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Abstract: Cracks inside urban underground comprehensive pipe galleries are small and their charac-
teristics are not obvious. Due to low lighting and large shadow areas, the differentiation between the
cracks and background in an image is low. Most current semantic segmentation methods focus on
overall segmentation and have a large perceptual range. However, for urban underground compre-
hensive pipe gallery crack segmentation tasks, it is difficult to pay attention to the detailed features
of local edges to obtain accurate segmentation results. A Global Attention Segmentation Network
(GA-SegNet) is proposed in this paper. The GA-SegNet is designed to perform semantic segmentation
by incorporating global attention mechanisms. In order to perform precise pixel classification in
the image, a residual separable convolution attention model is employed in an encoder to extract
features at multiple scales. A global attention upsample model (GAM) is utilized in a decoder to
enhance the connection between shallow-level features and deep abstract features, which could
increase the attention of the network towards small cracks. By employing a balanced loss function,
the contribution of crack pixels is increased while reducing the focus on background pixels in the
overall loss. This approach aims to improve the segmentation accuracy of cracks. The comparative
experimental results with other classic models show that the GA SegNet model proposed in this
study has better segmentation performance and multiple evaluation indicators, and has advantages
in segmentation accuracy and efficiency.

Keywords: crack; semantic segmentation; attention model; loss function; GA-SegNet

1. Introduction

Urban underground comprehensive pipe corridors have been widely applied in var-
ious municipal and transportation projects, serving as an important solution to urban
underground pipeline issues. The advantages of urban underground comprehensive pipe
corridors lie in their ability to consolidate various pipelines into a single underground space,
facilitating daily maintenance and management by relevant personnel while avoiding fre-
quent road disruptions. This ensures the integrity of the road surface and the durability of
the pipelines, reducing the impact on normal traffic and residents’ daily lives. Additionally,
it also reduces maintenance costs for roads and various types of pipelines.

Urban underground comprehensive pipe corridors that were constructed earlier have
entered the maintenance period, while newly built corridors also face potential risks such
as deformation of the tunnel structure. The geological conditions in the underground
environment are highly complex. During long-term usage, underground pipe corridors are
susceptible to various factors such as earthquakes, ground subsidence, and soil moisture.
This could lead to internal wall cracks and other defects, resulting in issues like water
leakage and collapse, which compromise the structural safety of the corridors. The presence
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of these cracks not only leads to resource wastage but also poses significant safety hazards.
They could disrupt the normal operation of the city and threaten personal, material, and
other aspects of residents’ safety. Therefore, it is crucial to conduct periodic inspections and
maintenance of urban underground comprehensive pipe corridors, including the detection
and repair of cracks and other defects, in a timely and effective manner.

Detection methods based on computer vision technology have been widely applied in
the field of road, bridge, and tunnel defect detection. These methods are characterized by
their efficiency and comprehensiveness and have become the primary means of detection.
This innovative technology utilizes advanced image processing and pattern recognition
algorithms to analyze and identify various defects with high precision and speed in a
highly automated manner. It greatly improves the accuracy and efficiency of detection,
providing strong technical support for ensuring the safety of transportation and buildings.

Traditional computer vision technology in the field of crack detection mainly relies on
digital image processing techniques. It involves manually discerning features and utilizing
various feature patterns such as frequency, edges, orientation gradients, grayscale, texture,
and entropy, as well as designing certain feature constraints to accomplish identification. A
novel method for road crack detection was proposed by Ying L et al. [1]. A road surface
image was segmented into multiple small regions, and a wavelet transform-based algorithm
was utilized to connect the crack areas and extract the linear features of surface cracks.
A custom image processing algorithm was designed by Xu B et al. in [2] for road crack
detection. This algorithm divides the image into crack elements or non-crack elements
based on local features, comparing the crack seeds with their adjacent regions to verify
the category, and after multiple verifications, determining the seed cluster as the actual
crack. Shi et al. [3] proposed a road crack detection method, which introduces integral
channel features for crack feature extraction and utilizes a random forest classifier to mine
structured information, improving detection accuracy. Salman et al. [4] presented a crack
detection method based on Gabor filtering. High-pass Gabor filters were employed to
detect cracks in different directions. In [5], Sobel filtering was applied to remove noise
from grayscale images, and crack detection was performed by the OTSU method. This
method demonstrates good performance in detecting small cracks. H. Oliveira and P. L.
Correia [6] proposed a new framework for the automated detection and classification of
cracks in survey images obtained during high-speed driving. Sun L et al. [7] introduced the
weighted neighborhood pixel method, which uses local thresholding and shape filtering
with eccentricity parameters to enhance candidate cracks. It has the characteristics of
accuracy, speed, robustness, and suitability for online road condition assessment. An
automated method of classification and segmentation of asphalt pavement cracks was
proposed by Y. Sari et al. in [8]. The classification method of the support vector machine
(SVM) algorithm and the segmentation method of the OTSU algorithm were employed to
classify the asphalt pavement cracks.

