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Abstract: The present study proposes a novel deep-learning model for remote sensing image en-
hancement. It maintains image details while enhancing brightness in the feature extraction module.
An improved hierarchical model named Global Spatial Attention Network (GSA-Net), based on
U-Net for image enhancement, is proposed to improve the model’s performance. To circumvent
the issue of insufficient sample data, gamma correction is applied to create low-light images, which
are then used as training examples. A loss function is constructed using the Structural Similarity
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) indices. The GSA-Net network and loss function are
utilized to restore images obtained via low-light remote sensing. This proposed method was tested
on the Northwestern Polytechnical University Very-High-Resolution 10 (NWPU VHR-10) dataset,
and its overall superiority was demonstrated in comparison with other state-of-the-art algorithms
using various objective assessment indicators, such as PSNR, SSIM, and Learned Perceptual Image
Patch Similarity (LPIPS). Furthermore, in high-level visual tasks such as object detection, this novel
method provides better remote sensing images with distinct details and higher contrast than the
competing methods.

Keywords: remote sensing image enhancement; global spatial attention mechanism; feature extraction;
feature fusion; model compression

1. Introduction

The military, earth sciences, agriculture, and astronomy industries are experiencing a
surge in demand for high-quality remote sensing images. Nonetheless, less-than-ideal envi-
ronmental circumstances reduce the brightness and sequester the critical elements in remote
sensing images. Since brightness is a major quality component in remote sensing photos,
low-light enhancement techniques are required for improved information representation
and visual perception [1].

The two image-enhancement techniques are image spatial domain and transform
domain methods. Traditional histogram equalization [2] is the most popular image spatial
domain algorithm due to its simplicity and efficiency. However, the primary disadvantage
of histogram equalization is that if the histogram contains peaks, the generated results are
enhanced, resulting in saturation issues and a highly sharpened image. To overcome this
issue, histogram-based methods in the spatial domain of the image, such as dynamic his-
togram equalization [3] and a histogram modification framework [4], have been proposed.
Although both can prevent over-enhancement, the details are not emphasized because
these methods preserve the input histogram. Recently, adaptive gamma correction with
weighted distribution (AGCWD) [5] has been proposed as a new contrast enhancement
technique, which produces similar results and may also cause a loss of detail in light
areas and an increase in saturation. A previous study proposed a two-dimensional (2D)
histogram that uses contextual information to improve the contrast of the input image [6–8].
However, generating a two-dimensional histogram has a high computational cost and is
not suitable for many practical applications.
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The transform domain method disassembles input images into distinct sub-bands
and improves contrast by modifying specific components [6]. In the study by Demirel
et al. [9], a singular value equalization method was proposed for adjusting image brightness.
The combination of this method with the discrete wavelet transform (Gonzalez et al.) [1]
improved the contrast enhancement. Another method, enhancing contrast in remote
sensing images with discrete wavelet transforms and adaptive intensity transformations,
was proposed by Lee et al. [10]; however, this method requires specific parameter settings,
rendering it impractical in the real world. A sub-band decomposition multiscale Retinex
method, coupled with a hybrid intensity transfer function, was introduced (Jang et al.) [11]
to improve the optical remote sensing images. Also, a generic method of illumination
normalization for multiple remote sensing images was proposed (Zhang et al.) [12]. This
method first enhanced the contrast in the gradient domain and then adjusted the brightness
by equalizing singular values. However, contrast and details are not emphasized because
this algorithm focuses primarily on maintaining illumination consistency.

Lore et al. [13] proposed Low-Light Net (LLNet), a deep autoencoder for contrast
enhancement and denoising of low-light images caused by accelerated development of
deep learning. The authors of [14] introduced transformative neural networks and argued
that the conventional multiscale Retinex algorithm is a feedforward transformative neural
network with various Gaussian transformation kernels. Retinex-Net is a deep learning
method based on Retinex image decomposition [15], and the entire model is implemented
using transformative neural networks. It was also used to establish the Low-Light Paired
(LOL) dataset under natural conditions. Some cutting-edge end-to-end methods (Han et al.,
Zhang et al.) [16,17] used U-Net (Ronneberger et al.) [18] as their fundamental structure and
added dense residual blocks to each layer to incorporate multiscale information. Although
these methods provide competitive performances on benchmark datasets, their lengthy
inference time is not conducive to widespread application.

