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Abstract: A botnet is a collection of Internet-connected computers that have been suborned and are
controlled externally for malicious purposes. Concomitant with the growth of the Internet of Things
(IoT), botnets have been expanding to use IoT devices as their attack vectors. IoT devices utilise
specific protocols and network topologies distinct from conventional computers that may render
detection techniques ineffective on compromised IoT devices. This paper describes experiments
involving the acquisition of several traditional botnet detection techniques, BotMiner, BotProbe, and
BotHunter, to evaluate their capabilities when applied to IoT-based botnets. Multiple simulation
environments, using internally developed network traffic generation software, were created to test
these techniques on traditional and IoT-based networks, with multiple scenarios differentiated by
the total number of hosts, the total number of infected hosts, the botnet command and control (CnC)
type, and the presence of aberrant activity. Externally acquired datasets were also used to further
test and validate the capabilities of each botnet detection technique. The results indicated, contrary
to expectations, that BotMiner and BotProbe were able to detect IoT-based botnets—though they
exhibited certain limitations specific to their operation. The results show that traditional botnet
detection techniques are capable of detecting IoT-based botnets and that the different techniques may
offer capabilities that complement one another.

Keywords: botnet; Internet of Things; Mirai; detection

1. Introduction

A botnet is a set of networked devices that have been compromised by a malicious
actor (a botmaster) to conduct various activities, such as sending spam or initiating Denial-
of-Service attacks. Such compromises often occur due to vulnerabilities in the software
running on the devices, leaving said devices amenable to outside control. A device that is
assumed into a botnet is known as a bot or a zombie. The actions of the bots are coordinated
by a command-and-control (CnC) structure. An individual bot does not necessarily pose a
significant threat, but the ability of a botmaster to control a multitude of bots, with their
attendant processing power, is a problem of a very different scale. Botnets are commonly
used to initiate Distributed Denial-of-Service (DDoS) attacks, spamming, phishing, malware
distribution, click fraud, and crypto-jacking [1–5].

Traditional (pre-IoT) botnets would usually propagate by targeting workstations,
personal computers, and servers. The first widely known botnets would utilise the Internet
Relay Chat (IRC) protocol to send commands to their bots. Later botnets would include
those that utilise Peer-to-Peer (P2P) protocols and the Hypertext Transfer Protocol (HTTP),
with the former facilitating the construction and use of decentralised botnets and the latter
using a pull-based command-and-control approach [1,5,6].

Recently, the advent of the Internet of Things has meant that botnet creators have
been particularly agile in leveraging the IoT to spread bots and perform attacks. In stark
contrast to their traditional botnet counterparts, this rich environment and confluence
of protocols presents new challenges in terms of both the variety of threats posed and

Sensors 2024, 24, 1027. https://doi.org/10.3390/s24031027 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24031027
https://doi.org/10.3390/s24031027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7192-7098
https://orcid.org/0000-0003-1365-0929
https://doi.org/10.3390/s24031027
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24031027?type=check_update&version=1


Sensors 2024, 24, 1027 2 of 25

techniques for detection [7]. The IoT has been instrumental in the rise of the smart city
concept. The diversity of networks, protocols, and devices found in a smart city offers
many ideal propagation targets for botnets [8].

Many existing botnet detection techniques are designed for traditional botnets, which
raises questions about their effectiveness against more recent IoT-based botnets (given the
differences between the two environments). Several botnet detection techniques have been
developed based on honeypots or static-signature-based detection techniques. Such techniques
may be effective against IoT botnets but would not detect unknown-unknown (zero-day)
threats. Some techniques that rely on specific botnet properties (e.g., netflow patterns across
bots in compromised networks) have been effective for specific botnets [5,9–12].

1.1. Motivations

This paper, a continuation of the work conducted in [5], describes the reconstruction or
acquisition of a number of botnet detection techniques, BotMiner, BotProbe, and BotHunter,
followed by experimentation on those techniques to determine their effectiveness on IoT-
based botnets.

The experiments conducted involved a number of simulated networks, which included
both traditional and IoT-based infection targets. Among the scenarios for experimentation
were a number of simulated botnets with different CnC protocols, different rates of infection
among the networks, and a variable number of total hosts among the simulated target
networks. Two externally acquired datasets, one with traditional bot traffic and one with IoT
bot traffic, were also used to further validate the experiments. The goal of the experiments
was to test the hypotheses surrounding the strengths and weaknesses of the traditional
botnet detection techniques.

This paper seeks to address the potential weaknesses of older botnet detection tech-
niques on IoT-based botnets. The Mirai botnet is a well-known IoT-based botnet that
utilised a non-standard bitstream-based CnC protocol and had a propagation approach
that did not target entire networks. Among the experimental simulations, non-standard
protocols and a varying number of infected hosts were included to determine each of the
selected botnet detection technique’s capabilities. Many IoT-based botnets still utilise the
IRC protocol, which was also included among the experimental scenarios. The techniques
were also tested against traditional botnet simulations to ensure their validity for their
intended targets.

1.2. Contributions

The contributions of this paper are the evaluation of traditional botnet detection
techniques against the following:

• Simulated IoT traffic;
• Established IoT datasets.

The techniques were evaluated with the datasets described above under a light-touch
scenario, as used by Mirai, viz., taking over only a few devices per network. This approach
was used to increase realism and to increase the difficulty of detection, as the techniques
are known to perform well when entire networks are infected. A further refinement, which
added to the realism, was the introduction of aberrant devices, i.e., legitimate devices that
had gone awry and generated bot-like traffic.

This work differs from previous contributions in that it is an assessment of previ-
ously proposed traditional botnet detection techniques, re-applying them to more con-
temporary threats. Various IoT-based botnet detection techniques have been proposed,
as discussed in Section 2.3, which are confronted by a number of common challenges,
such as deployment and over-specialisation. This work instead focusses on previously
established techniques and attempts to determine whether those techniques are still
applicable to modern IoT-based botnets.

This work is a continuation of that conducted in [5]. The key differences between this
paper and [5] is the inclusion of BotProbe and BotHunter (as [5] only discusses experiments



Sensors 2024, 24, 1027 3 of 25

with BotMiner), the presentation of results (with a focus on true positive rates (TPRs) and
true negative rates (TNRs)), and experimentation using externally acquired datasets to
further validate the results derived from internal simulations.

1.3. Organisation

The remainder of this paper is as follows. Section 2 reviews the relevant background,
including other traditional botnet detection approaches not selected for experimentation
and contemporary approaches to IoT-based botnet detection. Section 3 describes the
traditional bot detection techniques that were experimented on and the hypotheses by
which they are assessed. The experimental design, simulation approach, and externally
acquired datasets are outlined in Section 4. The experimental results are shown in Section 5.
Section 6 discusses the experimental results, outlining how each technique addresses
the hypotheses and how they performed on the simulated botnets. Section 7 concludes
the work.

2. Related Work
2.1. Botnet Structures and Operations

Traditional botnets can be categorised by a number of criteria, particularly their CnC
structure and the approach by which bots receive their commands from their CnC structure.
CnC structures are commonly either centralised or decentralised, with the former being
more straightforward to operate and maintain. Bots will either pull commands from the
botnet CnC structure (pull-based) or have their commands sent to them from said structure
(push-based). Pull-based botnets commonly use the HTTP protocol, whereas push-based
botnets commonly (though not exclusively) use the IRC protocol. Among the simulated
experimental scenarios, centralised push-based and centralised pull-based botnets are
included. A decentralised P2P botnet is included in the externally sourced dataset [5,13].

Botnets have been seen to propagate in a number of different ways. Email attachments,
drive-by downloads, and social engineering techniques are some methods by which botnets
are allowed to propagate. These can come in the form of worms that exploit software or
firmware vulnerabilities to propagate over poorly supported devices or trojans that disguise
themselves as legitimate programs but contain backdoors through which a malicious
actor can take control [14,15]. More modern and highly automated approaches to botnet
propagation include actively seeking out poorly secured devices over telnet or ssh and
running dictionary attacks to take over devices with default credentials [7,16,17].