Traditional image segmentation algorithms typically have high time complexity and
weak generalization ability due to artificially designed features. In recent years, deep
learning has emerged as a dominant research direction in the field of computer vision,
yielding numerous achievements in areas such as object detection, autonomous driving,
and natural language processing. Deep learning, based on artificial neural networks,
enables the automatic and efficient extraction of valuable information from large-scale data,
significantly enhancing learning efficiency and enabling the resolution of more complex
problems. With further advancements in deep learning research, algorithms that integrate
deep learning and convolutional neural networks have achieved superior performance
in the field of crack detection. Xiang et al. [9] constructed a crack recognition network
using an encoder–decoder structure and employed a pyramid module to capture the
contextual information of complex crack images from a global perspective. Wang et al. [10]
proposed a road crack detection method based on pyramid convolution and a boundary
enhancement network, which extracts features at multiple scales and further processes
crack features through a boundary refinement module and depth monitoring module. It
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can accurately segment a complete crack area and sharpen its boundaries. Protopapadakis
et al. [11] introduced a combination of deep convolutional neural networks and domain-
specific heuristic post-processing techniques to fundamentally select effective features and
complete crack detection tasks faster. The Enhanced Chicken Swarm Algorithm (ECSA)
was utilized in [12] by Yu et al. to optimize the parameters of deep convolutional neural
networks, improving the generalization ability of the crack detection model. Yue Pan
et al. [13] proposed a spatial channel-wise network for pixel-level crack segmentation. This
network fully exploits spatial and channel dependencies by adaptively integrating local
features through self-attention mechanisms, enhancing the segmentation performance of
the network. Knig J et al. [14] proposed a decoder part for an encoder–decoder-based deep
learning architecture for semantic segmentation. This method introduced a previously
unused technique in the field of surface crack segmentation: test time augmentation
for generating results, which enables obtaining state-of-the-art performance across all
datasets. X. Sun et al. [15] adopted and enhanced DeepLabv3+ and proposed a multi-scale
preservation module in the decoder to generate attention masks and dynamically allocate
weights between high-level and low-level feature maps, effectively helping the model better
integrate multi-scale features and generate more accurate road crack segmentation results.
A new semantic translational representation network (STRNet) was proposed in [16] for
the real-time segmentation of pixel-level cracks in complex scenes. A new encoder–decoder
segmentation network, CycleADC-Net, was introduced by Yidan Yan et al. in [17], which
opened up a new idea for crack image detection under low light conditions. A lightweight
remote sensing object detection model called Attention and Multi-Scale Feature Fusion
Lightweight YOLO is proposed by Peng et al. in [18], which could improve the accuracy
of the network. Chu, H. et al. [19] proposed a multi-scale feature fusion network with an
attentional mechanism called Tiny-Crack-Net (TCN), which utilized an improved residual
network to capture the local features of tiny cracks. The effectiveness and robustness of the
“Tiny-Crack-Net” were validated with field test results.

In recent years, semantic segmentation algorithms based on attention mechanisms
have received increasing attention from both academia and industry. Due to the fact that
attention mechanisms can simplify feature extraction methods, the performance of methods
that introduce attention mechanisms exceeds that of most fully convolutional semantic
segmentation methods. Recent research has extensively built their methods based on this
idea. The attention mechanism has been proven to be effective in image semantic segmenta-
tion tasks. Rehman et al. [20] proposed a new encoder–decoder architecture for effectively
segmenting brain tumor regions, which emphasizes and restores the segmentation output
in the extracted feature maps by introducing an attention gate module. Chen et al. [21]
proposed a novel transformer-based attention-guided network called TransAttUnet, in
which multi-level-guided attention and a multi-scale skip connection are designed to jointly
enhance the performance of semantical segmentation architecture. Aghdam et al. [22]
proposed an attention-based Swin U-Net extension for medical image segmentation to
improve the classical cascade operation in skip connection paths by introducing attention
mechanisms. Coquenet et al. [23] proposed an end-to-end non-segmented architecture for
handwritten-document recognition tasks based on an attention mechanism: Document
Attention Network, which achieved good recognition results.

In the task of crack detection in urban underground utility tunnels, the basic step is to
determine the presence of cracks in the images. Additionally, the model needs to extract the
semantic feature information of the cracks and perform segmentation of the crack regions.
The cracks inside urban underground utility tunnels are often small and lack prominent
features. Furthermore, factors like low illumination and large shadow areas lead to low
differentiation between cracks and the background in the images.

Therefore, this study proposes a Global Attention-based Semantic Segmentation Net-
work (GA-SegNet) to address the aforementioned issues. The main contributions of this
work are summarized as follows.
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A. A new residual separable convolutional attention model is proposed as an encoder.
By using depth separable convolution and a residual attention mechanism, more efficient
crack feature extraction is achieved. A pyramid structure is used to extract features at
multiple scales, achieving the accurate classification of image pixels.

