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Abstract: LiDAR sensors, pivotal in various fields like agriculture and robotics for tasks such as 3D
object detection and map creation, are increasingly coupled with thermal cameras to harness heat
information. This combination proves particularly effective in adverse conditions like darkness and
rain. Ensuring seamless fusion between the sensors necessitates precise extrinsic calibration. Our in-
novative calibration method leverages human presence during sensor setup movements, eliminating
the reliance on dedicated calibration targets. It optimizes extrinsic parameters by employing a novel
evolutionary algorithm on a specifically designed loss function that measures human alignment
across modalities. Our approach showcases a notable 4.43% improvement in the loss over extrinsic
parameters obtained from target-based calibration in the FieldSAFE dataset. This advancement
reduces costs related to target creation, saves time in diverse pose collection, mitigates repetitive
calibration efforts amid sensor drift or setting changes, and broadens accessibility by obviating the
need for specific targets. The adaptability of our method in various environments, like urban streets
or expansive farm fields, stems from leveraging the ubiquitous presence of humans. Our method
presents an efficient, cost-effective, and readily applicable means of extrinsic calibration, enhancing
sensor fusion capabilities in the critical fields reliant on precise and robust data acquisition.

Keywords: LiDAR; thermal camera; extrinsic calibration; sensor fusion

1. Introduction

The challenges encountered in the realm of computer vision often present a high
degree of complexity. To address these complexities effectively, it is common to employ
a range of sensors that work collaboratively to augment the information gathered from
the scene and the objects within it. The integration of diverse sensors frequently leads
to solutions that not only enhance accuracy but also bolster robustness [1]. 3D LiDAR
(Light Detection and Ranging) sensors and thermal cameras, valued for their accurate
point clouds and heat information receptivity, are gaining attention for use in data fusion.
Extrinsically calibrating these sensors, each with its own coordinate system, is essential for
their accurate data integration.

3D LiDAR sensors have emerged as one of the most popular sensors in fields such
as agriculture, autonomous vehicles, and robotics. Some of their applications include
odometry and SLAM (Simultaneous Localization and Mapping) [2] in robotics, semantic
scene understanding [3], and 3D object detection [4] in self-driving cars, forest attribute
estimation [5], and precision farming [6].

A LiDAR sensor produces a 3D point cloud where each point is precisely defined by
its x, y, and z LIDAR coordinates. Furthermore, this point cloud includes data regarding
the strength of the reflected laser pulse at each point. Consequently, a LiDAR sensor does
not offer supplementary information for individual points, such as color. However, when
we integrate LiDAR data with additional data from other sensors, it becomes feasible to
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improve performance across a range of tasks. For instance, in the study by Xu et al. [7],
LiDAR data was combined with data from an RGB camera to enhance 3D object detection.

Thermal cameras have gained attention as alternative sensors to fuse with LiDAR
data due to their ability to create high-quality images based on temperature differences
in objects and their surroundings, even in adverse conditions like darkness, snow, dust,
smoke, fog, and rain [8]. Because thermal cameras can capture spectra that other sensors
like visual light cameras cannot, they have numerous applications in agriculture, security,
healthcare, the food industry, aerospace, and the defense industry, among others [9,10].

Combining data from 3D LiDAR sensors and thermal cameras can yield the benefits of
both sensors simultaneously. By leveraging both 3D spatial information and heat signatures,
a more comprehensive and accurate representation of the environment is achieved. This
integration enhances overall situational awareness, robustness, and accuracy across many
tasks, especially when compared with the use of either technology in isolation. For example,
in any application involving the heat data of a scene and its objects, it can be augmented
with LiDAR data to obtain the 3D location of various elements within the scene. For
instance, when measuring the attributes of fruits on a tree or detecting pedestrians in the
streets, leveraging the 3D location can provide accurate positioning information to allow
the robotic arm to harvest the fruit or enable the control component in an autonomous
vehicle pipeline to take necessary actions to avoid colliding with pedestrians. The following
are some of the existing applications of combining these two sensors for various purposes.
Kragh et al. [11] instrumented a tractor with multi-modal sensors, including LiDAR and
a thermal camera, to detect static and moving obstacles, including humans, to increase
safety during operations in the field. Choi et al. [12] developed a multi-modal dataset
including LiDAR and thermal camera data for studying various tasks, including drivable
region detection, object detection, localization, and more, in the context of assisted and
autonomous driving, both during the day and at night. Shin et al. [13] used LiDAR
and thermal cameras to investigate depth estimation in challenging lighting and weather
conditions for autonomous vehicles. In their research, Yin et al. [14] built a ground robot
instrumented with various sensors, including a thermal camera and LiDAR. They argued
that visual SLAM with an RGB camera is ineffective in low visibility situations such as
darkness and smoke, and using a thermal camera can address some of these challenges.
Tsoulias et al. [15] used a thermal camera and LiDAR to create a 3D thermal point cloud
to detect disorders caused by solar radiation on fruit surfaces. Yue et al. [16] incorporated
a thermal camera alongside LiDAR to enhance the robots’ ability to create a map of the
environment, both during the day and at night.

A thermal camera and LiDAR have their own coordinate systems. To use data from
both modalities, these two sensors should be extrinsically calibrated. Here, extrinsic
calibration is the task of finding the rotation matrix R and translation vector t to express the
coordinate of a point in the LiDAR’s coordinate system in the camera’s coordinate system.
R is an orthogonal 3× 3 matrix that describes rotation in 3D space, and t is a 3D vector
that represents a shift in 3D space. After obtaining the extrinsic parameters, the point pC in
the thermal camera system corresponding to the LiDAR point pL in the LiDAR coordinate
system can be obtained according to pC = RpL + t.