HTTP-based botnets utilise a pull-based and centralised CnC structure. HTTP bots
will routinely query the CnC structure to receive commands, as opposed to being issued
the commands directly. HTTP-based botnets are notable in that they are typically more
difficult to detect than their IRC and P2P counterparts, as they operate using a common
protocol. Notable HTTP-based botnets include Festi, Grum, SpyEye, and Zeus. SpyEye and
Zeus in particular differ from other bots in that they would primarily be used to propagate
themselves and steal user information from their hosts, whereas most botnets are used to
attack other targets [5,13,18].

IRC-based botnets utilise a push-based and centralised CnC structure. IRC bots will
receive their commands from the CnC structure via an IRC channel. IRC-based botnets
make up some of the first botnets to be widely known. Notable IRC-based botnets include
GDbot, SDbot, Agobot, and Spybot [13,18]. Many IoT-based botnets also use the IRC
protocol (Mirai being a well-known exception) [5,7].

P2P botnets are typically more complex than their centralised counterparts and require
expert knowledge to operate. P2P botnets became widely known some time after their
IRC counterparts and before HTTP-based botnets. Prominent P2P botnets included Sinit,
Phatbot, SpamThru, Nugache, and Peacomm/Storm. The lattermost P2P botnet is the one
examined from the externally acquired dataset for this experiment [1,5,13].

IoT-based botnets have risen as a more contemporary threat, with their primary
distinction being the devices they target for propagation. IoT-based botnets are able to
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benefit from a number of advantages not typically available to their traditional counterparts.
Many IoT devices are poorly secured not having default credentials changed or not having
their firmware updated [7,19]. These devices are also numerous: the number of IoT devices
is predicted to reach over 50 billion devices by 2050 [20]. Due to the large number of
available devices, botnets can propagate a lot faster than before and can even be selective
with the networks and devices they take over. Many IoT devices are designed to remain
operational at all times and are not shut down when not in active use, allowing them to be
infected and utilised by botnets on demand. With such a large number of devices available
to take over and utilise at virtually any time, IoT-based botnets can grow far larger and act
far more aggressively than their traditional counterparts [13].

Mirai is a notable IoT-based botnet that was able to infect over 140,000 devices and
conduct attacks at speeds over 1 Tbps. Partly based on another botnet, Bashlite, Mirai
would propagate via telnet using a dictionary attack with commonly used default creden-
tials. Mirai would use a federated CnC structure, where devices would report potential
infection targets once a successful telnet authentication had been made. Mirai would
target hosts at random, and as such, would not directly attempt to propagate over en-
tire networks [21]. Other IoT-based botnets include Linux/IRCTelnet, Aidra, The Moon,
and Linux/Hydra [22,23].

In addition to the advantages inherent to IoT devices, other factors may also compro-
mise conventional botnet detection techniques. Centralised CnC protocols, for example,
are not necessarily constrained to only HTTP or IRC [13]. Any detection technique that
focusses on a limited set of protocols will be incapable of detecting a botnet operating
over a different protocol. Mirai, for example, used a binary stream to command the bots it
suborned [24]. Mirai would usually only control a single device within a targeted network,
a deviation from traditional botnets, which would typically aim to take control of as many
devices as possible. Mirai’s scanners sought out vulnerable devices randomly. Found
devices would be checked against a blacklist, and then a telnet login would be attempted
using a list of common username and password combinations. Found devices that can be
accessed would then be referred to the malware distribution server. Mirai was enabled to
propagate the way it did because of the availability of vulnerable devices to infect. The fact
that many IoT devices are also always on also meant that Mirai, and other IoT-based botnets,
would be able to retain control of infected devices continuously [7,17,21].

The emergence of IoT-based botnets, in terms of both their greater threat power
and their potential ability to evade traditional detection techniques, is the focus of the
project being undertaken. By assessing the current ability of traditional botnet detection
techniques in the literature, their abilities and the need for further action can be determined.
Certain aspects of current techniques can also potentially be applied to IoT-based botnet
detection [25].

2.2. Traditional Botnet Detection Techniques

BotMiner, BotProbe, and BotHunter are each being investigated to understand their
capabilities in IoT-based botnet detection. Other techniques have also been proposed for
traditional botnet detection but can be ruled out for IoT-based botnet detection on the basis
of their fundamental features. Internal host-based detection techniques are prime examples
of traditional botnet detection techniques that cannot be deployed on many IoT devices, as
they require significant host resources to operate properly [26].

RB-Seeker is a botnet detection technique that works by examining the temporal and
spatial features of Domain Name Service (DNS) redirection activities to identify domains
and distinguish botnet queries from legitimate queries using established feature statistics.
RB-Seeker is posited to act fast and can be applied to any kind of botnet, regardless of the
protocol and CnC structure. However, it is constrained to a limited scope of attack types,
redirection, and proxy scams and has limited capabilities on host networks that utilise
dynamic DNS [2,27].
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BotSwat is a host-based botnet detection technique that examines a given host’s
processes that use data from external sources that have been labelled as unreliable. BotSwat
operates by curating the internal processes of a host and determining bot activities based on
remote control characteristics. Unfortunately, BotSwat is prone to producing false positives
in cases where said characteristics are present in legitimate programs. BotSwat would
not be suitable for low-powered devices or any devices expected to interact with remote
external sources [9,26].

A method of P2P botnet detection using various machine-learning techniques was
experimented with by [28]. Experimentation with various machine-learning techniques in
botnet detection measured the training time, classification time, detection rate, and error
rates. Although Support Vector Machines and Artificial Neural Networks had the highest
detection rates, both methods took the longest to train. According to the authors, their
training times appeared to make the techniques unsuitable for adaptable online botnet
detection [28].

2.3. IoT-Based Botnet Detection Techniques

Some initiatives have been developed towards IoT-based botnet detection; however,
many appear to either be honeypot approaches, which would not help during an active
zero-day threat, or only fit specific scenarios. Refs. [29,30] developed a specialised honeypot
and sandboxing technique, respectively, useful for observing and understanding known
threats but limited for detecting new threats.

In [31], an approach for detecting anomalous IoT-device behaviour through the use
of deep autoencoders was developed. The approach involves training an autoencoder
for each IoT device in order to learn its normal behaviour. Then, if the autoencoder fails
to reconstruct a snapshot of subsequent activity, that failure indicates anomalous activity.
While this technique would potentially operate well on simple single-function devices, it
would fail to operate on more complex devices, such as home automation hubs, smart
devices, or network infrastructure devices.

A graph-based approach for IoT bot detection was developed in [32]. The approach
involves the analysis of Printable String Information graphs to determine stages of bot in-
fection, including scanning, accessing, infecting, communication, and awaiting commands.
However, the technique is limited specifically to devices, and the botcode, using Executable
and Linkable Format binaries. Furthermore, the technique relies on training with externally
sourced datasets to determine what can be classified as benign and malicious. It appears to
operate on a similar principle to BotHunter, though with a more limited scope.

In [33], a deep modelling technique for IoT bot detection based on power consumption
was developed. The technique was tested on common IoT devices, such as the kind infected
by the Mirai botnet, including cameras and routers. Similar to the technique developed
in [31], standard operating behaviour for the devices is used to train the technique, which
allows anomalous activity to be detected. However, much like the technique developed
in [31], this technique would only be applicable to devices with single or few functions,
with more complex IoT devices and the supporting infrastructure remaining less protected.
Other factors that could potentially affect the power consumption of IoT devices, such as
unrelated issues with the power supply, may also produce false positives.

Various IoT-based botnet detection techniques have involved utilising multiple learn-
ing models, including Random Forest variants, Logistic Regression, Decision Tree vari-
ants, Gaussian Naïve Bayes, eXtreme Gradient Boost, and K-Nearest Neighbour. These
techniques include BotStop [34] and ELBA-IoT [35], among others [36,37]. Common con-
cerns among some of these approaches are deployment challenges and the impact on
low-powered devices.

