result, this paper proposes a
method for reducing fault attributes, in which one main attribute replaces the approximate
attribute for subsequent data classification.

3.1. Knowledge-Reduction Method Based on Granular Matrix

Professor Zadeh developed the concept of granular computing (GrC) [28]. Granular
computing is a new computing paradigm that addresses difficult challenges. It uses
organized thinking, structured problem-solving methodologies, and structured information
processing models as research subjects. The primary idea is to use hierarchical degrees
of granularity to abstract and refine complicated problems, resulting in many simpler
problems to solve. Three theoretical models are highlighted: rough set, quotient space,
and computing words. RS theory can analyze and express fuzzy knowledge, as well as
extract hidden rules from large amounts of data for analysis and solution. Additionally, RS
theory and other machine-learning algorithms are very complementary, and their combined
advantages can be very beneficial.

The research object in the framework of RS theory is an information system com-
posed of an object set and an attribute set. The information system is defined as T, i.e.,
T = (U, M ∪ N, V, f ). where U is the collection of objects, also known as the universe, and
M and N are sets of conditional and decision attributes, respectively. V and f represent
range and information function collections, respectively. A set of knowledge includes all
subsets. This “attribute-value” relationship results in a collection of decision tables. When
redundant or unimportant knowledge is removed from the decision information system,
the information system is said to be simplified.

Granulation and granular computing are the most fundamental problems in granular
computing. Granulation is the division of a problem space into several subspaces or
the classification of individuals in the problem space based on useful information and
knowledge. Granules are the name given to these classes. The key to granular computing
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is to understand how to build a reasonable granular world and solve practical problems.
However, representing the concept of rough sets with binary particles is a convenient and
feasible algorithm model.

Let K = (U, R) represent a data-set and p ∈ R represent an equivalence relation on
U, denoted as IND(R), where U/P = {z1, z2, · · · , zn}. The granularity of P is denoted as
GD(P), and its specific calculation formula is:

GD(P) =
| P |

| U × U | =
n

∑
i=1

| zi |2
| U |2 (1)

The particle size of P represents its resolution. For ∀u, v ∈ U, when (u, v) ∈ P, u
and v are indistinguishable under P, If it is indistinguishable, it belongs to a different
p− equivalence class. It can be concluded that GD(P) represents the probability of p−
indiscernibility of two randomly selected objects in U, and the higher the value, the lower
the resolution ability. Define the resolution Dis(P) of knowledge P as:

Dis(P) = 1 − GD(P) (2)

Because of the diversity of each piece of knowledge and the complexity of its contents, this
paper uses binary particles to represent each piece of knowledge. Let U = {u1, u2, · · · , un}
be the universe and R be the equivalence relation. Each equivalence class in U/R can be
expressed by an n -bit binary string. If the ith bit is 0, ui does not belong to this granule; if it is
1, it means ui belongs to this granule.

3.2. Characteristic Selection

Based on the preceding understanding of the essential ideas of granular computing,
this part describes the relevant operations of granules and develops the operational basis of
the binary granular matrix knowledge-reduction methodology based on genetic algorithms.

When
U/ IND(M) = Y = {Y1, Y2, · · · , Yi, · · · , Ym} (3)

U/ IND(N) = X = {X1, X2, · · · , Xi, · · · , Xn} (4)

The binary particle matrix is defined as {Xn×t, Ym×t, Cn×m}, where Cn×m is the relation
matrix of the attribute set M and N. That is

Xn×t =

 X1
. . .
Xn

 =

 b11 . . . b1t
. . . . . . . . .
bn1 . . . bnt

 (5)

Ym×t =

 Y1
. . .
Ym

 =

 a11 . . . a1t
. . . . . . . . .
am1 . . . amt

 (6)

Cn×m = X × Y (7)

Among them, cij = ∑t
k=1 bikakj, (i = 1, 2, · · · , n; j = 1, 2, · · · , m). a and b represent the

binary strings under the corresponding set.
The relation matrix Cn×m, whose value corresponds to the proportion of Yi elements

in Xj, expresses a subordinate relation between all equivalent classes Xj and Yi. In this
manner, the chromosome of the genetic algorithm can be sequentially mapped to each
attribute. Each binary string represents a chromosome, and each binary particle, which has
a value range of [0, 1], represents a gene.