In the extrinsic calibration of visible light cameras and LiDAR, various types of targets,
including checkerboard targets [17], are typically employed. Nonetheless, these targets are
not visible to a thermal camera. To adapt them for the extrinsic calibration of a thermal
camera and LiDAR, these targets can be modified by crafting them from various heat-
conductive materials and then either pre-cooling or heating them before use [18], or by
incorporating heat-generating electrical elements such as light bulbs [15]. Using these
adopted targets comes with some drawbacks. Creating them is both challenging and
expensive. Using them in situations where the sensor setup frequently changes or sensor
drift occurs can be cumbersome. Additionally, over time, heating leaks can occur from
the heat-generating elements, or their temperature can become similar to the surrounding



Sensors 2024, 24, 669 3 of 20

environment, rendering them ineffective for use, and getting them operational again can
take some time.

The mentioned difficulties encountered while working with calibration targets mo-
tivated our proposed method. We propose a novel method for the extrinsic calibration
of a thermal camera and a LiDAR without using a dedicated calibration target based on
matching segmented people in both modalities during the movement of the sensor setup in
environments such as farm fields or streets that contain humans. The extrinsic parameters
are obtained by optimizing a designed loss function that measures the alignment of human
masks in both modalities. This is achieved using a novel optimization algorithm based
on evolutionary algorithms. We present two versions of our algorithm. The first version
disregards input noise, while the second version seeks to mitigate the effects of noisy inputs.
This innovative approach minimizes the expenses associated with the creation of calibration
targets for thermal cameras and eliminates the often labor-intensive and time-consuming
process of collecting diverse poses for calibration targets, particularly in the context of
autonomous vehicles where positioning a large target at various angles and heights can
be challenging. It also addresses the issue of the repetitive calibration efforts required
when sensor drift or setting changes occur, making the process more efficient. Additionally,
it enhances the accessibility of 3D LiDAR and thermal camera fusion by eliminating the
necessity for specific targets.

The remainder of the paper is structured as follows: In Section 2, we provide an
overview and examination of prior research. Section 3 outlines the cross-calibration algo-
rithm. Section 4 showcases our experiments and their outcomes on the FieldSAFE [11]
and MS2 [13] datasets. Lastly, Section 5 serves as the conclusion of our paper and outlines
potential avenues for future research.

2. Related Work

Some studies have explored the calibration of thermal cameras and LiDAR systems
using various target-based approaches. These methods typically involve utilizing the
known specifications of the calibration targets and minimizing a cost function to estab-
lish the extrinsic parameters that align these specifications across both sensor modalities.
Krishnan et al. [18] used a checkerboard target made of laser-cut black and white melamine
with different heat conductivity. They placed it in front of the sun for approximately
one hour to enable the detection of checkerboard corners by a thermal camera. A user
manually selected the four outer corners of the target inside the thermal image, and to
detect the calibration target within the point cloud, they used a region-growing algorithm.
They determined the rotation matrix and translation vector by attempting to minimize the
distance between the points on the edges of the target in the LiDAR point cloud and their
nearest points on the edges of the target in the thermal image. Their algorithm requires
a good initial rotation, translation, and several poses. Krishnan et al. [19] developed a
cross-calibration method that involved the creation of a target by cutting a circular hole
in white cardboard with a precisely known radius. They utilized a damp black cloth as
the background, which improved the circle’s visibility in the thermal camera. The process
started by manually selecting a pixel in the circle for a region-growing algorithm to segment
it in the image. Likewise, the user picked a point on the cardboard to locate the target in the
point cloud. They captured multiple poses for cross-calibration. In each pair, they projected
the circle’s edges from the point cloud onto the thermal image. Finally, they solved an
optimization problem of aligning the thermal camera’s circle edges with the projected
edges, ensuring precise calibration. Borrmann et al. [20] devised a calibration target visible
in thermal cameras by creating a dot pattern on a board using light bulbs. In the calibration
process, they collected multiple pairs of images and their corresponding point clouds.
For each of these pairs, they precisely determined the locations of the light bulbs in in
both modalities. To establish the positions of the light bulbs within the LiDAR coordinate
system, they located the calibration target within the point cloud data. Leveraging the
well-defined geometry of their calibration target, they computed the positions of the light
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bulbs in the LiDAR coordinate system. Subsequently, for each image-point cloud pair,
they mapped the positions of the light bulbs from the point cloud to the thermal image.
Finally, to determine the extrinsic parameters, they solved an optimization problem aimed
at minimizing the disparity between the light bulb positions in the thermal image and their
projected positions in the point cloud. In the proposed method of Dalirani et al. [21], an
active checkerboard target with embedded resistors for generating heat was used, and
extrinsic parameters between both the thermal and LiDAR sensors were obtained from
the correspondence of lines and plane equations of the calibration target in the image and
point cloud pair. Zhang et al. [22] created four equally spaced circles on an electric blanket.
They identified these circles in both modalities and optimized the extrinsic parameters by
minimizing the 2D re-projection error.