B. In order to adapt to multi-scale features while reducing computational complexity,
the decoder uses a global attention upsampling model to enhance the feature connection
between the encoder and decoder, quickly and effectively adapt to feature mapping at
different scales, achieve simple and efficient image reconstruction, improve the multi-scale
feature extraction ability of the network, and improve the segmentation effect for small
cracks.

C. By using a balanced loss function, the contribution of crack pixels is increased in the
total loss, while the attention of background pixels is reduced, bringing significant gains to
the crack segmentation task.

The organizational structure of this article is as follows: Section 2 introduces the back-
ground of the research. Section 3 proposes a crack semantic segmentation network based on
global attention and provides a detailed explanation of the structures and principles of the
internal encoder and decoder. Section 4 conducts experimental analysis on the performance
of the proposed semantic segmentation network and compares it with reference networks.
Section 5 summarizes the article.

2. Related Works

Each pixel in an image carries its own information, such as color, texture, and spatial
position, which collectively form the different elements in the image. Image semantic
segmentation is a pixel-level classification method that involves categorizing pixels into
different classes and then reconstructing the image based on the classification results.
Traditional image segmentation algorithms rely on extracting low-level features to guide
the segmentation process, but these methods often suffer from low accuracy.

The advancement of computer hardware and the improvement in GPU computing
power have provided effective support for further research in semantic segmentation meth-
ods. Figure 1 depicts a semantic segmentation model based on fully convolutional neural
networks, which has become the mainstream method in the field of semantic segmentation
due to its superior feature extraction performance. Compared to traditional image segmen-
tation methods, FCNs enable end-to-end, pixel-to-pixel segmentation algorithms, allowing
for the extraction of higher-level semantic information from images and significantly im-
proving segmentation accuracy. Researchers have proposed a series of classic segmentation
networks based on fully convolutional neural networks. Long et al. [24] adapted con-
temporary classification networks into fully convolutional networks and transferred their
learned representations by fine-tuning to the segmentation task. Badrinarayanan et al. [25]
presented a novel and practical deep fully convolutional neural network architecture for
semantic pixel-wise segmentation termed SegNet. The decoder of the network upsamples
input feature maps at lower resolutions, eliminating the need for learning to improve
sampling rates. Ronneberger et al. [26] proposed the U-Net network, which can be trained
end-to-end from a very small number of images and has a fast network speed. For scene
parsing tasks, Zhao et al. [27] proposed a pyramid scene parsing network that utilizes
global context information through different region-based context aggregation, achieving
good performance. Chen et al. proposed an approach to spatial pyramid pooling (ASPP) to
robust segment objects at multiple scales, which addresses the task of using deep learning
for semantic image segmentation [28–31]. These networks have had a significant impact on
subsequent research in semantic segmentation.
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Figure 1. Semantic segmentation based on fully convolutional neural network.

However, most current semantic segmentation methods focus on global segmentation
with a large receptive field. Nevertheless, in many application scenarios, the task is to
segment small objects, requiring more attention to local edge details for more accurate
segmentation results. Additionally, existing methods have increased model complexity
while improving segmentation accuracy, necessitating the need to reduce model complexity
and improve segmentation efficiency while maintaining accuracy. In the context of under-
ground utility tunnels, cracks are often small and lack distinct features. Moreover, low
illumination and large shadow areas further decrease the discrimination between cracks
and the background in captured images. Based on the above analysis, this article focuses
on the research of the encoder, decoder, and loss function, and builds a semantic seg-
mentation network model to accomplish crack segmentation tasks in urban underground
utility tunnels.

3. Global Attention-Based Semantic Segmentation Network for Cracks
3.1. The Overall Structure of the Semantic Segmentation Network

To address the issues of small and indistinct cracks in urban underground utility
tunnels, as well as the low discrimination and imbalanced pixel distribution between
cracks and the background in captured images, a Global Attention Segmentation Network
(GA-SegNet) based on global attention is proposed in this article.

Figure 2 illustrates the overall structure of GA-SegNet, which consists of an encoder
and a decoder. The encoder utilizes four residual separable convolution pyramid attention
models as the backbone network to extract and classify pixel features in the image. The
decoder part deviates from the classical symmetric structure and instead employs four
Global Attention Modules (GAMs). These modules could quickly and effectively restore
the details of the original image. The global semantic information obtained from high-
level features in the decoder stage guides the weighted operations of low-level features.
Additionally, an independent residual separable convolution attention model is embedded
between the encoder and decoder to further integrate contextual information of the image
and provide better pixel-level attention to high-level features in the decoder stage. The
following are detailed introductions to each module.
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3.2. Encoder

The main task of the encoder is pixel-level classification of the image and typically
utilizing a convolutional neural network to assign initial class labels to each pixel. The
encoder combines multiple convolutional and pooling layers hierarchically, allowing it
to effectively capture local features in the image and progressively abstract high-level
semantic information at multiple scales. It ultimately outputs a low-resolution image with
labeled pixels, where each label represents a specific feature.