The dependence of the attribute β describes the compatibility of the decision informa-
tion system, where

β =
card(POSM(N))

card(U)
(8)
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In the formula, the number of elements in POSM(N) is represented by card(POSM(N)),
the number of elements in POSM(N) is known as the M positive domain of N, and the
total number of elements in the universe U is represented by card(U). When β = 1, it is a
compatible decision information system; otherwise, it is called an incompatible decision
information system.

The set obtained after reduction is denoted as Q, and the set of irreducible relations
contained in all reduced attribute sets is referred to as core attribute, i.e., the intersection of
the reduced set red(Q), denoted as core(Q). The collection of significant attributes required
for this knowledge is referred to as the core attribute. Verify the compatibility of other
knowledge with kernel attributes based on the obtained core attributes and then compute
the dependency to determine the minimal set of attributes. The specific algorithm is shown
in Algorithm 1.

Algorithm 1 Attribute Reduction Algorithm

1: Input: Information System T = (U, M ∪ N, V, f );
2: Calculate core(Q): ∀p ∈ M, calculate β, all attributes with β < 1 constitute core(Q);
3: RED(Q) = CORE(Q);
4: Determine whether IND(RED(Q)) = IND(Q) is valid. If so, proceed to step 7;

otherwise, proceed to step 5;
5: Calculate all values of x ∈ A − RED(A), recorded as SigRED(Q), take x1 to satisfy:

SigRED(Q)(x1) = max
x∈Q−RED(Q)

{SigRED(Q)(x)};

6: RED(Q) = RED(Q) ∪ {x1}, then proceed to step 4;
7: Output minimum reduction RED(Q);

Finally, the fitness function is used to search. Assume that any object U has the
conditional attribute M, and that its fitness is as follows [29].

F(M) =
n − lM

l
+ β (9)

where lM stands for the number of genes for which conditional attribute M has a value of 1,
and β is the extent to which the decision attribute N is dependent on the attribute subset
corresponding to conditional attribute M. It can be seen that the fitness function takes the
number of subset elements and attribute dependency into account completely. Conditional
attributes can be managed to evolve to the minimum attribute reduction set to achieve this.

For kernel attributes that cannot accurately describe all information, randomly select
two attributes from set U for crossover, generating two new attributes. The new individual
is formed by the intersection of attribute p and attribute q at gene j:{

xpj = xpj(1 − a) + xqja
xqj = xqj(1 − a) + xpja

(10)

where a is a random number of [0,1].
Randomly select attribute X from set U, mutate the gene j of that attribute, and the

resulting new individual is:

x′kj =


xkj ×

[
1 − c ×

(
1 − t

tm

)2
]

, b ≤ 0.5

xkj ×
[

1 + c ×
(

1 − t
tm

)2
]

, b > 0.5
(11)

where b and c are random numbers between [0, 1], it is the current iteration number, and
tm is the maximum number of iterations.

In each iteration, the best conditional attribute is preserved to prevent it from under-
going crossover and mutation again, ensuring the maximum inheritance of the conditional
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attribute. During each iteration, the worst attribute in the current population is replaced
with the best attribute.

Continue the repetition until GA training reaches the maximum number of iterations,
then determine the final kernel attribute set based on the fitness value.