Although deep learning-based algorithms for image augmentation provide encour-
aging results, some drawbacks, such as blurred details, poor color devotion, and poor
visual quality, cannot be ignored. Therefore, based on the current U-Net architecture,
the present structured image enhancement model, termed GSA-Net, reduces the loss of
spatial information according to sampling. This algorithm builds a U-shaped network
using multiscale sampling and introduces global spatial attention (GSA) with respect to
image flow, thus enabling the interaction of feature vectors of each branch across channels,
suppressing redundant information, and using the feature fusion module to improve the
perception of low-scale texture details and multilevel features. Taken together, this method
proposes selective kernel feature fusion (SKFF) to effectively integrate the features through-
out the reconstruction phase rather than connection approaches to fuse the maps of various
resolutions. In summary, the primary contributions of the study are as follows:

• Depthwise separable convolution is a lightweight convolution operation that signif-
icantly reduces the number of parameters and computations. Herein, we propose
replacing the ordinary convolution in GSA-Net with depthwise separable convolution,
reducing the number of parameters from 29.86 M to 7.06 M (a reduction of about 76%).

• A global attention module is introduced to weaken the noise response and integrate
local information. Specifically, the global attention mechanism replaces the convolution
layers of U-Net and is embedded into the network backbone.

• We propose an improved loss function that combines the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) quotient to avoid the model optimization
direction deviation and gradient diffusion. This loss function guides the network to
train and improve the convergence of the model.

• The proposed model is evaluated based on a synthesized low-light image enhancement
dataset, and the results demonstrate that it achieves state-of-the-art performance in
image enhancement. Moreover, we facilitate object detection on the enhanced images,
which has positive implications for remote sensing images.
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2. Related Studies
2.1. Data Augmentation

With the widespread application of deep learning in computer vision, the diversity of
datasets is crucial for the performance of algorithms. In order to enhance the dataset used in
our study, we employ Gamma correction as an effective data augmentation technique. The
gamma correction possesses unique advantages in adjusting the brightness and contrast of
images to augment the dataset for improved training and evaluation of our model.

Gamma transformation is a non-linear process that enhances or suppresses different
intensity regions of an image, especially under low-light conditions, to improve the visibil-
ity of the details. While determining the parameter values for gamma transformation, we
consider the specific requirements for simulating low-light synthetic images. Small gamma
values (<1) enhance the details in darker regions, making them distinct, a critical aspect for
simulating images in low-light conditions. In addition, we ensure that the gamma value
range includes one to preserve the original brightness of the image. Larger gamma values
(>1) are applied to suppress the brighter areas of the image, preventing excessive amplifica-
tion and achieving visual balance. This customized selection of gamma transformation and
parameter values caters to the specific demands of simulating low-light synthetic images,
enhancing image quality and adaptability in various scenarios. The luminance of the trans-
formed image decreases with the increasing gamma value. Changing the gamma value can
affect the quality of remote sensing images. A gamma value of four is used in this study to
produce a darker image. The transformed V channel image is then merged back into the
V channel of the original image, and the modified image is converted back to RGB space
to produce a darkened remote sensing image. The NWPU VHR-10 dataset comprises 650
remote sensing images captured under normal lighting conditions with high contrast and
categorized into ten classes. Figure 1 illustrates the NWPU VHR-10 dataset. To enhance the
dataset diversity and simulate challenging scenarios, seven sets of parameters are chosen
randomly, which generate seven sets of remotely sensed images under weak illumination
conditions. Ultimately, this augmentation process yields a comprehensive training set
consisting of 4550 images. Consequently, 700 synthetic images are created by combining
100 images with typical lighting that comprise the test set, while the remaining images
provide the training data. This method darkens the remote sensing images, providing
several low-light images. The transformation formula for gamma is as follows:

Igm = αIγ (1)

when γ > 1, gamma transformation can be used to darken an image, which facilitates the
generation of additional data for a specific dataset. In this study, we present examples
where α = 1 and the γ values are 1.5 and 4. Figure 2 illustrates an example of a synthesized
low-light image.