In many studies, when using a thermal camera and LiDAR data, instead of directly
performing extrinsic calibration between the thermal camera and LiDAR, each of them is
extrinsically calibrated with another sensor, such as an RGB camera, for example. Then, the
two sets of obtained extrinsic calibration parameters are used to determine R and t between
the thermal camera and LiDAR. Azam et al. [23] employed a thermal camera capable of
providing both visual and thermal images, along with extrinsic parameters linking these
two types of images. They applied an established RGB camera-LiDAR calibration technique
to achieve extrinsic calibration between the visual camera and LiDAR. Subsequently, they
utilized this knowledge, in conjunction with extrinsic calibration parameters connecting
the visual and thermal cameras, to derive the transformation between the thermal camera
and the LiDAR. Similarly, Zhang et al. [24] divided the calibration process for the thermal
camera and LiDAR into two sequential steps. In the FieldSAFE dataset [11], a similar
method [25] was employed to determine the rotation and translation between sensors.
They calculated the extrinsic parameters between the LiDAR and the stereo vision system
using the iterative closest point algorithm [26]. To calibrate the stereo vision system and
the thermal camera, they constructed a checkerboard with both copper and non-copper
materials and attached 60 resistors to generate heat. Subsequently, through post-processing,
they were able to employ a regular cross-calibration tool for two visual light cameras
to extrinsically calibrate the RGB and thermal cameras. Finally, by comparing the two
solutions, the parameters between the thermal and LiDAR sensors could be obtained. In
the MS2 dataset [13,27], for their instrumented car, they established extrinsic calibration
parameters between all sensors, including the thermal cameras and LiDAR, in conjunction
with the NIR camera. The rotation and translation between other sensors can be obtained
by using these extrinsic parameters with the NIR camera. To calibrate the NIR and thermal
cameras, they used a 2× 2 AprilTag board with metallic tape attached to it.

In another approach, targetless extrinsic calibration methods do not use a target but
instead employ feature alignment in both modalities. Fu et al. [28] introduced a targetless
extrinsic calibration method that calibrates a stereo visual camera system, a thermal camera,
and a LiDAR sensor. In their method, first, the transformation between LiDAR and the
stereo system is estimated. Then, the thermal camera is calibrated with the left camera in
the stereo system by simultaneously using data from LiDAR and the left stereo camera.
By establishing transformations between the thermal camera and the stereo system, as
well as between LiDAR and the stereo system, the transformation between LiDAR and
the thermal camera can be calculated. Their method optimizes extrinsic parameters by
maximizing the alignment of edges in the three modalities. To derive edges from the LiDAR
point cloud, they employed the horizontal depth difference and utilized the Canny edge
detector [29] to detect edges in the thermal camera and the left stereo camera. Their method
requires sufficient edge features in the modalities and a rough initial guess for optimization.
Mharolkar et al. [30] proposed a targetless cross-calibration method for visual and thermal
cameras with LiDAR sensors by utilizing a deep neural network. Instead of employing
hand-crafted features, they utilized multi-level features from their network and used these
extracted feature maps to regress extrinsic parameters. To train the network for calibrating
the visual camera and LiDAR on the KITTI360 dataset [31], they utilized 44,595 image-point
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cloud pairs. For training the network for calibrating the thermal camera, they employed
pre-trained weights for the visual camera and LiDAR and trained the model on their
thermal camera and LiDAR dataset, consisting of 8075 thermal images and LiDAR pairs.
Additionally, for a new set of sensors, the network should be re-trained.

Our proposed method does not require a target and optimizes extrinsic parameters
during the movement of the sensor setup in an environment with human presence by
aligning segmented people in both modalities. Importantly, it does not rely on the presence
of rich edge features, making it applicable even in environments like farm fields, which
often lack distinct edges. Moreover, it does not demand a precise initial solution, enhancing
its versatility and ease of use. To the best of our knowledge, in the literature on the extrinsic
calibration of thermal cameras and 3D LiDAR sensors, our proposed method represents a
novel approach distinct from any existing methodologies. To date, no other method for
these sensors has demonstrated the same innovative techniques employed in our study.

3. Methodology

In this paper, we propose an extrinsic calibration method for determining rotation
matrix R and translation vector t between a thermal camera and a 3D LiDAR sensor without
the need for a target. Our method relies on matching segmented humans in both modalities
during the movement of the sensor setup. In the following, we will explain the steps of
the proposed method, including data collection, formulating the problem, designing a
cost function, and the method for optimizing the extrinsic parameters by minimizing the
cost function.

3.1. Data Collection

While the thermal camera and LiDAR sensor setup is in motion on a moving vehicle,
such as a tractor, robot, or car, in various environments like streets and farm fields, the
dataset D is created by capturing several frames at different time points, denoted as t1, t2,
..., tNpose , for both modalities. Npose denotes the number of captured frames. At each time
ti, both the LiDAR and thermal camera capture the scene simultaneously, producing the
captured image and point cloud, which we denote as Iti and Pti , respectively. Given that
our method relies on matching humans in both modalities, it is essential that each image
and point cloud pair in the dataset contains human subjects, and the number of humans
should be equal, which may vary from one or more individuals. As the number of humans
increases, the likelihood of overlapping also rises, introducing more errors in segmenting
humans in both data modalities. Therefore, only frames containing between one and a
small number, denoted as Hmax, of humans are retained.