Traditional genetic algorithms frequently use constant probabilities for crossover and
mutation. As a result, the direct genetic operation of the traditional genetic algorithm on the
population significantly slows convergence and fails to identify individual traits. To address
this problem, this study adapts the probability values of crossover and mutation based
on the population’s fitness value. This approach can improve the genetic evolutionary
algorithm’s convergence speed and accuracy, as well as its global search capabilities while
avoiding slipping into the local optimal solution. Figure 5 below depicts the flow chart for
the binary granulation matrix knowledge-reduction approach based on genetic algorithm
optimization.

Figure 5. Flowchart of binary granular matrix knowledge-reduction algorithm based on genetic
algorithm optimization.
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3.3. Fault Detection Model Based on GA-GrC-ELM

The ELM neural network, also known as the feedforward neural network, uses the
error between the output result and the real result to estimate the error of the previous layer
of the output layer and then uses the error of this layer to estimate the error of the previous
layer so that the error estimate of each layer is obtained repeatedly. The parameters of the
ELM hidden layer can be set randomly, or a kernel function can be used as the hidden layer.
ELM can only determine the output weight by computing the inverse of the parameter
matrix H. The training process goes as follows:

n

∑
i=1

Tig(xj) =
n

∑
i=1

Tig(Vi · xj + Wi) = Oj (12)

In this formula, Vi represents the weight from the input layer to the hidden layer, Wi
represents the system bias, Ti represents the weight from the hidden layer to the output
layer, g represents the activation function, n represents the size of the training set, Oj
represents the output value, i.e., the classification result. To infinitely approximate the real
result of the training data, the classification result is consistent with the real result P, i.e.,
∑n

i=1
∥∥Oj − Pj

∥∥ = 0, so the formula can be obtained

n

∑
i=1

Tig(Vi · xj + Wi) = Pj, (j = 1, · · · , n) (13)

Written in matrix form as HT = P
H is the output matrix of the hidden layer. The specific form is as follows:

H(V1, · · · , Vn, W1, · · · , Wn, x1, · · · , xn) =

g(V1 · x1 + W1) · · · g(Vl · x1 + Wl)
· · · · · · · · ·

g(V1 · xn + W1) · · · g(Vl · xn + Wl)


n×l

(14)

T =

TT
1

· · ·
TT

l


l×m

(15)

P =

pT
1

· · ·
pT

l


n×m

(16)

Among them, n represents the size of the training set, l represents the number of
hidden layer nodes, g(x) represents the activation function, and g(x) requires wireless
differentiability.

The goal of training the ELM model is to find the best T with the lowest training errors.
The mathematical expression of the ELM model is as follows:

min∥ε∥2 = s.t.
n

∑
i=1

Tig(Vi · xj + Wi)− Pj = εj, j = 1, · · · , n (17)

Among them, ε j is the error between the category to which the jth sample belongs and

the category determined by the model. By optimizing the parameters of the model,
∥∥ε j

∥∥2

obtains the minimum value.
Figure 6 depicts the proposed GA-GrC-ELM-based T-3L inverter fault-diagnosis struc-

ture diagram. The model primarily consists of a GA-GrC attribute reduction component
and a neural network diagnosis component. First, using granular computing as the front-
end information processor of the neural network, GrC can use its strong attribute reduction
capabilities to eliminate duplication and create the smallest possible attribute set. To obtain
the decision table for attribute reduction, the fault data of the T-3L inverter is then dis-
cretized and quantized using the clustering discretization method, and the repeated data
are removed. The final step is to obtain the minimum attribute set for the final input fault
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sample using the grain matrix knowledge-reduction method, which is based on a genetic
algorithm, adaptively changes the probability values of crossover and mutation according
to the fitness value of the population to enhance its global search capability. Second, a
GA-GrC-ELM neural network model needs to be constructed. The essential thing is to
establish the hidden layer parameters for two neural networks to train the GA-GrC-ELM
neural network using the decision attributes as the output and conditional attributes from
the reduced training fault data as the input. Based on the minimum attribute set, the test
sample verifies the GA-GrC-ELM network.