It appears that outside of honeypots, Intrusion Detection Systems (IDSs), and sand-
boxes, techniques developed specifically for IoT devices are limited in scope in terms of
which IoT devices can be monitored effectively. In the case of simple, single-function
devices, techniques such as that in [31,33] may prove adequate; however, many IoT devices
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perform multiple and often complex tasks or are subject to complicated scenarios. One
of the datasets sourced for the experiment undertaken contains device activities for an
Amazon Echo, for example, which would likely produce an alternate snapshot of activity
each time it is assessed, as well as exhibiting varying power usage.

2.4. IoT-Fog Networks

Cloud computing is a technological paradigm that operates on providing on-demand
network access to shared computing resources that can be provisioned and deployed with
minimal effort. Whereas the IoT involves the use of many distributed and interconnected
devices that continually adjust their functionality based on the deployment environment,
cloud computing involves remotely adjusting resources in order to meet functionality needs.
The goals of cloud computing and the IoT conflict, as one is about adjusting provisioned
resources and the other is about utilising resources to adjust functionality [38,39].

Edge computing encompasses technologies that perform computations at the edge
of a network, extending cloud computation capabilities to be closer to the network’s IoT
devices. Fog computing is an advanced implementation of edge computing that brings the
delegation of tasks closer to the IoT devices in a more distributed approach, with the aim
of reducing issues pertaining to latency and bandwidth [38–40].

Fog computing allows for IoT and cloud interoperability but presents security chal-
lenges, particularly with regard to maliciously controlled IoT devices attacking services at
the fog layer. Software-defined networking (SDN) provides flexible network programma-
bility and management. The coordination of fog and IoT devices through SDN mitigate
some of the security concerns introduced with IoT-Fog networks, including the deployment
of detection techniques, such as those discussed in this work and related work [41–43].

3. Proposed Approach

The approach in this work involved acquiring or reconstructing the selected botnet
detection techniques, BotMiner, BotProbe, and BotHunter, and applying them to simulated
botnets. A number of hypotheses are outlined in Section 3.1 and are used to determine the
effectiveness of the chosen botnet detection techniques. Each botnet detection technique
was analysed in terms of its approach and reported capabilities. Section 3.2 discusses each of
the techniques, how they work, and how they were acquired or reconstructed. Differences
between reconstructions and their respective original works and any limitations with
regard to the experiments are also discussed.

3.1. Hypotheses

For each of the traditional botnet detection techniques experimented on, the following
hypotheses were constructed:

• H1 The botnet detection technique is not capable of detecting IoT-based botnets.
• H2 The botnet detection technique is capable of detecting traditional botnets.
• H3 The botnet detection technique is capable of identifying all devices infected with

traditional botcode.
• H4 The botnet detection technique is capable of identifying all devices not infected

with traditional botcode.
• H5 The botnet detection technique is not capable of identifying all devices infected

with IoT-based botcode.
• H6 The botnet detection technique is not capable of identifying all devices infected

with IoT-based botcode.

H1 and H2 pertain to each botnet detection technique’s ability to detect botnets in a
given network. For a technique to be considered as having detected a botnet, it only has to
correctly identify at least one bot in an infected network—regardless of any false reports or
whether a number of bots have still gone undetected. If a technique is able to detect a bot,
it has effectively detected a botnet. The hypotheses assert that each traditional technique
can detect traditional botnets but cannot detect IoT-based botnets.
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H3 and H5 pertain to detection techniques detecting all bots in an infected network.
Unlike with H1 and H2, these hypotheses test the detection techniques’ ability (or lack
thereof) to correctly identify all instances of infection in a network at a given time. H3
asserts that traditional techniques can detect all traditional bots, whereas H5 asserts that
those techniques cannot do the same for IoT-based bots.

H4 and H6 pertain to the detection technique’s ability to correctly identify non-infected
hosts and avoid false positives. If a given technique can avoid mislabelling one or more
non-infected hosts as bots, then it can be considered to have identified all non-infected
devices. H4 posits that the traditional techniques can avoid false positives in traditional
networks, whereas H6 asserts that the same cannot be said for IoT-based networks.

Each technique will be assessed independently with each of these hypotheses in mind.
H1 and H2 constitute the main focus as to the capabilities of traditional botnet detection
techniques and whether or not they can detect IoT-based botnets. H3 through H6 pertain to
the finer points of each technique’s capabilities with regard to TPR and TNR—allowing
each technique to be compared to the other two and determining each of their strengths
and weaknesses.

3.2. Botnet Detection Techniques
3.2.1. BotMiner

BotMiner is a botnet detection technique that collects netflow data and IDS alerts,
clusters both of these based on a number of features, and performs a cross-clustering
analysis to determine whether or not a given host is a bot. BotMiner will cluster alerts
based on their categorisation; this could be based on pre-determined categories or on
alert signature categories, for example. For netflow clustering, BotMiner uses a number of
features, such as those based on time and throughput, and X-Means clustering to determine
common patterns of network activity. BotMiner then uses an established threshold and a
cross-clustering calculation to render a determination on a given host. BotMiner is protocol-
independent and non-invasive: it can be used to detect any kind of botnet and does not
directly interfere with network operations. However, some limitations may include its
reliance on IDS alert signatures and its design being based on the assumption that botnets
will propagate entire networks over individual hosts [11].

As BotMiner (as well as BotProbe) has no publicly available implementation, a re-
construction of it had to be made for experimentation. The analysis and reconstruction of
BotMiner were performed and discussed by [25], with experimentation conducted on a
number of scenarios (the same presented in this paper) by [5]. BotMiner’s design is based
on the premise that botnets will infect many devices on the same network and that those
infected devices will exhibit common patterns of behaviour that can be identified as bot
activities. BotMiner operates by clustering IDS signature alerts and netflows and then
performing a cross-clustering calculation on those clusters. BotMiner is made up of five
main components: the A-Plane Monitor, C-Plane Monitor, A-Plane Clustering, C-Plane
Clustering, and Cross-Plane Correlation. The A-Plane components pertain to alert collec-
tion and clustering, whereas the C-Plane components pertain to netflow collection and
clustering [5,11].

The A-plane components of BotMiner uses alert categories to cluster Snort IDS sig-
nature alerts. The original technique provides scan activity, spam activity, and binary
downloads as examples of alert categories that the A-Plane clustering component clusters
by. The technique also uses a statistical scan anomaly detection engine to find and cate-
gorise scan activities. However, the reconstruction differs from the original for a number
of reasons. The categories provided by the original work are somewhat arbitrary and do
not necessarily cover the full scope of botnet behaviours. Scan and spam activities do
potentially cover a number of botnet propagation and attack strategies but miss a number
of common and contemporary behaviours, such as DDoS attacks (which can only loosely
be described as spam activity, if at all) and crypto-jacking. CnC communications are also
not covered in the original technique’s category examples. The reconstruction therefore
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opted to categorise alerts based on the category assigned by the Snort IDS, which proved
to be effective [5,11,25].

The C-plane components of BotMiner collect and cluster UDP and TCP netflows,
with clustering performed based on a number of features. The original technique utilised a
tool called fcapture, whereas a custom program was built for the reconstruction.

Flows are collected from traffic based on their source IP and port, destination IP and
port, protocol, and time. Additional features collected include the duration of the flow
and the volume of bytes and packets going in both directions for the flow. Based on the
source IP, source port, destination IP, destination port, and protocol, these flows are then
grouped into C-Flows. These C-Flows are then split over thirteen time intervals, and
sample distribution features for flows per hour (fph), packets per flow (ppf), average bytes
per packets (bpp), and average bytes per second (bps) are recorded, producing a 52-feature
dataset (each sample distribution feature for each interval). The means and variances of the
fph, ppf, bpp, and bps are then also determined over the thirteen time intervals, resulting
in an eight-feature dataset. X-Means clustering is conducted to determine the best K value
using the 8-feature dataset, with the best K value then being used on the 52-feature dataset
to produce the final netflow clusters for each given C-Flow [5,11,25].