U-Net is a convolutional neural network proposed for biomedical image segmentation
tasks [19–22]. The term “U-Net” is derived from the network’s structure, which resembles
the letter “U”. It uses a symmetric encoder–decoder structure and skip connections [23]
in the decoder part to merge the feature information extracted from the encoder with
that extracted from the decoder, thereby enhancing the reconstructed input image. The
encoder component of U-Net comprises convolutional layers, pooling layers, and activa-
tion functions, which are used to extract features from the input image. The decoder’s
reconstruction layers, skip connections, transformative layers, and activation functions are
used to reconstruct the output image.

In the field of image enhancement, U-Net is frequently employed to convert low-
quality input images to high-quality output images. Specifically, the input image serves
as the network’s input, whereas the output image is the reconstructed image produced
by the network. The U-Net network autonomously learns to convert low-quality images
into high-quality ones using the training dataset. Furthermore, U-Net enhances the remote
sensing image characteristics, such as contrast, sharpness, and details. Training the U-Net
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network is used to obtain an effective model for enhancing the quality of remote sensing
images and their practical applications.
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2.2. U-Net

The technological improvements in remote sensing image enhancement are vital,
which renders their real-world significance apparent when applied to target detection
scenarios. The incorporation of U-Net architecture into the target detection framework
yielded a 15% increase in detection accuracy using a dataset of aerial surveillance images.
This example illustrates the efficiency of our proposed enhancements in refining the identi-
fication and localization of specific targets amidst complex and cluttered scenarios, with
potential implications for security and environmental monitoring.

3. Proposed Method

Herein, we have introduced the model’s primary architecture, followed by an analysis
of the function of each module and the loss function’s derivation process.

3.1. GSA-Net

The multiresolution feature extractor, picture texture reconstruction layer, and feature
fusion module constitute the majority of the network. The downsampling [24] and channel
attention modules extract spatial details and semantic information and are the components
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of the multiresolution feature extractor. Multiple Global Spatial Attention (GSA) modules
make up the image texture reconstruction layer, which directs the network to recover the
details of the image texture. The feature fusion module [19] functions at the network’s end
to aggregate the features from various levels in a multidirectional manner and bridge the
semantic gap caused by various stages and scales.

The size of the input data for GSA-Net is not rigidly constrained and is typically
determined by the characteristics of the task and dataset. It is commonly set as H × W,
where H represents the image height and W is the width.

Firstly, for the encoder (downsampling path) of GSA-Net, we employ 3 × 3 depthwise
separable convolutions to downsample the low-light remote sensing images at the original
resolution. Each layer is equipped with GSA to extract comprehensive and rich semantic
information. Further details about the GSA block will be elaborated in Section 3.2. Addi-
tionally, in the GSA-Net, for the main feature path at the end of the GSA, we utilize the
Pixel (Un) Shuffle method as a downsampling module. Subsequently, these feature maps
are concatenated with the shallow feature maps obtained from the previous downsampling,
and the regular U-Net process is continued. Each downsampling module outputs feature
maps with a size of H

2N × W
2N , where N is the number of downsampling modules. The

middle layers, serving as connecting components between the encoder and the decoder, do
not induce significant size changes. In the decoder (upsampling path), each upsampling
module increases the size of the output feature maps to H × 2N × W × 2N through upsam-
pling and convolution operations, where N is the number of upsampling modules. Finally,
the SKFF (Selective Kernel Feature Fusion) method is employed to consolidate information
in the decoder (reconstruction process). Figure 3 illustrates the structure of GSA-Net.
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Figure 3. Network architecture of GAS-Net.

GSA-Net is distinguished from other methods based on its unique advantages, which
are manifested in adopting depthwise separable convolution for a lightweight design and
integrating a global attention module. These features reduce the parameter count and enhance
local and global image information fusion. However, the network still faces challenges
such as computational complexity in large-scale image data, reliance on specific datasets,
and sensitivity to hyperparameter choices. To address these limitations, the present study
improved the loss function by incorporating an optimization approach using a combination
of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). This targeted
optimization enhances the model’s convergence, thereby overcoming the constraints and
ensuring a robust and reliable performance of GSA-Net in practical applications.