Figure 6. The proposed model structure.
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4. Experiment and Simulation

To validate the accuracy and real-time performance of the T-type three-level inverter
fault-diagnosis solution based on output power, an offline simulation model was con-
structed using MATLAB/Simulink. The simulation parameters of the system are shown
in Table 3. Figure 7 illustrates the output power of the T-type three-level inverter during
normal operation. Due to the periodic averaging method, the output power undergoes a
transition before entering a new steady-state process.

Table 3. Parameters of simulation model.

Parameters Value Unit

Grid line voltage 380 V
Power frequency 50 Hz
load resistance 0.2 Ω

DC side capacitance 10,000 uF
AC side inductance 0.1 mH
AC side resistance 0.1 Ω

DC side voltage 400 V

Figure 7. MATLAB simulation results under normal operation.

Figure 8 shows the simulation results of the OC fault of Sa1 in phase A. When the
output power enters a new steady-state process, it can be seen that compared with the
normal state, after the OC fault of Sa1 occurs, the output power is 0, and at the same time,
other phases are accompanied by harmonics. This is because normally, the A phase works
in the P state; the forward current flows through the DC bus and is transmitted to the load
through the bridge arm switch, and the bridge arm outputs a positive level. However,
when an open-circuit fault occurs in Sa1, the A phase bridge arm output cannot Connected
to the DC bus, and the forward current will freewheel through the midpoint switch Sa3
and the diode Da2. At this time, the A phase cannot work in the P state, and the P state is
replaced by the O state.

Figure 9 shows the simulation results of the OC fault of phase A Sa1 and Sa2. Since
the forward current can only continue to flow through the lower arm diode Da4 after the
fault, the operating state changes from P to N. It can be seen that when multiple IGBTs
have OC faults at the same time, the power change is obviously different from the fault
characteristics of a single IGBT OC fault. The simulation results are consistent with the
theoretical analysis.
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Figure 8. MATLAB simulation results under the condition of an open-circuit fault in Sa1.

Figure 9. MATLAB simulation results under the condition of an open-circuit fault in Sa1 and Sa2.

4.1. Dataset Selection

Since analyzing the power waveform and obtaining the fault characteristic signal in
the time domain requires much calculation, the MATLAB library function FFT is used
for the spectrum analysis of the three-phase output power waveform, and the amplitude
and phase angle of each harmonic wave are obtained, with 50 Hz as the base frequency.
By integrating and combining simulation results, it is discovered that the DC component,
fundamental harmonic, and second harmonic of the three-phase power signal contain
most of the information about various faults. As a result, the DC component, fundamental
amplitude A1, fundamental phase angle φ1, second harmonic amplitude A2, and second
harmonic phase angle φ2 are chosen as the input characteristic signals of the neural network.

4.1.1. Data Discretization Processing

The experimental part of this paper randomly selects 330 sets of fault-type data
and divides the training set, validation set, and test set according to the ratio of 8:1:1.
The final training set has 264 sets of fault-type data, and the validation set and test set
contain 33 sets of fault-type data, respectively. Since the particle computation attribute
reduction is based on discrete data, 30 sets of training sample data are randomly selected
for discretization using the cluster discretization method in this paper. The decision table is
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obtained by further quantifying the discretized data and removing duplicate samples, as
listed in Table 4.

Table 4. The discretized decision table.