In the beginning, the dataset D is empty. During the movement of the sensor setup in
the environment at the moment ti, a thermal image and a point cloud are captured. Then, an
off-the-shelf person segmentation model and a human detector are applied to the captured
image and point cloud, respectively. If the number of humans found in both modalities
is equal and is greater than zero, the image and point cloud pair are kept; otherwise, it is
discarded. In the provided pair, Ih

ti
is generated by assigning a value of one to pixels within

the human masks and zero to pixels outside the masks in the thermal image. Similarly,
Ph

ti
is produced by retaining the points in the point cloud that correspond to humans and

removing all other points. Subsequently, the Ih
ti

and Ph
ti

pair is included in the dataset D.
This process continues until the dataset D reaches a specific size, denoted as Npose. Two
examples from the FieldSAFE [11] and MS2 [13] datasets are shown in Figure 1.

In collected data pairs, one important consideration is that humans should be posi-
tioned at various locations and sizes within the thermal image. Otherwise, the obtained
extrinsic parameters will exhibit bias toward specific areas, causing them to deviate from
the actual parameters. Furthermore, since the positions of humans in both thermal images
and point clouds do not change significantly in consecutive frames, when a thermal im-
age and point cloud are added to the dataset at time ti, the next three frames will not be
considered for inclusion in the dataset.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Images (a–d) are sourced from the FieldSAFE dataset [11], whereas images (e–h) are
obtained from the MS2 dataset [13]. In each row, the images from left to right show a thermal image
(Iti ), the segmentation mask for human(s) in the thermal image (Ih

ti
), a shot from its corresponding

point cloud (Pti ), and a shot from the corresponding point cloud with only human(s) points (Ph
ti

).

3.2. Cost Function

To optimize the extrinsic parameters R and t between a thermal camera and a 3D
LiDAR sensor, based on human matching in both modalities, a cost function is required to
measure the alignment of humans in both modalities for all thermal image and point cloud
pairs (Ih

ti
, Ph

ti
) in the dataset D, with respect to a set of extrinsic parameters.

When provided with a candidate rotation matrix R and a translation vector t for image
and point cloud pairs (Ih

ti
, Ph

ti
), the loss is calculated according to Equation (1).

Loss(Ih
ti

, Ph
ti

; R, t) =
1
|Ph

ti
| ∑

pL∈Ph
ti

ψ(K(RpL + t); Ih
ti
) (1)

In Equation (1), pL iterates points in the point cloud Ph
ti

, K is the 3× 3 intrinsic camera
matrix, and | · | denotes the number of points in a point cloud. In this equation, RpL + t
maps the point pL from the LiDAR coordinate system to camera coordinate (pC), and
multiplying it by K maps the point to camera image coordinate (pI). pI is inhomogeneous
representation and should be converted to inhomogeneous. ψ(pI ; Ih

ti
) is a function that

outputs a penalty score based on distance of the projected point pI from LiDAR coordinate
system to image coordinate to the nearest human pixel in Ih

ti
. The function ψ is defined

according to Equation (2).

ψ(pI ; Ih
ti
) =

{
∥pI − pnear∥1 if pC is in front of the camera image
c1 ×max(h(Ih

ti
), w(Ih

ti
)) if pC is behind the camera image

(2)

In Equation (2), ∥·∥1 represents the Manhattan distance, and h(·) and w(·) provide the
height and width of Ih

ti
. Additionally, pnear represents the nearest human pixel in Ih

ti
to pI .

ψ is a piecewise function. If a projected point from the LiDAR coordinate system to the
camera coordinate system is in front of the camera, the function calculates the distance of
the point projection in the thermal image coordinate system to the nearest human pixel. If
the projected point from the LiDAR coordinate system to the camera coordinate system
is behind the camera, it indicates that the projection is highly invalid. In such cases, we
impose a significant penalty by assigning a large value. We determined this penalty to
be the maximum value between the image height and width, multiplied by the constant
c1. Selecting a low value, such as one for c1, means that we do not differentiate enough
between a mapping that projects a LiDAR point in front of the camera, outside the image,
and not too far from the edges of the image, and a mapping that projects the LiDAR point
to the back of the camera. A larger value of c1, such as five, makes cases like this more
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distinguishable. In Figure 2, the loss for two sets of extrinsic parameters for one pair of
thermal images and point clouds from the FieldSAFE dataset [11] is shown. The loss for
Figure 2a is 1.35, which is much smaller than the 58.38 loss for Figure 2b. In the case
of Figure 2b, greater deviations in the extrinsic parameters from the true values caused
LiDAR-projected points to be further from humans in the image, resulting in a larger loss.

(a) (b)

Figure 2. Images (a) and (b) show the projection of a point cloud onto a thermal image for a sample
pair from the FieldSAFE dataset [11] with two different sets of R and t. Equation (1) loss value for the
extrinsic parameters used in image (a) is 1.35, while the loss value for the extrinsic parameters used
in image (b) is 58.38.

The total loss for a candidate R and t on dataset D is the average of losses on all image
and point cloud pairs in the dataset, as defined in Equation (3).

Loss(D; R, t) =
1
|D| ∑

(pL
I ,Ih

ti
)∈D

Loss(Ih
ti

, Ph
ti

; R, t) (3)

3.3. Optimization Method

In the proposed method, the estimate of the extrinsic parameters, R and t, that de-
scribes the relationship between a thermal camera and a LiDAR sensor, involves the
minimization of Equation (3). To achieve this, we introduced an optimization approach
rooted in evolutionary algorithms for the purpose of parameter calculation between these
two sensors. Since errors, such as false positives, false negatives, under-segmentation, and
over-segmentation, can occur in the detection and segmentation of humans in both modal-
ities, the proposed algorithm incorporates a mechanism to reduce the effect of outliers.
First, we will explain the algorithm that does not consider outlier rejection, Algorithm 1.
Afterward, we will provide a comprehensive explanation of the Algorithm 2.