As shown in Figure 3, the encoder consists of four E-blocks. The input image data
undergo 3 × 3 convolution and max pooling operations for standardization and prepro-
cessing. The other four E-blocks are composed of 1 × 1 convolutions, residual separable
convolution attention models, and max pooling. They are also internally connected in a
dense manner. The residual separable convolution attention models fuse feature informa-
tion from multi-scale channels, enabling comprehensive capture of pixel-level semantic
information in the image. Subsequently, a series of max pooling operations are applied
to obtain low-dimensional feature information related to object edges, colors, and other
characteristics.

Residual Separable Convolutional Pyramid Attention Modeling

Typically, a fully convolutional neural network encoder could utilize an image classifi-
cation network. Nevertheless, the significant difference in pixel distribution between cracks
and background in the image poses a challenge. It causes the encoder to be biased towards
focusing on the features of background pixels during the training process. To address this
issue, this study proposes a residual separable convolution attention model (RSCAM) as
the baseline network. This model directs more attention towards the feature extraction of
crack pixels.
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As shown in Figure 4, the model utilizes multiple depthwise separable convolu-
tions [32] as the primary feature extractor. A residual attention mechanism is utilized to
effectively reduce information loss and improve convergence speed during the stacking
process. The model adopts a pyramid structure internally, where the input image passes
through multiple depthwise separable convolution layers. The extracted features are then
summed up, weighted with the soft mask branch of multi-scale features, and added to the
original features to obtain the final output.
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Depthwise separable convolution significantly reduces the number of model param-
eters by dividing the feature extraction process of conventional convolutions into two



Sensors 2024, 24, 1005 8 of 19

simpler steps: depthwise convolution and pointwise convolution. The computation formu-
las are as follows:

DConv(W, x)(i,j) = ∑A,B
a,b W(a,b)·x(i+a,j+b) (1)

PConv(W, x)(i,j) = ∑T
t Wt·x(i,j) (2)

Conv
(
Wp, Wd, x

)
(i,j) = PConv(W, x)(i,j)

(
Wp, DConv(W, x)(i,j)

)
(3)

In the equations, DConv(W, x) represents the channel-wise convolution process.
PConv(W, x) represents the pointwise convolution process. Conv

(
Wp, Wd, x

)
represents

the depthwise separable convolution process. x represents the input feature. (i, j) repre-
sents the coordinates of the output feature map. a, b, t represents the size of the convolution
kernel. W represents the convolution weight matrix.

3.3. Decoder

The function of the decoder is to process the low-dimensional feature information
obtained from the encoder stage into high-dimensional feature information containing
semantic and object classification-related information. Its essence is to restore the low-
resolution image output from the encoder to the resolution of the original input image
through deconvolution or upsampling operations. Finally, a classification layer is ap-
plied to accomplish pixel-level classification tasks. One of the representative early deep
learning-based semantic segmentation networks is FCN (fully convolutional network).
FCN modified the fully connected layers of image classification networks into convolu-
tional layers but did not consider the relationships between pixels. Therefore, researchers
started to consider fully utilizing the low-level information in the decoder and using it as
guidance to help the high-level features recover image details. The most direct way is to
add pathways between the encoder and decoder, such as SegNet, U-Net, DeepLab, and
other networks.

Taking all factors into consideration, a global attention model was employed as the
decoder in this study. By performing simpler computations, it weights the high-dimensional
features onto the low-dimensional feature maps. This approach could adapt to features of
different scales, reduce computational complexity, and simplify and enhance the efficiency
of the image reconstruction process. The structure of the decoder is illustrated in Figure 5,
consisting of four global attention upsampling modules. The high-dimensional features
undergo multiple upsampling operations and are fused with the low-dimensional features
through weighted fusion. Finally, a classification layer is applied to accomplish pixel-level
classification tasks, resulting in a semantic segmentation map that is consistent in size with
the original image.
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The global attention model is depicted in Figure 6. Firstly, the low-level features extracted
by the decoder undergo a 3 × 3 convolution operation to reduce the number of feature maps
and obtain a more compact feature representation. The high-level features from the encoder
are upsampled and then subjected to global average pooling to capture the global contextual
semantic information of the image. Subsequently, 1 × 1 convolution, batch normalization,
and non-linear transformation operations are performed to further refine the high-level
features for better guidance in the weighted fusion with the low-level features. Finally, the
upsampled high-level features are fused with the weighted low-level features, and successive
upsampling operations are performed to restore the image’s resolution. The global attention
upsampling model fully utilizes global contextual information and features of different scales,
and combines them with the low-level information output by the decoder through weighted
fusion, thereby improving the performance and efficiency of the decoder.
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3.4. Loss Function

The purpose of a loss function is to evaluate the accuracy of a model by comparing its
predicted results with the ground truth annotated images. In the task of image semantic
segmentation, the choice of a loss function needs to be determined based on the character-
istics of the task, such as the morphology, size, and distribution of the segmentation targets.
Therefore, selecting the appropriate loss function could stimulate the learning process of the
model, thereby improving the efficiency and accuracy of the model’s learning. In the case of
urban underground comprehensive pipeline crack images, the proportion of pixels in the crack
region is small compared to the background region, which presents a class imbalance issue.