U ADC AA1 Aφ1 AA2 Aφ2 BDC BA1 Bφ1 BA2 Bφ2 CDC CA1 Cφ1 CA2 Cφ2 N

1 3 2 2 1 1 4 2 2 2 2 3 2 2 2 4 1
2 4 1 1 3 3 4 1 3 2 1 1 1 1 3 1 1
3 2 2 2 1 1 3 2 1 4 2 3 2 2 2 1 1
4 2 2 2 1 1 3 2 1 4 2 3 2 2 2 1 1
5 4 1 3 3 3 4 1 1 2 1 1 1 2 3 1 1
6 1 2 4 3 2 3 1 3 2 1 1 3 1 2 1 2
7 1 2 2 3 2 4 2 3 2 1 4 2 2 1 1 2
8 1 2 1 3 2 3 1 1 2 1 1 3 2 2 1 2
9 2 2 2 1 1 3 2 1 4 2 3 2 2 2 1 2
10 4 1 1 2 3 3 3 4 2 1 1 3 1 1 1 2
11 1 3 2 3 4 1 4 4 1 2 2 2 3 4 1 2
12 3 2 2 1 1 1 2 4 1 1 3 2 2 3 4 2
13 2 4 1 4 1 2 3 4 3 2 3 3 3 2 4 2
14 1 2 4 3 2 3 1 3 2 1 1 3 1 2 1 3
15 1 2 1 3 2 3 1 1 2 1 1 3 2 2 1 3
16 1 2 1 3 2 2 2 3 3 4 2 2 1 4 1 3
17 4 3 1 2 4 1 4 4 1 1 2 2 3 4 1 3
18 4 1 1 2 1 1 3 3 4 1 4 3 1 1 4 3
19 2 1 1 4 1 2 3 4 3 2 1 4 3 2 4 3
20 4 1 1 2 3 1 1 4 3 2 1 4 1 3 4 3
21 2 2 2 4 1 1 2 3 1 2 1 2 2 3 4 3
22 1 2 3 3 2 2 3 2 3 1 4 1 4 1 1 4
23 1 2 1 3 2 2 1 2 3 1 4 1 4 1 1 4
24 1 2 4 3 2 2 1 2 3 1 4 3 4 1 1 4
25 1 2 3 3 2 2 2 4 3 3 2 4 4 4 4 4
26 2 3 1 1 3 2 2 1 3 3 1 4 3 2 2 4
27 2 3 1 1 3 2 2 1 3 3 1 4 3 2 2 4
28 2 4 1 4 3 2 2 1 3 4 2 4 1 4 2 4
29 1 3 1 2 3 2 2 4 3 3 2 4 1 1 2 4
30 2 4 3 4 4 2 3 1 3 2 2 2 1 4 3 4

4.1.2. Data Reduction

In Table 4, U is the universe, M =
{

ADC, AA1 , Aφ1 , · · · , BA2 , Bφ2 , · · ·CA2 , Cφ2

}
is the

conditional attributes, and N = {1, 2, 3, 4} is the decision attributes, respectively, represents
the number of faulty devices.

Y is the identity matrix, which can be obtained from Equations (5)–(8):

X4×30 =


X1
X2
X3
X4

 =


111110000000000000000000000000
000001111111100000000000000000
000000000000011111111000000000
000000000000000000000111111111

 (18)

C = Y × X′ =


111110000000000000000000000000
000001111111100000000000000000
000000000000011111111000000000
000000000000000000000111111111

 (19)

card(POSM(N)) = ∑
NE(i)=1

cij = 30 (20)

However, card(U) = 30, i.e., β = 1, which means that decision Table 4 is a compatible
decision table.

First, by removing a single attribute, such as attribute ADC, we can obtain:
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C = YM−ADC × X′ =


11210000000000000000000000
00000111111100000000000000
00001010000011111000000000
00000000000000000011112111

 (21)

card
(
POSM−ADC (N)

)
= ∑

NE(i)=1
cij = 26 (22)

β IND
(

AA1 , . . . , Aφ2, BDC, BA1 , . . . , Bφ2, CDC, CA1 , . . . , Cφ2
)
=

card
(
POSM−ADC (N)

)
card(U)

=
26
30

< 1 (23)