We decided to create the optimization algorithm based on evolutionary algorithms for
the following reasons. First, in the case of non-differentiable or noisy objective functions,
evolutionary optimization can obtain good solutions. Second, evolutionary optimization
is much less likely to be affected by local minima, and it eliminates the need for an initial
solution in our calibration method. Third, evolutionary algorithms often exhibit greater
robustness in the face of noisy and uncertain observations.

Algorithm 1 presents the proposed algorithm, omitting any outlier rejection. The
algorithm creates a population of random individuals and gradually evolves the population
in each generation to optimize R and t. Each individual of the population is an instance of
Individual structure. As demonstrated in lines 1–6 Algorithm 1, the Individual structure
consists of four fields. The first field, denoted as t, represents the translation vector from a
LiDAR sensor to a thermal camera. The second field, labeled as r, corresponds to Rodrigues’
rotation vector from the LiDAR to the thermal camera. Instead of directly optimizing the
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rotation matrix R with its 9 elements and managing its orthogonality, we optimize rotation
vector r with only 3 parameters and subsequently convert it to rotation matrix R using
OpenCV’s Rodrigues function [32]. The third field comprises the resulting loss on the
dataset based on the individual’s r and t, which is calculated according to Equation (3).
The fourth field for an individual represents the probability of selection for crossover and
mutation, a concept we will elaborate on further.

Algorithm 1 Proposed algorithm without outlier handling

Require: D, Npop, itermax, intervalrot, intervaltran, pctelite, pctcrossover
1: Struct Individual {
2: vector3D t;
3: vector3D r;
4: float loss;
5: float prob;
6: }
7: population = initialPopulation(size=c2 × Npop, intervalrot, intervaltran)
8: for iteri = 1 to itermax do
9: nextPopulation = {}

10: if iteri > 1 then
11: population = top Npop lowest loss individuals in population
12: end if
13: for individual in population do
14: individual.loss = Loss(D; Rodrigues(individual.r), individual.t) (Equation (3))
15: end for
16: for individual in population do
17: individual.prob = selectionProbability(population, individual)
18: end for
19: Add the top (pctelite × population) lowest loss individuals to nextPopulation.
20: Randomly select (pctcrossover × population) pairs with replacement from population

based on the probability of each individual.
21: Apply the ‘crossOver()’ operation to each selected pair and add the resulting new

individuals to the nextPopulation.
22: Randomly select (population − nextPopulation) individuals with replacement from

the population based on the probability of each individual.
23: Apply the ‘mutation()’ operation to each selected individual and add the resulting

new individuals to the nextPopulation.
24: population← nextPopulation
25: end for
26: return R and t of individual in population with smallest individual.loss

This algorithm operates on a dataset denoted as D, which has been generated in accor-
dance with Section 3.1. It takes parameters like Npop, signifying the number of individuals
in the population, and intervalrot and intervaltran, representing the rotation and translation
intervals used for generating random initial individuals in the population. Furthermore, we
have pctelite, a parameter that determines the percentage of the best-performing individuals
with the lowest loss to be retained in the next generation. Additionally, pctcrossover is another
parameter that specifies the percentage of the population selected for crossover.

In line 7, the initial population is generated using the ‘initialPopulation’ function. To
enhance diversity, the size of the population that it generates is set to be c2 times larger than
Npop. However, after the first iteration, the population size is reduced to Npop, as shown in
lines 10–12. If the number of individuals in the population is low, setting c2 to a value like
five can increase diversity. However, when the population is large, it can be set to one to
prevent unnecessary computation. To create a random individual within the population,
‘initialPopulation’ initializes an instance of the Individual structure. The function randomly
samples all three elements of vectors t and r from the intervals intervaltran and intervalr,
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respectively. In all our experiments, we assumed no prior information about the LiDAR and
thermal camera position and orientation relative to each other. We selected a wide interval
of [−3.5, 3.5] radians and [−1, 1] meters; however, a user can choose smaller intervals if they
wish to incorporate prior knowledge about the positions and orientations of sensors. Next,
the produced individual becomes part of the population under the condition that, for a pair
of Ih

ti
and Ph

ti
in dataset D, a minimum of 50% of the points in Ph

ti
project within the thermal

image. This projection is achieved through the utilization of a randomly generated rotation
vector r and translation vector t associated with the individual. In case this criterion is not
met, the individual is discarded, and a new one is generated in its place.

Between lines 8 and 25, the next generation is formed through a process that combines
elitism, crossover, and mutation techniques. In lines 13–15, the loss on dataset D for each
individual is computed as per Equation (3). In lines 16–18, individual.prob is calculated
for each individual in the population using the ‘selectionProbability’ function as defined
in Equations (4) and (5). The first one computes a fitness score based on individual loss
relative to the population, and the second one calculates the selection probability for an
individual, taking their fitness score and the sum of fitness scores for the entire population
into account.

individual.score = 1− individual.loss
∑ind∈population ind.loss

(4)

individual.prob =
individual.score

∑ind∈population ind.score
(5)

In line 19, the top pctelite percent of individuals with the lowest loss in the population
are directly copied to the next generation. This elitism ensures that the best solutions found
so far are not lost and continue to contribute to the population’s overall quality over the
next generations.