3.2. GSA Block

As shown in Figure 4, the top-level subnetwork employs GSA blocks to capture global
information, including two depthwise separable convolutions (DSCs) + PReLU layers and
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AdaptiveAvgPool2d, AdaptiveMaxPool2d, interpolation (Resize block in Figure 3), and a
Spatial Attention (SPA) module. Specifically, based on the input feature map X with size
H × W × C. AdaptiveAvgPool2d and AdaptiveMaxPool2d are used to extract representa-
tive information, resulting in an output feature map with dimensions H1 × W1 × C. Then,
the image with global information is upscaled using an interpolation function, followed by
Conv + PReLU processing to reduce the channel number, resulting in a global feature map
with a size of H × W × C1. Subsequently, we apply the SPA block to enhance the attention
in different regions in the global feature map. The block also applies both max-pooling
and average-pooling in a channel-wise size, and then the two feature maps are subtracted
to generate a feature descriptor and highlight the informative regions. Finally, the input
feature map (encoding local information) and the optimized global feature map (encoding
global information) are combined using the DSC + PReLU function, resulting in an output
feature map with a size of H × W × C.
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3.3. DSC

DSC is a lightweight convolution operation [25] that splits the traditional operation
into depthwise and pointwise convolutions, significantly reducing the number of param-
eters and computations. The key distinction between depthwise convolution [26] and
pointwise depthwise convolution [27] lies in their operational methodologies. Depthwise
convolution operates independently on each channel, whereas pointwise depthwise convo-
lution performs linear combinations across channels. Depthwise Separable Convolution
(DSC) amalgamates these operations by first employing depthwise convolution, followed
by pointwise convolution for inter-channel mixing. Herein, we incorporated DSC into the
GSA-Net network for model lightweighting.

In standard convolution, the number of parameters is determined by the size of the
convolutional kernel and the number of input channels. In contrast, Depthwise Separable
Convolution (DSC) focuses solely on each input channel during depthwise convolution,
resulting in smaller convolutional kernel sizes. Pointwise convolution subsequently linearly
combines channels through element-wise operations. This design effectively reduces the
number of parameters on each channel, and the standard convolution operation with DSC
is supplanted, resulting in a 76% reduction in model parameters. This feature enhances the
model’s computational efficiency but reduces its storage space requirements, rendering it
suitable for scenarios with limited resources.

For optimal performance and precision of DSC, selecting the appropriate kernel sizes
and numbers for depthwise and pointwise convolutions is essential. In addition, enhanced
DSC operations, such as group and deformable pointwise convolutions, can improve the
model’s accuracy.
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Furthermore, DSC reduces the number of parameters and computations while maintain-
ing model accuracy. The depthwise separable convolution employed for model lightweighting
is depicted in Figure 5.
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3.4. SKFF Module

The SKFF module dynamically adjusts the receptive field by two operations, Fuse
and Select, as illustrated in Figure 6. Fuse combines the information from multiresolution
streams to generate global feature descriptors, while Select uses these descriptors to recali-
brate and aggregate the feature map. Specifically, the three branch streams in this study are
as follows:
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Fuse: The theoretical foundation behind the selection of three parallel convolution
streams is rooted in the demand for multiscale information fusion to enhance the model’s
perceptual capabilities of different scale features. The design aims to introduce convolution
streams with distinct receptive fields to capture multiscale contextual information from the
input data. Each parallel convolution stream is dedicated to extracting features of specific
scales, ensuring the model comprehensively understands the multiscale characteristics
of the data. It receives input from three parallel convolution streams and combines the
multiscale features through element-wise summation:

L = L1 + L2 + L3 (2)
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Channel s ∈ R1×1×C is computed using global average pooling (GAP) on the L ∈ RH×W×C

dimension. Next, a tight feature representation z ∈ R1×1×r is generated using the channel-
downscaling Conv layer, where r = C

8 . Finally, the feature vector z passes through three
parallel channel upsampling layers, providing three feature descriptors: v1, v2, v3 ∈ R1×1×C.

Select: The SoftMax function is applied on v1, v2, and v3 to generate attention activa-
tions S1, S2, and S3, which are used to recalibrate the multiscale feature maps L1, L2, and
L3. The process of feature recalibration and aggregation is defined as follows:

U = S1L1 + S2L2 + S3L3 (3)

The SKFF uses six times fewer parameters than aggregating features through concate-
nation while still producing better results. The specific structure of the SKFF module is
shown in Figure 6.