Once alert and netflow clusters have been established, each identifiable host to which
the clusters can be attributed are put through a cross-clustering process. This process
utilises the calculation present in Equation (1). Equation (1) utilises the sequence of hosts
within both alert and netflow clusters, with the former having the capability to be weighted.
For all unique alert cluster combinations, excluding those where the alert type is the same
(described in terms of i and j in sequence in Equation (1)), the weights of the activity types
(which, for this implementation, is 1) are multiplied between those of both alert types. That
is then multiplied by the cardinality of the intersection of hosts within the two alert clusters
i and j over the cardinality of the union of hosts within the two clusters i and j. The sum of
the first sequence is then added to the sequence of the alert clusters and the netflow clusters
(described in terms of sequences i and k), where the weight of activity type i (always 1 for
this implementation) is multiplied by the cardinality of the intersection of hosts in alert
cluster i and netflow cluster k over the cardinality of the union of hosts in alert cluster i
and netflow cluster k. The sum of the two sequences produces the final bot-score.

Weights are not utilised in the reconstruction or the original work but are available
should a method for implementing them ever become available. The calculation renders
a bot-score for each host, which is compared to an established threshold (in this case, 1,
as was set in the original work). If the bot-score is equal to or greater than the threshold,
the host is designated as a bot.

s(h) = ∑
i,j

j>i
t(Ai) ̸=t(Aj)

w(Ai)w(Aj)
|Ai ∩ Aj|
|Ai ∪ Aj|

+ ∑
i,k

w(Ai)
|Ai ∩ Ck|
|Ai ∪ Ck|

(1)

where A is the sequence of hosts within alert clusters; C is the sequence of hosts within flow
clusters; and w is the activity-type weight.

3.2.2. BotProbe

BotProbe is a botnet detection technique that uses a number of approaches to detect
bots by eliciting deterministic responses. Specifically, BotProbe has a session-replay-probing
component that operates by spoofing the address of a suspected CnC server and replays
recorded commands to a suspected bot. If the suspected host responds in a deterministic
manner consistent with the previously recorded response traffic of the suspected bot
command, that host is determined to be a bot. BotProbe does have some limitations in
terms of applicability; its original implementation operates on IRC and instant message
bots specifically, and by design, it can only detect push-based bots [12].
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The analysis and reconstruction of BotProbe were discussed by [44], with further
improvements made for the experiments presented in this work. BotProbe operates on the
premise that botnet command responses are deterministic, that when a bot command is
received, the following activity from that bot will be consistent with that command every
time. The original BotProbe work consisted of a feasibility study consisting of several
techniques, including explicit challenge response testing, session replay probing, session
byte probing, client replay probing, man-in-the-middle probing, and multiclient probing.
The work conducted by [44] and in this experiment focusses specifically on session replay
probing [9,12].

Session replay probing involves spoofing the address of a suspected CnC server and
replaying captured application commands to a suspected bot. If the suspected bot responds
in a consistent and deterministic manner, it is reported to be a bot responding to CnC
orders [12].

The reconstruction of BotProbe was made in two components: one component filters
for potential bot commands, and the other conducts the probing using commands found
with the filter. This approach allows the probing component to potentially be re-used
with other filters. The filter component can also be used on pre-recorded traffic, allowing
for greater applicability—though the probing component can still only operate in live
environments. The filter component for the experiments presented in this work utilises an
IRC-based filter. Suspected bot commands, and their responses, are relayed to the probing
component, which spoofs the command a configurable number of times to the suspected
bot. The following traffic of the suspected bot is then recorded for up to a specified number
of frames within a specified timeframe. The original command response and the probe
responses are compared, where the constitution and ordering of the response frames are
considered: if the responses match, the suspected host is reported as a bot.

Some limitations in BotProbe’s design excluded it from a number of experiments
presented in this work. The reconstructed filter was designed specifically for the IRC
protocol, meaning that only IRC-based botnet simulations could be used. Experimentation
with BotProbe was still considered, as a number of IoT-based botnets do use the IRC
protocol for their CnC, including Linux/IRCTelnet, Linux/Hydra, and Aidra [7]. Another
limitation of BotProbe that impacted experimentation was that BotProbe, specifically the
probing component, can only operate on live traffic. While the filtering component can
still be applied to pre-recorded traffic, the probing component requires a live environment,
as its operation is dependent on host responses. This meant that BotProbe could not be
applied to externally sourced traffic recordings as the other techniques were.

3.2.3. BotHunter

BotHunter is a botnet detection technique that uses lifecycle modelling to detect
potential bots. Similar to BotMiner, BotHunter utilises IDS signatures to collect alerts.
Those alerts are then applied to one of several bot lifecycle models. Once the model has
completed, to a pre-determined extent, the collection of alerts over time, the host to which
the alerts pertain is designated as a bot. BotHunter shares some strengths with BotMiner
in that it is protocol-independent and can be applied, in theory, to both live environments
and packet captures. However, it shares some limitations with BotMiner, being somewhat
constrained to IDS signatures, as well as having its own unique limitations, such as being
constrained by its limited number of lifecycle models. Unlike BotMiner and BotProbe,
which had to be reconstructed based on the literature for this work, BotHunter has a
publicly available distribution, which was used for experimentation [10].

BotHunter’s publicly accessible implementation can be found at http://www.bothunter.
net/, accessed on 1 December 2023. It is packaged with the MetaFlows sensor, a network
IDS implementation that utilises multi-session alert event reports for threat detection. While
the MetaFlows sensor is a licensed product, the BotHunter implementation is available for
non-commercial use. BotHunter can be installed via a plug-and-play virtual machine or
installed on a host running the CentOS operating system.

http://www.bothunter.net/
http://www.bothunter.net/
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BotHunter’s design does not necessarily require it to be deployed on live traffic,
but the implementation does not allow for its direct application to previously made traffic
recordings. In order to test BotHunter in the same environments as the other techniques,
as well as on externally sourced traffic recordings, tcpreplay was used to replay the traffic.
As BotHunter does not directly interact with any of the host devices, unlike BotProbe, this
method of replay was an acceptable approach to emulating a live environment.

4. Performance Evaluation

The experiments undertaken for the selected botnet detection techniques were
previously conducted in [5], specifically on BotMiner. The same experiments were
conducted for this paper but were applied to BotProbe and BotHunter in addition
to BotMiner—with the additional inclusion of externally sourced datasets to further
validate the results, where possible.

The primary purpose of the experiments undertaken was to determine the appli-
cability of traditional botnet detection techniques to IoT-based botnets. To this end, a
number of IoT-based botnet simulations were developed for the selected botnet detection
techniques, BotMiner, BotProbe, and BotHunter, to be applied to. A secondary purpose
of the experiment was to validate each acquired botnet detection technique, particularly
the reconstructions of BotMiner and BotProbe, and ensure that each technique was able
to achieve what it was originally designed for. To this end, traditional botnet simulations
were also developed [5].

4.1. Simulations

Four kinds of botnets were simulated in two types of networks, with a number of
variations in terms of the number of network hosts, the number of infected devices, and the
presence of aberrant activities included to further explore each technique’s capabilities.
The two types of networks included a simulated traditional network made up of simulated
workstations made to emulate some human-like behaviours with its network traffic and a
simulated IoT network with a more automated traffic simulation utilising IoT protocols.
Each of these two networks had two kinds of botnets applied, distinguish primarily by
their CnC protocols and patterns [5].

To further test the detection techniques’ capabilities, variations of the simulated net-
works were assigned a device that exhibited aberrant behaviour. This aberrant behaviour
would produce traffic similar to the attacks committed by the compromised hosts—taking
the form of a high volume of Internet Control Message Protocol (ICMP) pings to a given
host (albeit internally as opposed to the actual attack behaviours external targets). This
aberrant behaviour was included in order to test each technique’s specificity, i.e., its ability
to properly identify legitimate hosts and avoid false positives. Whereas networks without
an aberrant host represented a network operating as expected, the presence of an aberrant
device represented a misconfiguration or device failure that could be misunderstood as bot
activity. One aberrant host was included per scenario in order to observe the difference
between a network with and without such activity [5].