Between lines 20–23, individuals for crossover and mutation are selected, and the
functions ‘crossOver’ and ‘mutation’ are applied. ‘crossOver’ creates a new individual
from a pair of individuals according to Equations (6) and (7). In these two equations,
individualOne and individualTwo are two members of the population, and individualOne
has a lower loss than the other one. Also, α is a random number between 0.5 and 1. The
function ‘mutation’ affects an individual by applying noise to its rotation and translation
vectors, creating a new individual. The ‘mutation’ operation adds random uniform noise
within the range of [−σrot, σrot] to each element of the rotation vector and independently
adds noise within the range of [−σtrans, σtrans] to each element of the translation vector.

newIndividual.r = α · individualOne.r + (1− α) · individualTwo.r (6)

newIndividual.t = α · individualOne.t + (1− α) · individualTwo.t (7)

Algorithm 2 contains the complete proposed algorithm, which attempts to mitigate
the effects of outlier data pairs. The general idea of this algorithm is to handle outliers in
a dataset (D) by iteratively fitting a model to a small subset of the data, identifying and
removing outliers based on a loss threshold, and then re-fitting the model to the inliers.
The algorithm is designed to robustly estimate rotation (R) and translation (t) parameters
for a given dataset.

Algorithm 2 requires all the inputs of Algorithm 1, with the addition of some ex-
tra inputs. minsample represents the size of a random subset of D that is chosen to find
extrinsic parameters. iteroutlier denotes the number of fitting attempts to detect outliers.
thresholdsample determines whether a sample should be considered an outlier or not. If the
calculated loss for a sample pair, as per Equation (1), is greater than thresholdsample, it is
considered an outlier. A solution of a fitting attempt on the selected subset of D is deemed
correct if the ratio of samples with a loss smaller than or equal to the value of thresholdsample
is greater than or equal to ratiosolution. Furthermore, I(·) represents the indicator function.
It outputs the value of one when the condition is met and zero otherwise.
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Algorithm 2 Proposed algorithm with outlier handling

Require: D, Npop, itermax, intervalrot, intervaltran, pctelite, pctcrossover, minsample, iteroutlier,
ratiosolution, thresholdsample

1: Create an array, isInlier, with a size of D and initialize each element with True
2: for iteri = 1 to iteroutlier do
3: Create Dtrain by randomly sampling minsample data pairs from D
4: Create Dval using the remaining data pairs from D
5: Obtain R and t by using Algorithm 1
6: listLosses = loss of R and t for each data pairs in Dval using Equation (1)

7: ratioinliers =
∑a∈listLosses I(a<=thresholdsample)

ratioinliers
8: if ratioinliers >= ratiosolution then
9: for pairi in Dval do

10: if listLosses[pairi] > thresholdsample then
11: isInlier[pairi]← False
12: end if
13: end for
14: end if
15: end for
16: Create Dinlier by selecting elements in D where the corresponding element in

isInlier[pairi] is True
17: Obtain R and t by applying Algorithm 1 to Dinlier
18: return R and t

The proposed algorithms aim to determine a rigid body transform between the coordi-
nate systems of a thermal camera and a LiDAR sensor by estimating the rotation matrix
R and translation vector t. It is essential for both sensors to operate with the same scale
for accurate results. If the two sensors are not on the same scale, and assuming the factory
configurations of sensors are available (which is almost always the case for these two types
of sensors), this information can be used to preprocess the data and convert them to the
same scale. In Equation (1), K(RpL + t) is utilized to map a LiDAR point in the image
coordinate system in a homogeneous format. Subsequently, the homogeneous point is
converted to an inhomogeneous coordinate in the thermal image. When using data with
different scales, as the cost function minimizes the distance in the thermal image, it can
yield a solution that effectively maps LiDAR points to their corresponding thermal image
pixels, even when dealing with data of varying scales. However, the obtained translation
vector may not accurately represent the real distance between the sensors, as it will be
scaled by the difference in scale between the two sensors.

To efficiently calculate the function in Equation (1), for each Ih
ti in a collected dataset,

an array with a height of h and a width of w can be created, where each element represents
the distance from that pixel to the nearest pixel belonging to a human. For a dataset of size
|D|, the computational complexity of this operation is O(|D|.w.h). In Equation (2), for a
given Ih

ti
and Ph

ti
pair, for the number of points in the point cloud (|Ph

ti
|), several fixed matrix

multiplications and summations take place. Therefore, for one pair, the computational
complexity will be O(|Ph

ti
|). According to Equation (3), its computation complexity is

O(|D|.|Ph
ti
|). Therefore, since Algorithm 1 performs itermax iterations, and each iteration

calculates the loss of individuals on a scale of Npop, the total computational complexity
will be O(|D| · w · h) + O(|D| · |Ph

max| · Npop · itermax), where |Ph
max| is the number of points

in the point cloud with the most points. The computational complexity of Algorithm 2
remains the same, with the additional step of calculating extrinsic parameters using a
subsampled dataset of size minsample for iteroutlier times.