3.5. Loss Function

The goal of training the GSA-Net model is to infer the mapping correlation between
low-light image X and normal-light image Y, such that the low-light image can be enhanced
to resemble the normal-light image. Currently, the mean squared error (MSE) loss func-
tion [13] and the mean absolute error (MAE) loss function [28] are the predominant loss
functions that measure the error between corresponding pixels in the field of computer
vision. The MSE is susceptible to outliers, resulting in over-constraint [29], whereas MAE
lacks gradient constraints [30], resulting in weak model convergence. Some studies have
proposed a structural similarity index (SSIM) loss function based on human visual percep-
tion [31], which optimizes the model according to visual sensory direction; however, the
illuminance and color restoration results are unsatisfactory.

The central concept underlying SSIM is the incorporation of subjective human percep-
tion. SSIM evaluates three variables: (1) distortion is less apparent in very bright regions
(luminance); (2) it is less apparent in areas with complex textures (contrast); (3) adjacent
pixels form a structure in space that is highly sensitive to the human eye (structure). Conse-
quently, SSIM assesses the three variables mentioned above using the following formulas:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(5)

s(x, y) =
σxy + C3

σxσy + C3
(6)

In the above formula, µ represents the mean, σ represents the variance, and C1, C2,
and C3 are constants used to fine-tune SSIM. Moreover, C1, C2, and C3 satisfy the following
correlation:

C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2 (7)

In Equation (7), L represents the dynamic range of the pixels. For an 8-bit grayscale
image, L = 256. K1 and K2 are <1 and are typically set to 0.01 and 0.03, respectively.
Therefore, the formula for calculating SSIM is as follows:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (8)

The three factors in Equation (8) have similar effects on subjective perception, and
therefore, α = β = γ = 1. The following equation is used to calculate SSIM:

SSIM(X, Y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (9)
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PSNR is based on a direct comparison of the differences between pixels. The first step
is to calculate the MSE of all pixels in two images:

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2 (10)

Taking the logarithm of the result yields the PSNR, which is calculated as follows:

PSNR = 10 · log10(
MAX2

I
MSE

) (11)

In order to constrain the training process, accelerate the convergence speed of the
model, and improve the visual quality of the enhanced image, we take into account the
characteristics of the aforementioned loss functions. The weighted part of the proposed
loss function (Fan et al. 2022) [32] is removed, and that which consists of the quotient of
PSNR and SSIM to predict the error between low-light images and normal images is used,
according to the following equation:

Lps =
1 − SSIM(X, Y)
PSNR(X, Y) + ω

(12)

In the equation, X and Y represent the samples, and ω is a constant that is usually
set to 0.005. This equation avoids the small value of the initial training PSNR, which
leads to gradient vanishing or explosion while not introducing additional parameters. The
combination of PSNR and SSIM as a loss function exhibits satisfactory general performance
and can be extended to similar fields, such as image restoration and denoising.

4. Experiments
4.1. Experimental Design

To validate the feasibility of the proposed algorithm, we employ the NWPU VHR-10
dataset (Huang et al.) [5] based on the experimental environment shown in Table 1. The
Adam optimizer is adopted, with an initial learning rate of 0.0002 and a learning rate decay
of 0.00001 after each epoch. The training process is terminated when the learning rate
decreases to 0.00001, and the total number of iterations is set to 200. Also, a comparative
analysis with state-of-the-art algorithms was conducted in recent years.

Table 1. Experimental environment.

Operating Environment Detailed Configuration

System ubuntu20.04
Processor Model Intel Xeon Platinum 8255C @ 2.50 GHz
Graphics Card RTX 2080 Ti(11 GB)
CUDA Version 10.1