Class imbalance is a common problem encountered in object detection and segmenta-
tion tasks. During data collection, it is difficult to effectively control the pixel proportions of
different classes in the image content manually. This may result in a significant difference
in the number of pixels for each class in the image. Therefore, achieving balance among the
pixel quantities of different classes is a challenging task. When the number of background
pixels in the image is much larger than the number of crack pixels, the influence of crack
pixels on the loss function becomes very small. This situation leads to significantly higher
accuracy in background segmentation compared to crack segmentation. Although data
augmentation techniques could effectively improve the model’s overfitting resistance, their
effectiveness is not significant when dealing with class imbalance issues. Therefore, op-
timizing the loss function could be employed to address the class imbalance problem by
increasing the weight of crack pixels in the overall loss calculation, allowing the model to
focus more on crack samples. The loss functions to address class imbalance are as follows.
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Weighted cross entropy loss is a loss function that introduces weights for each class in
the image to alleviate foreground-background class imbalance. The formula for weighted
cross entropy loss is shown in Equations (4) and (5).

w =
n − ntrue

n
(4)

loss = −w × ytrue log
(

ypred

)
− (1 − yture) log

(
1 − ypred

)
(5)

In this context, w represents the weight coefficient, n represents the total number of
pixels, ntrue represents the actual number of segmented crack pixels, ytrue represents the
label category of crack samples, and ypred represents the model’s prediction result.

Dice loss is a commonly utilized similarity evaluation function for binary classification
tasks, which could be utilized to compare the similarity between two samples. Nevertheless,
when the similarity approaches 1, the gradient of dice loss becomes very small, leading
to the issue of gradient saturation, which makes it difficult for the model to update its
parameters. Its formula is shown as (6):

loss = 1 −
2 ×

(
Xtrue ∩ Xpred

)
Xtrue + Xpred

(6)

In this context, Xtrue represents the real crack sample set, and Xpred represents the
sample set predicted to be cracks.

Focal loss assigns higher weights to difficult-to-classify samples and rare classes,
allowing the model to pay more attention to these samples. By adjusting the weights
of these samples, it could effectively improve the learning performance of the model on
minority classes and difficult-to-classify samples. The formula is shown as (7):

loss = −xα(1 − p)γ log(p)− (1 − x)(1 − α)pγ log(1 − p) (7)

In this formula, x represents the sample label category, α represents the balance adjust-
ment parameter for positive and negative samples, with a value range of [0, 1]. p denotes
the model’s predicted probability. γ represents the balance parameter for easy and difficult
samples. This loss function reduces the weight of easy-to-classify samples by controlling
parameter γ. The larger the value of γ, the greater the penalty on easy-to-classify samples.

3.5. Evaluation Metrics

This study belongs to the pixel-level semantic segmentation task, aiming to label and
classify crack and background category pixels in input images. Therefore, in this article,
commonly used metrics in segmentation tasks are employed to evaluate the performance
of the model, including frames per second (FPS), floating point operations (FLOPs), pixel
accuracy (PA), mean pixel accuracy (mPA), and mean intersection over union (mIoU).

FPS is used to evaluate the processing speed of a model on a given hardware and refers
to the number of images that can be processed per second. FLOPs are used to measure the
computational complexity of the model.

Pixel accuracy (PA) is utilized to represent the proportion of correctly segmented
pixels by the model among the total number of pixels in the image. Its formula is shown as
Equation (8):

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
=

TP + TN
TP + TN + FP + FN

(8)

Mean pixel accuracy (mPA) refers to the average segmentation accuracy of the network
for crack and background pixels in the image. Compared to the pixel accuracy metric,
mean pixel accuracy provides a more comprehensive reflection of the model’s performance
on different categories and better balances the segmentation performance among different
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classes, thus providing a more reliable overall evaluation result. Its formula is shown as
Equation (9):

mPA =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij

(9)

Mean intersection over union (mIoU) represents the average ratio of the intersection to
the union of the number of pixels between the true labeled categories and predicted results
for cracks and background in the image. This metric could indicate the similarity between
the predicted results of all categories and the ground truth labeled image, as shown in
Equation (10):

mIoU =
1

k + 1 ∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(10)

In this equation, k + 1 represents k foreground classes and 1 background class, where
k = 1 for the segmentation task in this article. pii represents the probability of predicting
class i as class i. pij represents the probability of predicting class i as class j. pji represents
the probability of predicting class j as class i.