4. Experiments

To evaluate our method, we used the FieldSAFE dataset [11] and the first sequence
of the MS2 dataset [13]. The selection of this sequence was random, as it is assumed to be
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representative of the dataset, given that the sensor setup is identical across all sequences.
The FieldSAFE dataset [11] contains data from a tractor equipped with various sensors,
including a thermal camera and a LiDAR sensor, captured during a grass-mowing scenario
in Denmark. The MS2 dataset comprises data collected by an instrumented car with
different sensor types, such as a thermal camera and LiDAR sensor, in various environments,
including city, residential, road, campus, and suburban areas. The thermal camera in the
FieldSAFE dataset is a FLIR A65 with a maximum frame rate of 30 frames per second
(FPS) and a resolution of 640 × 512 pixels. It obtained LiDAR data from the Velodyne
HDL-32E, which is a 32-beam LiDAR sensor with a 10 FPS data rate and 2 cm accuracy.
The thermal camera in the MS2 dataset is the same as in FieldSAFE, and the LiDAR is
a Velodyne VLP-16, which has sixteen LiDAR beams, a maximum frame rate of 20 FPS,
and 3 cm accuracy. In the MS2 dataset, the provided thermal images have a resolution
of 640 by 256 pixels. Moreover, in both datasets, the positions and orientations of the
sensors with respect to each other are highly different. Our proposed algorithm produces
accurate results on both setups, including sparse 16-beam and dense 32-beam LiDARs,
demonstrating its effectiveness. Also, in both datasets, the intrinsic camera matrices (K) of
thermal cameras are available.

We created two datasets from FieldSAFE and MS2 following the guidelines in Section 3.1.
Additionally, we generated two other datasets for evaluation purposes by manually se-
lecting and annotating the data. For human segmentation in thermal camera images, we
utilized Faster R-CNN [33] trained on a FLIR thermal dataset [34] and subsequently fed
the bounding boxes into the Segment Anything Model (SAM) [35]. To extract humans
from the LiDAR point cloud, we employed MMDetection3D [36]. The dataset created from
FieldSAFE consists of 63 training examples and 20 test samples, while the dataset extracted
from MS2 comprises 55 training examples and 19 test samples. For simplicity, we denote
them as Dtrain

FS , Dtest
FS , Dtrain

MS , and Dtest
MS. Since there are often only one to three persons in the

sequences used from both the FieldSAFE and MS2 datasets, we selected Hmax to be equal to
three. In Dtrain

FS , the mean spatial location of all humans in thermal images is (305.82, 103.49),
with standard deviations of 155.9 and 43.3 along the x and y axes, respectively. Additionally,
the average number of persons per image is 1.16. For Dtrain

MS , the corresponding values are
(330.2, 140.2) for the mean spatial location, with standard deviations of 166.3 and 11.95
along the x and y axes, respectively. The average number of persons per image is 1.03. In
the following, we compare the loss values obtained via Equation (3) on both the training
and test datasets for our proposed methods in Algorithms 1 and 2 across different settings.
Since the used data were collected in the past, we compare the proposed method with
the extrinsic parameters provided by FieldSAFE and MS2 using target-based calibration
methods. For simplicity, we refer to them as FS[R,t] and MS[R,t].

In all our experiments, we used the hyper-parameters in Table 1 by default, unless
another configuration was specified. We determined the hyper-parameters for the proposed
algorithms through a process of testing various candidates and relying on intuition.

To compare Algorithms 1 and 2 with each other as well as with FS[R,t] and MS[R,t],
in Table 2, we reported the Equation (3) loss values obtained by their corresponding R
and t on the test datasets Dtest

FS and Dtest
MS. As can be seen in the table, Algorithm 2, which

uses outlier handling, obtains better results than Algorithm 1. Additionally, Algorithm 2
outperforms FS[R,t] and MS[R,t], which are obtained using calibration methods based on
the target.

Figure 3 presents some performance metrics for Algorithm 2 optimized on Dtrain
FS .

Figure 3 includes four plots, each displaying different aspects of the optimization process in
each generation. All the loss values for the figure are computed using Equation (3). We just
reported the plots for Dtrain

FS as the representative of both the Dtrain
FS and Dtrain

MS datasets.
Figure 3a shows the training loss value of the individual with the lowest training loss.
Because of elitism, mutation, and crossover, the training loss value for the individual with
the lowest training loss always remains non-increasing across generations. Figure 3b,c
illustrate the log-average training loss of all individuals and the standard deviation of the
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loss among all individuals in the population. As individuals with lower training loss have
a higher probability of being selected for crossover and mutation, increasing the number of
generations results in a decrease in the log-average and standard deviation of train loss.
However, due to randomness in mutation and crossover, these values eventually converge
to a certain point and fluctuate around it. Finally, Figure 3d demonstrates the test loss of
the individual with the lowest training loss. As depicted in the figure, both the training
and test losses exhibit an initial exponential decrease, followed by a gradual convergence
to a small value.

Table 1. Hyper-parameters for Algorithms 1 and 2.

Hyper-Parameter Value

Npop 500

itermax 400

intervalrot [−3.5, 3.5] rad

intervaltrans [−1000, 1000] mm

pctelite 15%

pctcrossover 40%

c1 5

c2 5

minsample 20 if number of train sample ≥ 40; else, 15

iteroutlier 2

ratiosolution 0.7

thresholdsample FieldSAFE: 2.0, MS2: 1.5

σrot 0.02 rad

σtrans 20 mm

Table 2. Comparison of Equation (3) loss for different methods on Dtest
FS and Dtest

MS datasets.