Deep Learning Framework Pytorch 1.11.0

4.2. Dataset

NWPU VHR-10 is a geospatial remote sensing dataset consisting of 650 images with
objects and 150 background images, with a total of 800 images, for object detection. The
dataset comprises ten object categories: airplanes, ships, oil tanks, baseball fields, tennis
courts, basketball courts, athletic fields, harbors, bridges, and cars. Given the small size of
the NWPU VHR-10 dataset, the images are converted to the Hue Saturation Value (HSV)
color space to mitigate the overfitting problem during the training process and enhance
the model’s generalization ability. The V channel image is gamma-transformed to produce
a composite low-light image Vark : vdark = αVγ, where α ∈ (0.8, 1),γ ∈ (1.3, 5). Then,
the V channel of the image is replaced with vdark, while the other two channels remain
unchanged. The image is subsequently converted back into the Red–Green–Blue (RGB)
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color space to generate the composite low-light image. For each normal-light image, seven
sets of parameters are randomly selected to create seven low-light images, resulting in a
total of 4550 training images. Of these, 700 composite images including 100 normal-light
images comprise the test set, and the remainder constitute the training set. Table 2 presents
seven randomly chosen examples of parameters.

Table 2. Seven randomly selected parameter examples.

Parameter Combination α γ

1 0.85 2.0
2 0.90 3.5
3 0.80 1.8
4 0.88 4.0
5 0.82 2.8
6 0.95 1.3
7 0.86 3.2

4.3. Evaluation Metrics

The present study employs six evaluation metrics as criteria to quantitatively evaluate
the performance of the proposed low-light image enhancement algorithm. The paper
incorporates various metrics to evaluate image generation or processing tasks. These
metrics include PSNR, SSIM, SNR, normalized mutual information (NMI) (Studholme et al.
1999) [32], learned perceptual image patch similarity (LPIPS) (Zhang et al. 2018) [33], and
normalized root mean square error (NRMSE) (Hyndman et al. 2006) [34]. This ensemble
of metrics forms a comprehensive set of performance measures. Typically, the numerical
range for PSNR and SNR is typically between zero and positive infinity, with higher values
indicating better image quality. SSIM values typically range from −1 to 1, with values
closer to 1 indicating high image quality. NMI values range from 0 to 1, with higher values
indicating better image similarity. LPIPS and NRMSE values range from 0 to positive
infinity, with lower values indicating better image quality. PSNR reflects the level of image
distortion, SSIM measures the similarity between two images, SNR indicates the SNR in the
image, NMI reflects the correlation between images, NRMSE measures the error between
images based on pixel values, and LPIPS measures the perceptual similarity between
images. PSNR, SNR, SSIM, and LPIPS are evaluated according to the following formulas:

PSNR = 10lg
2562

MSE
(13)

SNR = 10lg
∑M

i=1 ∑N
j=1 x(ℶ, j)2

∑M
i=1 ∑N

j=1[x(i, j)− y(i, j)]2
(14)

MSE(x, y) =
1

MN ∑M
i=1 ∑N

j=1|x(i, j)− y(i, j)|2 (15)

wherein MSE stands for mean squared error, while M and N represent the width and height
of the image, respectively. Moreover, i and j denote the horizontal and vertical coordinates
of a pixel; x and y refer to the sample and the label, respectively.

SSIM(X, Y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (16)

x and y represent the sample and label, respectively. Moreover, µx and µy denote the
means of x and y and σx and σy denote their variances. σxy represents the covariance be-
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tween x and y, while C1 and C2 are constants that prevent the denominator from becoming
too small and resulting in unstable outcomes.

d(x, x0) = ∑
l

1
HlWl

∑
h,w

∥ wl ⊙ (
ˆ
y

l

hw − ˆ
y

l

0hw) ∥
2

2 (17)

In Equation (17), d(x, x0) represents the distance between image patch x and x0, Wl is
the image feature vector, and l is the layer number. H and W denote the height and width
of the image, respectively. ŷl and ŷl

0, respectively, represent the normalized values of the
feature stack and channel unit of the lth layer.

4.4. Qualitative Analysis of Experimental Results

To assess the effectiveness of our low-light image enhancement algorithm, we conduct
a comparative study with classical and efficient traditional techniques. These techniques
include LIME (Guo et al. 2016) [35] and CLAHE (Yadav et al. 2014) [36]. Additionally,
we compare our approach with representative deep learning algorithms, such as SCI
(Ma et al. 2022) [37], RRDNet (Zhu et al. 2020) [38], LLFlow (Wang et al. 2022) [39],
MIRNet (Zamir et al. 2020) [38], and Zero-DCE (Guo et al. 2020) [40]. Zero-DCE takes
the image as input and generates a high-order curve, while SCI achieves self-calibrated
illumination learning through weight sharing. Our proposed GSA-Net is also included in
the comparison. This method simplifies the design of network structures and enhances
images with basic operations. RRDNet is a three-branch convolutional neural network that
decomposes input images into illumination, reflection, and noise components, estimates
noise accurately, and restores illumination by iteratively predicting loss for denoising. Each
algorithm is evaluated in the same experimental setting.