Of the two traditional botnets simulated for the experiments, one was a pull-based
botnet using HTTP as its communication protocol, and the other was a push-based botnet
that used the IRC protocol. The HTTP bots would periodically request commands from
an HTTP server and conduct their attacks accordingly. The IRC bots would receive their
commands from an IRC server. The former would be constrained to a fixed command
schedule, whereas commands from the latter could be issued on demand. Both simulated
botnets would run simulated DDoS attacks using mass ICMP pings against a simulated
victim web server for a duration specified by the command parameters [5].

The simulation environments were created using a number of virtual machine hosts on
an ESXi hypervisor. Botnet activities were fully simulated using infected hosts’ designated
virtual networks with commands sent from a botmaster and attacks directed at simulated
web servers, each also on its own virtual network. Background traffic for both traditional
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and IoT environments were produced using a scalable Scapy-based solution where HTTP
and Advanced Message Queue Protocol (AMQP) packets were emulated. Traffic recordings
of these environments were then used for each botnet detection technique, with BotProbe
also being applied to a live environment.

For the traditional network simulations, all hosts, including the infected hosts, pro-
duced conventional HTTP traffic to present a realistic environment for the experiment.
A number of variations based on the total number of hosts, the number of infected hosts,
and the presence of aberrant activity were recorded from the traditional network simula-
tions. The recorded experimental scenarios included networks with the following devices:

• Ten total devices or one hundred total devices;
• One, three, or no infected devices;
• One or no aberrant device.

A total of 20 variations, of which 5 generations were created, were produced for the
traditional experimental scenarios for both simulated traditional botnets applied.

Of the two IoT-based botnets simulated, both utilised push-based CnC structures. One
utilised a custom Transmission Control Protocol (TCP)-based bitstream (BS) communication
protocol and heartbeat similar to the Mirai botnet. The BS protocol operates similarly to
the original Mirai approach and represents the non-standard and esoteric nature of Mirai’s
communication approach. The heartbeat was also included to further distinguish the
botnet’s approach from the more common IRC-based CnC and represent Mirai’s CnC
patterns. The other simulated IoT-based botnet utilised the IRC protocol, being effectively
the same in operation as its traditional counterpart aside from the hosts that it would
infect. The simulated IoT-based botnets would conduct the same attacks as their traditional
counterparts: ICMP-based DDoS attacks [5].

The IoT-based network simulations featured the use of an AMQP message broker
server and a number of simulated IoT devices using the AMQP protocol. AMQP is an
IoT protocol that sends messages through queue exchanges, which are then consumed
by subscribed workers [45]. This acted as realistic traffic for the simulated IoT network.
Shown in Figure 1 is the network diagram for the IoT-based botnet simulations, including
the host network, attacker network, and DDoS victim. The traditional simulations have a
similar structure but without the AMQP server on the host network and with a number
of additional web servers that they interact with outside of the host network to represent
human-like web activities [5].

Host Network Attacker Network

Web Server
(DDoS Target)

Host 1 Aberrant
Host

Host n

Infected
Host 1

Infected
Host n

CnC
Server

BotMaster

AMQP
Server

Figure 1. Network diagram of IoT-based botnet simulation, including the infected IoT network,
attacker network, and DDoS target network.

As with the traditional network simulations, the IoT network simulation recordings
included a number of scenarios based on the total number of hosts, the number of infected
hosts, and the presence of aberrant activity. Whereas the total number of hosts for the
traditional networks only included scenarios with 10 and 100 total hosts, the simulated IoT
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networks also included scenarios with 500 total hosts to model the scale of IoT networks.
The resulting scenarios included networks with the following devices:

• Ten total devices, one hundred total devices, or five hundred total devices;
• One, three, or no infected devices;
• One or no aberrant device.

Thirty variations, of which five generations were created, were produced for the IoT
experimental scenarios for both simulated IoT-based botnets applied.

The network variations of both IoT and traditional networks produced a total of
50 environment variations. The detection techniques (with the exception of BotProbe) were
applied five times to each scenario, producing a 250-row dataset, inclusive of all four
simulated botnets for each technique. The results were recorded based on the number of
true positives, false positives, true negatives, and false negatives. The mean TPR and TNR
of each technique over all repeated scenarios were used to determine each technique’s
capabilities across different scenarios and in comparison to one another [5].

4.2. Externally Acquired Datasets

To further validate the results derived from the simulated botnet infections, two exter-
nal datasets were derived from externally sourced traffic captures. Both a traditional botnet
infection dataset and an IoT-based dataset were acquired from [28] and [46], respectively.
The externally sourced traffic features instances of real botnets, Storm and Mirai, along-
side benign network traffic. While these traffic captures do not exhibit the experimental
reliability and general representations provided by the simulations, they do present a
more realistic and externally valid demonstration of BotMiner’s capabilities. Due to the
limited amount of traffic available from the external datasets, only one scenario that could
be directly compared to the simulated results was produced for each set. The scenario
developed for both external datasets included 10 total hosts, 1 of which was infected.

The traditional botnet dataset was sourced from the ISOT dataset developed for the
experiments undertaken in [28] and provided by the University of Victoria. Bot traffic
included within the dataset included that from Zeus, Waledac, and Storm. The format
of the dataset was presented within a single packet capture (pcap) file, spanning several
months. For the BotMiner experiment, a section of that pcap hosting the Storm botnet
was extracted. BotMiner was set to examine the suspected host and nine benign hosts to
produce the results. The benign hosts feature those recorded from the day-to-day use of an
enterprise network, including web, email, and media-streaming activities [28].

Storm is a P2P botnet known to use the Overnet P2P protocol for its CnC communi-
cations. The Storm botnet was primarily designed to send out spam, but its modularity
provided it with the ability to switch capabilities, such as performing DDoS attacks. No-
tably, Storm’s CnC architecture appears to follow a federated pull-based approach, where
commands, targets, and updates are pulled by the bots from designated hosts [6,47]. In ad-
dition to providing external validity to the experiment, the external dataset also provides
insight into BotMiner’s capabilities on a decentralised P2P botnet, a scenario not covered
by the simulation that examines centralised botnets.

The IoT botnet dataset was sourced from the IoT-23 dataset developed by the Strato-
sphere Lab at the Czech Technical University [46]. The dataset includes multiple pcaps of
IoT-based botnet traffic alongside some captures of benign IoT traffic. The dataset contains
different captures for each recorded host. Measures were undertaken to combine the cap-
tures prior to applying the BotMiner detection technique. Only three benign host captures
are provided by the IOT-23 dataset; therefore, different time periods from the captures
were adjusted to represent a number of different hosts of the same kind of device. A Mirai
capture was chosen as the infected host for the experiment, and from the benign captures,
nine hosts were derived. The benign hosts include an Amazon Echo, a Phillips Hue device,
and a Somfy door lock. The addresses of the Phillips Hue and the Somfy door lock were
modified (across different time periods) to represent six additional devices, three additional
hosts each. The Amazon Echo was left as a single host. This external traffic set would
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allow for a real instance of Mirai to be observed while also presenting a variety of IoT
devices. In contrast to the simulated dataset, the devices present are more heterogeneous
and represent a smart home deployment, whereas the simulation is more representative of
a homogeneous industrial deployment [46].

5. Experimental Results

BotMiner, BotProbe, and BotHunter (the former two being reconstructions, the latter-
most being the original technique) were applied to each simulated network and external
dataset—with some exceptions for BotProbe. Due to how BotProbe operates, it was only
applied to the simulated botnets utilising the IRC protocol (both traditional and IoT-based)
and could not be applied to the external datasets.