It indicates that the attribute ADC depends on N and is irreducible.
Similarly, other attributes were removed one at a time to test whether the attribute and

its related attribute set could represent complete information based on attribute dependency.
This article is grounded in the concept of binary granular representation of rough sets,

utilizing mutual information attribute reduction algorithms based on Neighbor rough sets
attribute reduction algorithm, entropy-based rough set attribute reduction algorithm, and
a proposed genetic algorithm (GA)-based rough set attribute reduction algorithm. The
comparative experiment of attribute reduction results is presented in Table 5. Addition-
ally, Figure 10 illustrates the testing capabilities of the three algorithms in assessing the
attribute reduction performance of rough sets under various discrimination conditions. It
is evident that the GA algorithm significantly reduces the number of optimal attribute sets
on this dataset compared to the other two algorithms, demonstrating the stronger attribute
reduction ability of the GA-GrC algorithm.

Table 5. Performance evaluation of different rough set reduction techniques.

Algorithm

Number of
Condition

Attributes after
Reduction

Condition
Attribute after

Reduction

Reduction Ratio
(%)

Average Running
Time (s) Characteristic

Neighbor-GrC 1 8 ADC, AA1 , Aφ1 , BDC,
BA1 , Bφ1 , BA2 , CDC

46.67 2.9873

Avoid the problem
of not being able to

determine the
domain radius of

the original
neighborhood

rough set.

Entropy-GrC 2 8 ADC, AA1 , Aφ1 , BDC,
Bφ1 , CDC, Cφ1 , Cφ2

46.67 5.3436

High time
complexity when

there are many
condition
attributes.

GA-GrC 3 6 ADC, AA1 , Aφ1 , Bφ1

Cφ1 , Cφ2

60.00 3.7221
Complexity of
fitness function

calculation.
1 Mutual Information Attribute Reduction Based on Neighbor Domain Rough Set. 2 Attribute reduction of rough
set based on Entropy. 3 Attribute Reduction of Rough Set Based on Genetic Algorithm.
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(a)

(b)

(c)

Figure 10. The capability to validate attribute reduction for three algorithms. (a) Neighbor−GrC,
(b) Entropy−GrC, (c) GA−GrC.
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4.2. Result Analysis

Figure 11 shows the training error curves of the binary grain matrix attribute ap-
proximation performance model for different optimization conditions on the training set,
validation set, and test set, where the system automatically selects the stopping moment
for the number of iterations in the adaptive condition. Where Train is the mean square
error on the training set, Validation is the mean square error on the validation set, and
Test is the mean square error on the test set. With the increase of epoch, the mean square
error gradually stabilizes and oscillates in a small range, Although the ELM neural net-
work based on Neighbor-GrC optimization converges quickly, the accuracy is far from
the actual results. The ELM neural network based on Entropy-GrC optimization reaches
the minimum convergence accuracy in the 10th iteration process. The ELM based on GA-
GrC optimization proposed in this article has a minimum convergence after 5 iterations.
Obviously, the GA-GrC-ELM neural network has a faster convergence speed and smaller
convergence error because it introduces the crossover and mutation operators of GA during
training, which expands the search space of the algorithm. The complementary advantages
of genetic algorithm and binary granulation matrix knowledge reduction are improving the
search ability and convergence speed, avoiding falling into local optimum, and improving
the accuracy of the optimal solution.

(a) (b) (c)

Figure 11. Sub-classifier training error curve. (a) Neighbor−GrC−ELM, (b) Entropy−GrC−ELM,
(c) GA−GrC−ELM.