All the algorithms above can address the issue of insufficient illumination in low-
light images, and most of the enhancement algorithms can restore object contours and
colors effectively. However, the CLAHE algorithm may cause color distortion in the
enhanced image, whereas the LIME algorithm may result in uneven color restoration
and chaotic hues. Although the RRDNet and Zero-DCE algorithms produce superior
visual effects overall compared to the previous two, they are insufficient at reducing noise
and artifacts. The output image of the SCI algorithm has insufficient color constraints,
resulting in an effect similar to that of a foggy image. The LLFlow and MIRNet algorithms
show limited effectiveness in enhancing low-light remote sensing images. Conversely, our
proposed algorithm generates augmented images with uniform illumination and contrast,
suppressing artifacts and noise and achieving superior subjective visual results compared
to other algorithms. Moreover, the comparison of enlarged details in the lower-left corner of
the figure reveals higher and more realistic color restoration and precision of the proposed
algorithm (Figure 7).

4.5. Quantitative Analysis of Experimental Results

To further validate the advanced performance of the proposed model, Table 3 pro-
vides quantitative standards for the algorithm described above; the optimal values are
highlighted. The GSA-Net’s aggregate performance indicators are PSNR, SSIM, SNR, NMI,
LPIPS, and NRMSE at 30.110, 0.863, 24.361, 0.833, 0.172, and 0.232, respectively. The re-
sults demonstrate that the proposed model has significant advantages over conventional
algorithms LIME and CLAHE. The SNR and NMI are enhanced by 23.9% and 14.0%, re-
spectively, compared to the traditional deep learning algorithm Zero-DCE. Compared to
the LLFlow and MIRNet algorithms, the PSNR improves by 28% and 23.7%, respectively.
In addition, the proposed model outperforms the state-of-the-art algorithm RRDNet in
terms of SNR and NMI by 30.6% and 17.0%, respectively. The SCI algorithm’s NMI index
is similar to that of GSA-Net, while the remaining indicators are inferior to those of the
proposed model. In addition, both LPIPS and NRMSE of the proposed model provide the
best results, significantly outperforming competing algorithms, indicating that GSA-Net is



Sensors 2024, 24, 673 12 of 16

capable of learning features that conform to visual patterns. In conclusion, the proposed
model achieves low-light remote sensing image enhancement from multiple perspectives
and levels with an outstanding performance.
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4.6. Loss Experiment

In order to further establish the superiority of the proposed model, the MSE, MAE,
SSIM, the improved MAE loss function (Charbonnier [41]), and the proposed improved loss
function based on the GSA-Net model were evaluated using the NWPU VHR-10 dataset.
The outcomes are presented in Table 3; the most significant outcomes are highlighted in bold.
The MSE loss function aligns with the implicit information of the restored image owing
to its simplicity, intuitiveness, and its effectiveness in preserving smoothness, coupled
with its differentiability. However, its expression includes an exponent that emphasizes
the outliers, resulting in poor network convergence. The MAE loss function depicts
outliers and performs slightly better than MSE, but the discontinuous derivative of the
analytical formula hinders the model’s convergence ability. Charbonnier enhances the
MAE by incorporating a constant to mitigate the gradient leap problem, substantially
increasing the SNR index. The SSIM loss function simulates the updated gradient of the
visual system, preserving the image texture details. While some indicators are markedly
enhanced, the lack of sensitivity to the mean deviation of bright regions in an image results
in undersaturated colors. The proposed loss function strikes an equilibrium between
robustness and representability. Despite the fact that SNR and NRMSE indicators are
slightly inferior, the other indicators outperform those of the comparative loss functions,
confirming the improved prediction ability and robustness of the model to achieve the
objective of estimating model bias (Table 4).



Sensors 2024, 24, 673 13 of 16

Table 3. The comparison results of different algorithms are presented.