Each scenario, differing in terms of the botnet type, total number of devices, number
of infected devices, and presence of aberrant activity, was run five times. The results are
presented with the mean TPR and TNR of those scenarios among the five runs. The result
tables include the results from the traditional scenarios and the IoT scenarios for each
botnet detection technique—a total of six tables. The columns of each of those tables
include the type of botnet CnC protocol, the total number of devices, the total number of
infected devices, the total number of aberrant devices, the TPR, and the TNR. An additional
two tables describe the results of BotMiner and BotHunter on the externally sourced
datasets. The columns in these tables include the type of botnet (IoT or traditional),
the total number of devices, the number of infected devices, the number of true positives,
the number of false positives, and the number of true negatives. Each table presents the
capabilities of each botnet detection technique in terms of sensitivity and specificity for
each experimental scenario.

The results for BotMiner were previously recorded by [5], which can be compared to
the results of BotProbe and BotHunter for the same scenarios and discussed in terms of the
presented hypotheses for this work.

5.1. BotMiner

As mentioned, previous work on BotMiner was conducted by [5]. The results pre-
sented here are summarised to present the mean TPR and TNR of each run scenario.

5.1.1. Traditional Botnets

Table 1 shows the mean TPR and mean TNR for each traditional scenario where
BotMiner was applied. Immediately apparent is that BotMiner was able to detect every
infected host across all scenarios, in line with expectations for the traditional simulations.
The protocol used by the botnet, the total number of devices, and the number of infected
hosts do not appear to have any impact on BotMiner’s ability to detect bots. BotMiner is
also able to detect all bots regardless of aberrant activity. However, when aberrant activity
is present, BotMiner appears to be prone to false positives. In all scenarios recorded where
aberrant traffic was present, BotMiner incorrectly designated a non-infected host as a bot.
This includes the fact that whenever there is no botnet activity, if aberrant behaviour is
present, BotMiner will incorrectly identify non-infected hosts as bots.

Illustrated in Figure 2 are the TNR rates between HTTP and IRC botnets. Immediately
apparent is that when aberrant activity is not present, the results are the same with a TNR
of 1—no false positives. However, the TNRs in the HTTP and IRC botnet scenarios differ
when aberrant activity is present: BotMiner has a greater TNR when applied to scenarios
running IRC-based botnets. Although each IRC scenario had at least one instance where
BotMiner produced false positives, a number of runs (of which each scenario had five)
among those scenarios successfully labelled all non-infected hosts correctly—accounting
for the greater TNR compared to the HTTP scenarios. These differences were also presented
by [5].
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Table 1. The mean TPR and mean TNR produced by BotMiner when applied to each simulated
traditional botnet scenario.

Label Botnet Total Devices Infected Aberrant TPR TNR

1 HTTP 10 1 0 1 1

2 HTTP 10 1 1 1 0.888889

3 HTTP 100 1 0 1 1

4 HTTP 100 1 1 1 0.989899

5 HTTP 10 3 0 1 1

6 HTTP 10 3 1 1 0.888889

7 HTTP 100 3 0 1 1

8 HTTP 100 3 1 1 0.989899

9 IRC 10 1 0 1 1

10 IRC 10 1 1 1 0.955556

11 IRC 100 1 0 1 1

12 IRC 100 1 1 1 0.99596

13 IRC 10 3 0 1 1

14 IRC 10 3 1 1 0.914286

15 IRC 100 3 0 1 1

16 IRC 100 3 1 1 0.991753

17 None 10 0 0 1

18 None 10 0 1 0.9

19 None 100 0 0 1

20 None 100 0 1 0.99

Figure 2. True negative rates of Table 1, grouped by total hosts, infected hosts, and aberrant hosts.

5.1.2. IoT-Based Botnets

Shown in Table 2 is the mean TPR and mean TNR for each IoT scenario where Bot-
Miner was applied. As happened in the traditional scenarios, and contrary to expectations,
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BotMiner was able to detect all bots for all scenarios. Also as in the traditional scenario,
BotMiner did produce false positives when aberrant activity was present. However, un-
like the traditional scenarios, some scenarios with aberrant activity still maintained a
mean TNR of 1—meaning that BotMiner effectively performed better than it did with the
traditional scenarios.

Table 2. The mean TPR and mean TNR produced by BotMiner when applied to each simulated IoT
botnet scenario.

Label Botnet Total Devices Infected Aberrant TPR TNR

1 BS 10 1 0 1 1

2 BS 10 1 1 1 0.888889

3 BS 100 1 0 1 1

4 BS 100 1 1 1 0.989899

5 BS 500 1 0 1 1

6 BS 500 1 1 1 0.997996

7 BS 10 3 0 1 1

8 BS 10 3 1 1 0.857143

9 BS 100 3 0 1 1

10 BS 100 3 1 1 0.989691

11 BS 500 3 0 1 1

12 BS 500 3 1 1 0.997988

13 IRC 10 1 0 1 1

14 IRC 10 1 1 1 0.977778

15 IRC 100 1 0 1 1

16 IRC 100 1 1 1 1

17 IRC 500 1 0 1 1

18 IRC 500 1 1 1 1

19 IRC 10 3 0 1 1

20 IRC 10 3 1 1 1

21 IRC 100 3 0 1 1

22 IRC 100 3 1 1 0.997938

23 IRC 500 3 0 1 1

24 IRC 500 3 1 1 0.999598

25 None 10 0 0 1

26 None 10 0 1 0.9

27 None 100 0 0 1

28 None 100 0 1 0.99

29 None 500 0 0 1

30 None 500 0 1 0.998004

Shown in Figure 3 are the TNR rates of all IRC and BS compared to one another.
Similar to the traditional scenarios, all scenarios without aberrant activity have an identical
TNR. And where aberrant activity is present, the IRC scenarios resulted in a greater TNR;
BotMiner operates better on IRC-based botnets regardless of whether the device is a
traditional or IoT botnet target. As mentioned, some aberrant activity scenarios where IRC
was used as the CnC protocol produced a TNR of 1—no false positives. It would appear
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that, for these scenarios, BotMiner performed better on IoT-based botnets than traditional
botnets when the same CnC protocol was used.

Figure 3. True negative rates of Table 2, grouped by total hosts, infected hosts, and aberrant hosts.

5.1.3. External Datasets

Shown in Table 3 are the results for BotMiner applied to both external datasets. For the
traditional scenario, BotMiner performed as expected; it detected the bot and reported no
false positives. For the IoT scenario, BotMiner detected the bot, as it was able to do with the
simulations and contrary to the hypotheses, but also produced a number of false positives.
These false positives can likely be attributed to aberrant behaviours within the externally
sourced datasets that triggered the IDS-based component of BotMiner.

Table 3. The true positives, false positives, and true negatives produced by BotMiner when applied
to each externally sourced dataset.

Type Total Devices Infected TP FP TN

Trad. 10 1 1 0 9

IoT 10 1 1 4 5

5.2. BotProbe

As mentioned, BotProbe has some limitations that excluded it from some of the experi-
ments. Nonetheless, BotProbe was still able to be applied to both a traditional and IoT-based
botnet simulation. It should be noted that BotProbe had to be applied to live traffic during
its probing stage, meaning that the traffic it was applied to was not necessarily the same as
that to which BotMiner and BotHunter were applied. However, the filtering component of
BotProbe was able to be applied to pre-recorded traffic. The network configurations were
also the same between relevant scenarios, so comparisons can still be made between the
results of other techniques, with the extraneous variables caused by the live traffic in mind
(consisting mostly of alternative request patterns and timings among the recordings). The
results for BotProbe when no bots were present are not included in the tables; those results
were uniform, and there were no instances of false positives.

5.2.1. Traditional Botnet

Table 4 shows the results of BotProbe applied to a traditional botnet utilising the
IRC protocol. BotProbe was able to detect all bots when only one infected device was
present per scenario. However, when multiple infected devices were present, BotProbe
did not detect all bots. In scenarios where multiple bots were present with ten total hosts,
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BotProbe failed to detect any bots with a TPR of 0. When 100 total hosts were present,
BotProbe was able to detect a number of bots but was still not able to achieve a TPR of 1.
Although BotProbe’s capabilities diminished when multiple infected devices were present,
at no point did BotProbe produce false positives: all scenarios produced a TNR of 1.

Table 4. The mean TPR and mean TNR produced by BotProbe when applied to each simulated
traditional botnet scenario.