4. Experiments and Analysis
4.1. Dataset

A. Crack500
The Crack500 dataset is a publicly available crack dataset that contains 476 crack im-

ages obtained through photos and image acquisition devices in real-life scenarios. By using
this dataset, researchers can analyze and process crack images, continuously improving
and optimizing crack detection algorithms, which is of great significance for ensuring the
safety and maintenance of building structures. The image size is not uniform, with most
being horizontal and a few being vertical. We cut the images in the dataset into fixed size
images of 512 × 512. In order to avoid overfitting caused by small data volume, the dataset
was expanded. Specifically, we expanded the dataset using horizontal flipping and random
directional rotation operations, and divided the final dataset into training, validation, and
testing sets in an 8:1:1 ratio. The final experimental data included 1144 images in the
training set, 380 images in the validation set, and 380 images in the test set. We used
Labelme 3.11.2 for annotation and generated corresponding annotation information files.
Figure 7 shows the interface diagram of Labelme annotation software. Table 1 shows the
detailed allocation table for the Crack500 dataset.
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Table 1. Detailed allocation table for Crack500 dataset.

Training Validation Test Total

cracks 1144 380 380 3428

B. CCUIPC
In order to further test the segmentation effect of the algorithm, a new concrete cracks

in underground integrated pipeline corridors dataset (CCUIPC) was introduced. All
images were collected from underground integrated pipelines in some cities in Tianjin,
China, totaling 2000 images. We used Labelme 3.11.2 to label the 2000 crack images. The
image size was adjusted to 512 × 512. Figure 8 shows the original and labeled images
of cracks in some urban underground pipe corridors, where the white area is the labeled
cracks. As shown in Table 2, according to the requirements of model training, the crack
image dataset was divided in the ratio of 8:1:1, in which the training set contained 1600 crack
images, and the validation set and the test set contained 200 crack images respectively.
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Table 2. Detailed allocation table for CCUIPC dataset.

Training Validation Test Total

Pipe gallery cracks 1600 200 200 2000

All experiments in this study were conducted on a Windows 10 system environment.
The NVIDIA GeForce GTX 1050 Ti GPU was utilized to support model training and
inference, while the computer processor model was Intel Core i7-3770. Tables 3 and 4
provide the relevant hardware and software configuration information.

Table 3. Experimental hardware configuration parameters.

Hardware Configuration Parameter

Processor Inter core i7-3770
GPU NVIDIA GeForce GTX 1050 Ti

Memory 8 GB random access memory, 4 GB VRAM
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Table 4. Experimental software configuration parameters.

Software Configuration Parameter

Operating system Windows 10
Programming Language Python 3.7.15

Deep learning framework PyTorch 1.2.0
CUDA 10.0

CUDNN 10.0
Anaconda 3-2021.04

4.2. Experimental Results and Analysis

In the training phase, the GA-SegNet model constructed in this article was optimized
by the Adam optimizer. Due to the complexity of the network model and the storage
capacity of the GPU, this study adjusted the batch size to 4 for training and set the total
number of training batches to 180. The learning rate decay strategy was set to decrease by
10% every 20 batches, with β1 = 0.99, β2 = 0.999, and the weight decay set to 0.0001. Based
on conventional learning rate setting methods and multiple debugging attempts, the initial
learning rate for this experiment was set to 0.0001.

Figure 9 shows the loss variation in the GA-SegNet model during training. It can
be observed that the loss curves are almost completely overlapping, exhibiting relatively
smooth changes, and overall showing a decreasing trend without overfitting. In the early
stages, the learning rate is relatively high, resulting in fluctuations in the loss curves around
the 20th and 40th training batches. Nevertheless, the loss curves stabilize thereafter and
gradually converge. The loss function measures the difference between the predicted
results of the model and the true results, reflecting the change in accuracy during the
training process to some extent. Therefore, considering the comprehensive analysis, the
GA-SegNet model performs best in terms of segmentation network model training when
the initial learning rate is set to 0.0001.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19 
 

 

4.2. Experimental Results and Analysis 
In the training phase, the GA-SegNet model constructed in this article was optimized 

by the Adam optimizer. Due to the complexity of the network model and the storage ca-
pacity of the GPU, this study adjusted the batch size to 4 for training and set the total 
number of training batches to 180. The learning rate decay strategy was set to decrease by 
10% every 20 batches, with 𝛽 = 0.99 , 𝛽 = 0.999 , and the weight decay set to 0.0001. 
Based on conventional learning rate setting methods and multiple debugging attempts, 
the initial learning rate for this experiment was set to 0.0001. 

Figure 9 shows the loss variation in the GA-SegNet model during training. It can be 
observed that the loss curves are almost completely overlapping, exhibiting relatively 
smooth changes, and overall showing a decreasing trend without overfitting. In the early 
stages, the learning rate is relatively high, resulting in fluctuations in the loss curves 
around the 20th and 40th training batches. Nevertheless, the loss curves stabilize thereaf-
ter and gradually converge. The loss function measures the difference between the pre-
dicted results of the model and the true results, reflecting the change in accuracy during 
the training process to some extent. Therefore, considering the comprehensive analysis, 
the GA-SegNet model performs best in terms of segmentation network model training 
when the initial learning rate is set to 0.0001. 

 
Figure 9. GA-SegNet model training and validation loss function. 

4.3. Ablation Experiment 
To evaluate the performance of our proposed GA-SegNet algorithm, we conducted 

ablation experiments to examine the impact of each improvement in the algorithm on its 
performance. The performance evaluation metrics include PA, mPA and mIoU. 