To verify the performance of the genetic algorithm-based binary grain matrix approxi-
mation proposed in this paper, the data sets before and after the reduction were used as
the input data of the ELM network, respectively, and the network was trained with the
maximum training times set to 1000, the learning rate set to 0.01, and the minimum error of
the training target set to 0.01%. In Figure 12, Figure 12a–c are the fault-diagnosis results
of the original dataset based on different neural networks. In comparison, since the input
weights of ELM are random and fixed, there is no need for an iterative solution. It is neces-
sary to solve the weights from the hidden layer to the output layer. Therefore, compared
with the BP algorithm and SVM algorithm, the ELM neural network has a smaller training
step within the specified range and a higher accuracy. After rough set reduction based on
granular computing, as shown in Figure 12d–f in the figure, the accuracy of each neural
network has been significantly improved. It can be seen that the front-end processing of
granular computing can effectively achieve data reduction, reducing redundant informa-
tion and significantly improving the training accuracy of the neural network. Demonstrates
the effectiveness of our proposed GrC algorithm. Figure 12g–i show the classification
performance of binary granulation matrices based on different optimization conditions.
The results prove that the binary granulation matrix reduction method based on a genetic
algorithm expands the search space and avoids falling into local optimality. This paper
proposes that the binary granulation matrix reduction performance based on a genetic
algorithm is the best.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. The classification results of data-set outcomes for each optimization method.
(a) ELM, (b) SVM, (c) BP, (d) GrC−ELM, (e) GrC−SVM, (f) GrC−BP, (g) Neighbor−GrC−ELM,
(h) Entropy−GrC−ELM, (i) GA−GrC−ELM.

Table 6 compares the performance of different algorithms in terms of accuracy, mean
square error, and running time. In terms of accuracy, the GA-GrC-ELM algorithm proposed
in this paper achieves 98%, which is significantly better than BP, SVM, and ELM algorithms.
Although the accuracy of other algorithms also improved after the addition of GrC, it was
still inferior to the algorithm in this paper. In addition, the algorithm in this paper also
performs well in terms of mean square error and running time. Considered together, the
GA-GrC-ELM-based algorithm can diagnose the T-type three-level inverter faults faster
and more effectively.

In summary, the T-type three-level inverter fault-diagnosis method based on GA-
GrC-ELM proposed in this paper fully utilizes the ability of granular computing theory
to remove redundant information and combines the genetic algorithm to automatically
calculate the fault diagnosis based on the fitness value of the population. It adapts to
changing the probability values of crossover and mutation, effectively enhances its global
search capability, and effectively solves the problem of diagnostic accuracy caused by the
complex training samples and high dimensions of neural networks.
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Table 6. Training results of different algorithm.

Algorithm Train Accuracy Test Accuracy MSE Time

BP 74.1551 54 0.42 0.377
SVM 80.6429 66 0.78 73.611
ELM 80.6897 66 0.58 0.473

GrC-BP 86.9565 72 0.3782 0.403
GrC-SVM 85.7143 70 0.48 0.41
GrC-ELM 85 80 0.36 0.345

Neighbor-GrC-ELM 99.1667 84 0.86 0.447
Entropy-GrC-ELM 87.5 90 0.18 0.993

GA-GrC-ELM 92.1769 98 0.13 0.17

5. Conclusions

In this paper, a GA-GrC-ELM-based fault-diagnosis method for T-3L inverters is
presented. By measuring the power corresponding to the positive and negative half-waves
of each phase current, the inverter OC fault is correctly identified and classified. The
classification outcomes are then discretized and normalized to create a decision table for
an input neural network model. The fault-diagnosis decision-making system is reduced
using the granular matrix knowledge-reduction algorithm, which takes into account the
various influences of each granularity. In addition, the reduction performance is optimized
through adaptive functions to delete redundant attributes. The results of the experiments
demonstrate that the GA-GrC-ELM algorithm resolves issues with the conventional single
neural network model, such as its slow running speed, extensive training dataset, and
challenging convergence. It offers more advantages in terms of fault-diagnosis precision
and can better simulate judgment. Since the field environment is complex and changeable,
there are many unexpected causes for the occurrence of a certain fault, and at the same
time, there is a coupling relationship between the faults. Future work can consider the
quantitative and directional comprehensive analysis of the fault occurrence and evolution
mechanism in inverters from the perspectives of mathematical derivation as well as actual
operating conditions.
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