Label Botnet Total Devices Infected Aberrant TPR TNR

1 IRC 10 1 0 1 1

2 IRC 10 1 1 1 1

3 IRC 100 1 0 1 1

4 IRC 100 1 1 1 1

5 IRC 10 3 0 0 1

6 IRC 10 3 1 0 1

7 IRC 100 3 0 0.666667 1

8 IRC 100 3 1 0.466667 1

5.2.2. IoT-Based Botnet

Shown in Table 5 are the results for BotProbe applied to an IoT-based botnet utilising
the IRC protocol. In terms of TNR, the results are identical to the equivalent traditional
scenarios—a TNR of 1 for all scenarios. As with the traditional results, BotProbe was
not able to detect all bots when multiple bots were present, while still detecting each
bot in the single bot scenarios. Unlike the traditional scenarios however, there were no
instances where BotProbe produced a mean TPR of 0 when applied to the IoT scenarios.
Although BotProbe exhibited similar patterns of behaviour, no false positives and a dimin-
ished detection rate when more bots were present, it did overall perform better than it had
on the traditional scenarios.

Table 5. The mean TPR and mean TNR produced by BotProbe when applied to each simulated IoT
botnet scenario.

Label Botnet Total Devices Infected Aberrant TPR TNR

1 IRC 10 1 0 1 1

2 IRC 10 1 1 1 1

3 IRC 100 1 0 1 1

4 IRC 100 1 1 1 1

5 IRC 500 1 0 1 1

6 IRC 500 1 1 1 1

7 IRC 10 3 0 0.46667 1

8 IRC 10 3 1 0.46667 1

9 IRC 100 3 0 0.6 1

10 IRC 100 3 1 0.8 1

11 IRC 500 3 0 0.6 1

12 IRC 500 3 1 0.46667 1

5.3. BotHunter

BotHunter was unique among the chosen detection technique in that the original
implementation of BotHunter was used for experimentation instead of a literature-based
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reconstruction. The results for BotHunter are presented slightly differently from the other
techniques in order to highlight its unique functionality and how it performed between
different botnets—particularly with consideration to the IRC protocol. BotHunter has an
IDS component which populates the botnet lifecycle model it uses for detection, the TPR of
that IDS component is also reported in the tables to highlight instances where BotHunter
appeared to have partly worked, even when a full detection had not been made. As with
BotProbe, results for BotHunter without any infected hosts are not shown for the same
reason—there were no false positives or differences between scenarios when no bots
were present.

5.3.1. Traditional Botnets

Shown in Table 6 are the results of BotHunter as applied to traditional scenarios.
BotHunter was unable to detect any of the bots. The IDS component of BotHunter was
able to produce alerts when applied to IRC-based botnets but was unable to make a full
detection using its lifecycle models. It had no apparent effect of HTTP bots which went
completely undetected. No false positives were produced but the TPR was consistently 0
across all scenarios.

Table 6. The mean TPR (from IDS and overall) and mean TNR produced by BotHunter when applied
to each simulated traditional botnet scenario.

Botnet Total Devices Infected Aberrant IDS TPR TPR TNR

HTTP 10 1 0 0 0 1

HTTP 10 3 0 0 0 1

HTTP 10 1 1 0 0 1

HTTP 10 3 1 0 0 1

HTTP 10 0 0 1

HTTP 100 1 0 0 0 1

HTTP 100 3 0 0 0 1

HTTP 100 1 1 0 0 1

HTTP 100 3 1 0 0 1

HTTP 100 0 0 1

IRC 10 1 0 1 0 1

IRC 10 3 0 1 0 1

IRC 10 1 1 1 0 1

IRC 10 3 1 1 0 1

IRC 10 0 0 1

IRC 100 1 0 1 0 1

IRC 100 3 0 1 0 1

IRC 100 1 1 1 0 1

IRC 100 3 1 1 0 1

IRC 100 0 0 1

5.3.2. IoT-Based Botnets

Shown in Table 7 are results that are, where comparable, identical to those in Table 6—no
complete detections, and some detections made when the IRC protocol was present. As oc-
curred with the HTTP-based traditional bots, the BS-based IoT bots went completely unde-
tected by BotHunter. No false positives were made, but the TPR was 0 across all scenarios.
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Table 7. The mean TPR (from IDS and overall) and mean TNR produced by BotHunter when applied
to each simulated IoT botnet scenario.

Botnet Total Devices Infected Aberrant IDS TPR TPR TNR

BS 10 1 0 0 0 1

BS 10 3 0 0 0 1

BS 10 1 1 0 0 1

BS 10 3 1 0 0 1

BS 10 0 0 1

BS 100 1 0 0 0 1

BS 100 3 0 0 0 1

BS 100 1 1 0 0 1

BS 100 3 1 0 0 1

BS 100 0 0 1

BS 500 1 0 0 0 1

BS 500 3 0 0 0 1

BS 500 1 1 0 0 1

BS 500 3 1 0 0 1

BS 500 0 0 1

IRC 10 1 0 1 0 1

IRC 10 3 0 1 0 1

IRC 10 1 1 1 0 1

IRC 10 3 1 1 0 1

IRC 10 0 0 1

IRC 100 1 0 1 0 1

IRC 100 3 0 1 0 1

IRC 100 1 1 1 0 1

IRC 100 3 1 1 0 1

IRC 100 0 0 1

IRC 500 1 0 1 0 1

IRC 500 3 0 1 0 1

IRC 500 1 1 1 0 1

IRC 500 3 1 1 0 1

IRC 500 0 0 1

5.3.3. External Datasets

The results produced with BotHunter applied to the simulated networks indicated
poor performance. It is possible that the simulated scenarios did not account for certain
conditions that would have allowed BotHunter to operate that real-life scenarios may
have provided. However, the results shown in Table 8 appear to reinforce the findings
established in the simulations: BotHunter was unable to make any detections in both the
externally sourced IoT and traditional scenarios.
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Table 8. The true positives (from IDS and overall), false positives (from IDS and overall), true nega-
tives, and false negatives produced by BotHunter when applied to each externally sourced dataset.

Type Total Devices Infected IDS TP IDS FP TP FP TN FN

Trad. 10 1 0 0 0 0 9 1

IoT 10 1 0 0 0 0 9 1

6. Discussion
6.1. Addressing Hypotheses

Each hypothesis was designed to test each traditional botnet detection technique to
determine its capabilities on both IoT-based and traditional botnets. The hypotheses were
constructed with the assumption that the techniques would be able to correctly identify
all bots and non-bots in traditional networks while not being able to do the same for
bots in IoT networks. Three capabilities were tested with these hypotheses for IoT and
traditional scenarios: the ability to detect botnets, the ability to identify all bots, and the
ability to identify all non-bots. Certain nuances among the results are also apparent, though
not necessarily addressed by the hypotheses, such as the tendency for the techniques to
perform better on IRC-based botnets and BotProbe’s diminished performance when applied
to multiple infections. The outcome of each hypothesis pertaining to each botnet detection
technique is shown in Table 9.

Table 9. Each hypothesis addressed for the traditional botnet detection techniques.

Detection Technique H1 H2 H3 H4 H5 H6

BotMiner rejected accepted accepted rejected rejected accepted

BotProbe rejected accepted rejected accepted accepted rejected

BotHunter accepted rejected rejected accepted accepted rejected

BotMiner met expectations in terms of detecting bots in traditional scenarios, and
it was able to detect all botnets and all bots: H2 and H3 were accepted. BotMiner also
defied expectations by doing the same for IoT-based botnets. H1 and H5 were rejected,
as BotMiner performed better than expected when it came to detecting bots. However,
BotMiner was prone to producing false positives in certain cases, leading to H4 being
rejected and H6 being accepted. BotMiner was unable to correctly identify all non-infected
hosts. However, even though H6 was accepted, it must be noted that, overall, BotMiner
produced fewer false positives in comparable IoT scenarios than it did in the equivalent
traditional scenarios—suggesting that BotMiner might have performed better on the more
contemporary threat than that which it was designed to address. Although BotMiner has
some limitations in the form of over-sensitivity, the network being IoT-based does not
appear to have any additional negative impact on its performance.