Table 5 lists the experimental results obtained for GA-SegNet with various optimiza-
tion measures. The ablation experiments used FCN as the baseline model. Aiming at the 
uneven distribution of pixel categories in the crack image samples of an urban under-
ground comprehensive pipeline corridor, this paper selected three common loss functions 
for solving the category imbalance problem to conduct the training comparison experi-
ments (weighted cross entropy loss, dice loss, and focal loss) and analyzed the improve-
ment effect of different loss functions on the crack segmentation performance of the GA-
SegNet model through the ablation experiments. “GAM” and “WCELoss” stand for 
global attention model and weighted cross entropy loss. Method (1) shows that when we 
used the residual separable convolutional attention model as the benchmark network, and 
when the model was also trained using the weighted cross entropy loss function, the PA, 

Figure 9. GA-SegNet model training and validation loss function.

4.3. Ablation Experiment

To evaluate the performance of our proposed GA-SegNet algorithm, we conducted
ablation experiments to examine the impact of each improvement in the algorithm on its
performance. The performance evaluation metrics include PA, mPA and mIoU.

Table 5 lists the experimental results obtained for GA-SegNet with various optimiza-
tion measures. The ablation experiments used FCN as the baseline model. Aiming at
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the uneven distribution of pixel categories in the crack image samples of an urban under-
ground comprehensive pipeline corridor, this paper selected three common loss functions
for solving the category imbalance problem to conduct the training comparison experiments
(weighted cross entropy loss, dice loss, and focal loss) and analyzed the improvement effect
of different loss functions on the crack segmentation performance of the GA-SegNet model
through the ablation experiments. “GAM” and “WCELoss” stand for global attention
model and weighted cross entropy loss. Method (1) shows that when we used the residual
separable convolutional attention model as the benchmark network, and when the model
was also trained using the weighted cross entropy loss function, the PA, mPA and of the
network were improved by 2.27% and 0.99%, respectively, compared to the benchmark, but
the mIoU was slightly decreased by 1.2% compared to the benchmark. Method (2) shows
that when the global attention model was used as the decoder and the model was trained
using the weighted cross-entropy loss function, all the performance evaluation metrics of
the network were improved, and method (3) shows that when the algorithm introduced
both the residual separable convolutional attention model and the global attention model,
all the performance evaluation metrics of the network were further improved compared
to the above-mentioned methods, and the network’s PA, mPA and mIoU were improved
by 4.24%, 1.88% and 1.78%, respectively, compared to the benchmark, which proves the
effectiveness of the various improvements in the encoder and decoder in this paper.

Table 5. Results of ablation experiment.

Methods RSCAM GAM WCE Loss Dice Loss Focal Loss PA (%) mPA (%) mIoU (%)

FCN 91.41 81.93 79.84
Method (1)

√ √
93.68 82.92 78.64

Method (2)
√ √

94.73 83.06 80.95
Method (3)

√ √ √
95.65 83.81 81.62

Method (4)
√ √ √

97.31 87.21 82.37
Method (5)

√ √ √
98.69 89.52 85.73

Method (4) shows that the use of the dice loss function had a better effect on the
model performance in the binary classification task, and the PA, mPA and mIoU of the
network were improved by 1.66%, 3.4% and 0.75%, respectively, compared with method
(3); method (5) shows that the model trained with focal loss function performed best in the
test set, with a PA of 98.69%, mPA of 89.52%, and mIoU of 85.73%, which can significantly
improve the segmentation performance of the GASN model for cracks. In this paper, an
optimal combination of methods (method (5)) was chosen to ensure the best performance
of the model.

4.4. Comparative Experiment

We compared our method with FCN, SegNet, U-Net, Deep Lab V3, and PSP Net in
terms of model complexity and algorithm efficiency.

Table 6 presents the comparison results between the proposed method and the state-
of-the-art methods mentioned above in terms of FPS and FLOPs. Compared with other
algorithms, GA-SegNet achieved the fastest inference speed and the smallest model com-
plexity (FPS: 47, FLOPs: 87.6 G). The inference speed was 11.4% faster than the fastest
algorithm (PSP Net). The model complexity decreased by 7.3% compared to FCN, to only
30.6% of SegNet (286 G FLOP). The experimental results demonstrate the effectiveness
of the residual separable convolutional pyramid attention model, significantly reducing
model complexity while maintaining good inference speed, and meeting the real-time
segmentation requirements of crack targets.
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Table 6. Model efficiency comparison.

Model FPS FLOPs (G)

FCN 30.3 94.5
SegNet 16.7 286
U-Net 38.6 104.0

Deep Lab V3 14.4 218.0
PSP Net 42.2 187.1

GA-SegNet 47 87.6

To validate the superiority of the proposed GA-SegNet model, comparative experi-
ments on semantic segmentation are conducted with FCN, SegNet, U-Net, DeepLab V3,
and PSPNet as reference models. Crack500 and CCUIPC datasets are utilized for train-
ing and testing, and the training strategies are continuously adjusted to achieve optimal
segmentation performance.