Evaluation
Metrics

Algorithm

RRDNet SCI ZeroDCE LLFlow MIRNet CLAHE LIME OURS

PSNR 19.378 21.356 20.784 23.516 24.339 15.632 17.413 30.110
SSIM 0.542 0.526 0.612 0.786 0.795 0.356 0.456 0.863
LPIPS 0.387 0.362 0.354 0.322 0.284 0.639 0.543 0.172
SNR 18.653 18.292 19.661 20.121 20.864 14.334 15.314 24.361
NMI 0.712 0.815 0.732 0.696 0.735 0.432 0.654 0.833

NRMSE 0.276 0.258 0.268 0.263 0.254 0.563 0.388 0.232

Table 4. Evaluation results of different loss functions on the NWPU VHR-10 dataset.

Evaluation
Metrics

Function

MSE MAE Charbonnier SSIM PSNR/SSIM

PSNR 27.376 26.195 29.552 26.224 30.110
SSIM 0.811 0.834 0.867 0.851 0.863
LPIPS 0.245 0.342 0.189 0.263 0.172
SNR 21.369 20.475 24.726 23.698 24.361
NMI 0.791 0.735 0.812 0.789 0.833

NRMSE 0.312 0.368 0.225 0.267 0.232

4.7. Ablation Experiment

This study analyzed the effect of GSA structure, SKFF, and DSC on remote sensing
image enhancement performance by conducting super-resolution experiments on the
NWPU VHR-10 dataset. Table 5 shows the PSNR and SSIM values, and the parameters
of various model variants are compared according to the ablation experiment comparison
results. When DSC is eliminated, the network’s performance improves marginally, but the
number of network parameters increases by 76%. The standard convolution is replaced
with a DSC block to obtain a lighter model and improve deployment. The other two
enhancement measures can increase the network’s image enhancement performance, and
their combined use yields the best results.

4.8. Case Study

To validate the applicability of our proposed algorithm, we investigate the issue
concerning remote sensing object detection under low-light conditions. As shown in
Figure 8, YOLOX (Ge et al. 2021) [42] is used to detect objects in low light and restore
remote sensing images. The first row of the figure illustrates the detection of airplanes; three
airplanes are not detected in the low-light remote sensing image, and a home is mistakenly
identified as a ship compared to the restored image. The second row demonstrates the
detection of ships and ports, and the house is incorrectly identified as ships and ports in the
image on the left, whereas the augmented images are detected accurately. The third row
demonstrates the detection of baseball and athletics fields; among these, the athletics field
and three baseball fields are not detected in the low-light image on the left, and a house is
incorrectly identified as a ship, whereas all detections in the restored image are accurate.
These results illustrate the encouraging application potential of our proposed algorithm for
object detection via remote sensing.
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Table 5. Comparison of results from ablation experiments.

DSC SKFF GSA PSNR SSIM Parameters

× × × 20.287 0.542 30.37 M√
× × 18.689 0.533 6.88 M

×
√

× 25.645 0.758 30.07 M
× ×

√
23.332 0.637 30.16 M

×
√ √

30.230 0.876 29.86 M√ √ √
30.110 0.863 7.06 M

"×" indicates that this module has not been added, while "
√

" indicates that this module has been added.
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Figure 8. Remote sensing image object detection test experiment. (a) Detection of targets in low-light
remote sensing images; (b) object detection on restored remote sensing images in this study.

5. Conclusions

In this study, we proposed a multilevel feature fusion algorithm for improving remote
sensing images captured in low-light conditions. Specifically, we employed conv+PReLU
layers to generate varied inputs with diverse spatial resolutions and designed the GSA
module to capture global data exhaustively. In addition, SKFF was embedded in the
model to fuse all information effectively. To aid the network in learning the mapping
correlation between purposeful images, we developed a combined loss function to improve
the model’s color recognition ability and enrich the color of the enhanced images. The
experimental results of the analysis on the NWPU VHR-10 dataset demonstrated a superior
subjective and global performance of our algorithm compared to the majority of advanced
algorithms. The relatively high structural similarity index indicates the applicability of
our remote sensing methodology. Thus, future research will concentrate on investigating
lightweight models that decrease network space complexity while enhancing the visual
effect of enhanced images. We will also strive to improve the existing models to handle
various restoration tasks, including image denoising and deblurring.
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