BotProbe was able to correctly identify all non-infected hosts, and no false positives
were produced across all scenarios, both IoT and traditional. This means that it met
expectations for the handling of non-infected devices in traditional networks while defying
them for IoT networks. H4 and H6 were accepted and rejected, respectively, and no
differences could be identified in terms of false positives between the traditional and IoT
scenarios. BotProbe was able to detect bots across a number of scenarios, both traditional
and IoT, leading to H1 being rejected and H2 being accepted. However, BotProbe was not
able to detect all bots and had a diminished performance when multiple infected devices
were present. Therefore, BotProbe did not meet the expectation given by H3, leading to that
hypothesis being rejected and H5 being accepted. Although H5 was accepted, it should be
noted that, while two of the traditional scenarios that BotProbe was applied to resulted in a
mean TPR of 0, the same scenarios but on IoT networks had a mean TPR greater than 0.
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BotProbe appears to have performed better with the IoT-based scenarios overall, having
detected at least one bot in every scenario.

BotHunter was unable to meet expectations on traditional networks while effectively
performing as expected on their IoT counterparts. BotHunter did not detect any bot activity
among any of the scenarios, leading to H2 being rejected and H1 being accepted—the
opposite result when compared to the other two techniques. In line with that, H3 was
rejected and H5 was accepted. Technically, BotHunter did not produce any false positives,
meaning that H4 and H6 were accepted and rejected, respectively. Unlike with BotProbe,
however, this does not appear to be a result of high specificity but rather a total lack
of sensitivity.

6.2. Detection Technique Performance

BotMiner had the highest and most consistent mean TPR across all scenarios, success-
fully detecting all bots in all simulated (and externally recorded) networks. BotMiner did
also produce the largest number of false positives among the techniques, however, and
was prone to making incorrect assessments whenever devices exhibited aberrant behaviour
that could be misconstrued by the technique as malicious. BotMiner’s TNR was greater
whenever a botnet utilising the IRC protocol was present, which appears to have allowed
BotMiner to make a more accurate distinction between bot and non-bot activities. This
apparent pattern of behaviour had a greater impact on IoT-based networks, where Bot-
Miner was able to achieve a mean TNR of 1 in scenarios where it was unable to do so for its
traditional counterparts.

BotProbe was able to successfully detect bot activities in almost all scenarios, with only
two traditional scenarios where BotProbe had a mean TPR of 0. BotProbe failed to detect
all bots in scenarios where more than one host was infected. It appears that the probing
technique was unable to properly assess the probe responses to determine whether a given
host was infected. When only a single infection was present in a given network, BotProbe
successfully detected the bot. When the total number of devices was 100 as opposed to 10
in traditional networks, BotProbe was able to produce a mean TPR above 0—possibly indi-
cating that a greater volume of traffic allowed BotProbe to operate correctly. The equivalent
IoT scenarios to which BotProbe was applied also rendered a mean TPR above 0, where
it failed to make any detections in their traditional counterparts. The volume of traffic
in the IoT scenarios was greater than that in the traditional equivalents, representing the
more autonomous activities of IoT sensors as opposed to the more fluctuating human-like
activities represented in the traditional scenarios. Although BotProbe did not detect all
bots, particularly when more than a single bot was present, it did correctly identify all
non-bot hosts.

BotHunter was unable to detect any bots across all scenarios, both simulated and
externally acquired. It is possible that BotHunter’s approach was designed for situations
where a given bot’s full lifecycle can be reported and modelled—something that may
not have been available in the simulations or external datasets. The simulations did not
necessarily include the infection stage, for example, though it is apparent that some of
the CnC activity was at least alerted when the IRC protocol was present. When the IRC
protocol was not present, BotHunter had no alerts to model at all. It should also be noted
that not all botnets allow detection during the infection stage, such as when backdoors
are present on a maliciously modified ISO [48] or installed at some stage of a supply chain
prior to purchase [49]. BotHunter’s modelling approach may have been too rigid for the
scenarios presented while also failing to make any signature detections for non-IRC bots.

Comparing each technique, it can be observed that BotMiner and BotProbe have
strengths that could potentially mitigate the other’s limitations. Some limitations of Bot-
Probe were apparent prior to experimentation, limited to the protocol that the initial filter
is configured for. While BotProbe was able to detect at least one bot in most scenarios,
BotProbe failed to detect every bot. BotMiner, in contrast, was able to detect all bots and is
completely protocol-independent. However, BotMiner registered multiple false positives
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when aberrant activity was present. BotProbe did not produce any false positives, even
when aberrant activity was present. Given that BotMiner is protocol-independent and was
able to detect all bots in all experimental scenarios and that BotProbe did not produce any
false positives, it is possible that the techniques could be used to complement one another.
If the CnC command traffic can be identified from BotMiner’s netflow and alert cluster
correlation, BotProbe could be used to refine BotMiner’s findings.

Whereas BotMiner and BotProbe could be complementary to one another, BotHunter
was unable to detect any bots. Like BotMiner, it appears that BotHunter may have been
more capable when applied to IRC-based bots, given that its IDS component was able
to make some detections when the IRC protocol was used. However, unlike BotMiner,
BotHunter was unable to utilise these IDS detections to render a detection. It is possible
that if BotHunter’s modelling were more accommodating to modern threat scenarios or
if the IDS component was made to be more sensitive, BotHunter could have been more
comparable to BotMiner: they both utilise IDS and are both protocol-independent. Whether
or not BotHunter would have produced false positives if this had been the case cannot be
determined from the experimental results.

With only one of the three detection techniques failing to detect any bots and with
certain limitations appearing to be unaffected, or sometimes even partially mitigated,
by IoT scenarios, it can be concluded that traditional botnet detection approaches found
in the literature, particularly BotMiner and BotProbe, are capable of detecting IoT-based
botnets. While IoT-based botnets may present a serious threat in comparison to their
traditional counterparts by their numbers, availability, and relative lack of security, there
are techniques capable of detecting them.

7. Conclusions

From the results of each of the chosen botnet detection techniques observed, as applied
to the presented experimental scenarios, it can be determined that techniques designed
for detecting older botnets can be capable of detecting contemporary IoT-based botnets.
BotMiner and BotProbe were both able to detect both traditional and IoT-based bots.
BotHunter was the only technique that was unable to detect bots in any of the scenarios,
both traditional and IoT scenarios. The results appear to indicate that whether a botnet is
IoT-based or not will not necessarily affect the performance of any of the selected detection
techniques. While the primary purpose of this work was to determine whether older
techniques could work for newer IoT threats, some other potential points of investigation
were found. It is apparent that the techniques examined are far better suited to detecting
botnets that utilise the IRC protocol, with BotProbe being almost explicitly designed
to do so. Further work should be conducted towards making all of these techniques
protocol-independent.

Future Work

Future work could include utilising the strengths of both BotMiner and BotProbe to
mitigate the limitations of both. While BotMiner did perform better on IRC-based botnets, it
was also capable of detecting all other bots, regardless of the protocol. Potentially utilising
BotMiner in place of BotProbe’s IRC filter may allow BotProbe to then test BotMiner’s
findings, which resulted in a number of false positives among the results, to reduce false
reports. This approach would still only work on push-based botnets but would allow
BotMiner’s high sensitivity to be tempered by BotProbe’s greater specificity.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
CnC Command and control
IRC Internet Relay Chat
P2P Peer-to-Peer
HTTP Hypertext Transfer Protocol
DDoS Distributed Denial of Service
TPR True positive rate
TNR True negative rate
IDS Intrusion Detection System
fph Flows per hour
ppf Packets per flow
bpp Average bytes per packet
bps Average bytes per second
DNS Domain Name Service
SDN Software-Defined Network
AMQP Advanced Message Queuing Protocol
TCP Transmission Control Protocol
BS Bitstream
pcap Packet capture
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