The training loss curves of GA-SegNet and the reference models are shown in Figure 10.
Among them, DeepLab V3 has the highest loss value, indicating the poorest training
performance among the mentioned models. In comparison, U-Net and SegNet have similar
training losses. PSPNet shows good training performance, with a final loss convergence
value close to that of the proposed GA-SegNet network. Compared to the other models, the
GA-SegNet network exhibits faster convergence of training loss and achieves the smallest
stable loss value. This indicates that it could learn the discriminative criteria of pixels in
images more quickly and achieve higher segmentation accuracy.
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Figure 11 shows the crack segmentation results of different algorithms. It can be
observed that DeepLab V3 had the poorest performance in crack segmentation, only
extracting partial cracks and exhibiting poor matching of local shapes. It is not suitable for
crack image segmentation in complex scenes. SegNet and U-Net had similar segmentation
results, but SegNet performed better in terms of local details. FCN could segment wider
cracks with less surrounding noise but failed to consider the intrinsic relationship between
low-level and high-level features, resulting in poor segmentation performance for subtle
cracks and edge processing. PSPNet showed good overall segmentation performance but
performed relatively worse in handling noise in the image background. Compared to other
reference models, the proposed GA-SegNet segmentation model in this study achieved
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closer prediction of crack integrity and real regions on the dataset, with lower output noise
and more accurate extraction of edge details.
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Table 7 illustrates the experimental results obtained by the advanced methods men-
tioned above on the Crack500 dataset. The GA SegNet network proposed in this paper
showed the best performance among all evaluation metrics, achieving 78.24% mPA and
83.51% mIoU. Compared with FCN, our method’s mPA and mIoU increased by 9.67% and
12.57%, respectively. Compared with the PSP Net with the best overall performance, GA
SegNet had improved various evaluation indicators, with PA, mPA, and mIoU increasing
by 2.21%, 1.85%, and 2.49%, respectively.

Table 8 presents the evaluation metrics of the GA-SegNet network and reference
networks on the CCUIPC test set. From the data results, it can be seen that DeepLab V3
had the worst evaluation result on the test set, with an mIoU of only 76.67%. Nevertheless,
its PA and mPA evaluation parameters were slightly higher than those of FCN, reaching
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91.52% and 83.27%, respectively. U-Net, SegNet, and PSPNet performed well, achieving
an mIoU above 81.97% and PA above 96.21%. The proposed GA-SegNet network in this
article exhibited the best performance in all evaluation metrics, with a precision of 89.79%,
recall of 84.64%, F1 score of 87.13%, PA of 98.69%, mPA of 89.52%, and mIoU of 85.73%.

Table 7. Indicator parameters of GA-SegNet and reference model in Crack500 dataset.

Model PA (%) mPA (%) mIoU (%)

FCN 78.25 68.57 70.94
SegNet 85.04 71.15 74.16
U-Net 87.21 73.94 72.85

Deep Lab V3 80.57 70.48 68.18
PSP Net 86.82 76.39 81.02

GA-SegNet 89.03 78.24 83.51

Table 8. Indicator parameters of GA-SegNet and reference model in CCUIPC dataset.

Model PA (%) mPA (%) mIoU (%)

FCN 91.41 81.93 79.84
SegNet 96.21 85.44 83.27
U-Net 96.58 87.83 82.86

Deep Lab V3 91.52 83.27 76.67
PSP Net 97.31 86.95 81.97

GA-SegNet 98.69 89.52 85.73

In short, the overall experimental results indicate that our proposed GA-SegNet al-
gorithm outperforms the aforementioned segmentation algorithms in terms of inference
efficiency and segmentation accuracy for small and indistinct crack targets in urban under-
ground pipe corridors.

5. Conclusions

In this study, a semantic segmentation network based on global attention (GA-SegNet)
is constructed. The GA-SegNet fully utilizes global contextual information and features
at different scales to achieve fast and accurate crack segmentation. A residual separable
convolution attention model is employed to extract features at multiple scales and achieve
precise pixel classification in the image. A global attention model is utilized to enhance the
network’s attention to crack regions and strengthen the connection between the encoder
and decoder. High-dimensional features could guide low-dimensional features in a simpler
way through weighted fusion, enabling the network to quickly and effectively adapt to
features at different scales and improve the segmentation accuracy of crack regions. Finally,
the impact of different loss functions on the performance of GA-SegNet is analyzed on
the test set. Comparative experiments are conducted with classical semantic segmentation
networks. The experimental results demonstrate that the proposed GA-SegNet model out-
performs other models in terms of actual segmentation performance and various evaluation
metrics on the dataset. Due to the high complexity and computational effort of the segmen-
tation algorithm models, it is still more difficult to deploy them in embedded devices with
fixed performance and limited computational resources. In the future, lightweighting the
network to further balance efficiency and accuracy will be the focus of our research.
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