Dataset

Dtest
FS Dtest

MS

M
et

ho
d

Algorithm 1 0.953 0.352

Algorithm 2 0.798 0.34

FS[R,t] 0.835 -

MS[R,t] - 2.731

To assess the influence of the training dataset size on Algorithms 1 and 2, we performed
the sub-sampling of Dtrain

FS and Dtrain
MS , resulting in new training datasets ranging in size from

5 to the full dataset size, with a step size of 5. Since Algorithm 2 requires a minimum of
15 samples to determine a set of extrinsic parameters and subsequently test other samples
for inlier status, we opted not to execute Algorithm 2 for configurations with 15 samples
or fewer. As shown in Table 3 and its equivalent bar charts in Figure 4, increasing the
number of data pairs for the training set from a small number decreases the test loss values
significantly. Also, Algorithm 1 exhibits fluctuation in test loss values as the number of
thermal images and point cloud pairs in the training set increases. In contrast, Algorithm 2
experiences fewer fluctuations. Additionally, in almost all cases, Algorithm 2 demonstrates
superior performance compared with Algorithm 1 with the same training dataset size. In
the case of 30 pairs in the dataset Dtrain

FS and 20 pairs in the dataset Dtrain
MS , Algorithm 2

obtained a slightly worse result, which could be attributed to randomness, especially in
the selection of a subsampled set from the dataset to assess the inlier or outlier status
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of non-subsampled data pairs. As the results in Table 3 suggest, not having a sufficient
number of samples prevents us from executing the algorithms or obtaining good results.

(a) (b)

(c) (d)

Figure 3. Plots for Algorithm 2 optimized on Dtrain
FS depicting (a) the train loss of the individual

with the lowest train loss in each generation, (b) the log-average train loss of all individuals in the
population in each generation, (c) the standard deviation of the loss among all individuals in the
population for each generation, and (d) the test loss of the individual with the lowest train loss in
each generation.

Table 3. The effect of varying the size of the training dataset on the test loss values of
Algorithms 1 and 2. The reported loss values calculated by Equation (3) on Dtest

FS and Dtest
MS.

No. of Used Pairs 5 10 15 20 25 30 35 40 45 50 55 60 63

Algorithm 1 2.474 1.858 1.179 1.236 0.905 0.9 0.884 0.878 0.959 0.999 1.047 0.959 0.953
Dtest

FS Algorithm 2 - - - 0.957 0.902 0.919 0.804 0.791 0.785 0.808 0.869 0.799 0.798

Algorithm 1 0.709 0.47 0.412 0.408 0.425 0.424 0.345 0.414 0.408 0.363 0.352 - -
Dtest

MS Algorithm 2 - - - 0.414 0.405 0.383 0.343 0.405 0.325 0.357 0.34 - -

To assess the robustness of Algorithms 1 and 2 under more extreme conditions, we
generated Dtrain

FS−SW4 by swapping the thermal mask (Ih
ti

) for two random samples with
another two random samples in Dtrain

FS . It caused four pairs of thermal images and LiDAR
point clouds to lack matching masks in both modalities. Similarly, we created Dtrain

MS−SW4
using the same method. Furthermore, to investigate under different levels of mismatch, we
generated comparable datasets by interchanging 4, 6, and 8 pairs, resulting in 8, 12, and
16 mismatched samples, respectively. As shown in Table 4 and its equivalent bar charts
in Figure 5, Algorithm 2 achieved significantly better test loss and demonstrated greater
robustness. In this experiment, thresholdsample and iteroutlier were set to three and five for
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new datasets derived from Dtrain
FS , and the variable ratiosolution was set to 0.3 for Dtrain

MS−SW12
and Dtrain

MS−SW16. By increasing the number of mismatched pairs, the performance of both
algorithms dropped; however, this effect was more significant for Algorithm 1. As the
results suggest, it is critical to have good object detection in both modalities; otherwise,
large amounts of false positives and false negatives from object detectors can degrade the
quality of extrinsic parameters. Another interpretation could be that the presence of many
people in a thermal image-point cloud pair may result in more mistakes in segmenting
humans in both modalities due to a higher chance of overlapping. Therefore, selecting a
large value for Hmax may consequently lead to poorer results.

5 10 15 20 25 30 35 40 45 50 55 60 63
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1.2

1.4

1.6

1.8
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2.4
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s

Alg. 1 Alg. 2

(a)

5 10 15 20 25 30 35 40 45 50 55

0.3

0.35

0.4
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0.55

0.6

0.65

0.7
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L
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s

Alg. 1 Alg. 2
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Figure 4. (a,b) are bar charts for datasets derived by subsampling from Dtrain
FS and Dtrain

MS , respectively,
as created from Table 3. They display the test loss values of Algorithms 1 and 2 calculated by
Equation (3) on Dtest

FS and Dtest
MS.

Table 4. Comparing Algorithms 1 and 2’s test loss under harsher conditions by introducing artificial
mismatches between masks in both modalities. The provided values correspond to the loss values
computed using Equation (3) on Dtest

FS and Dtest
MS.

Algorithm 1 Algorithm 2

Dtrain
FS 0.953 0.798

Dtrain
FS−SW4 1.001 0.826

Dtrain
FS−SW8 1.015 0.868

Dtrain
FS−SW12 1.159 1.100

Dtrain
FS−SW16 1.558 1.356

Dtrain
MS 0.352 0.340

Dtrain
MS−SW4 0.415 0.342

Dtrain
MS−SW8 0.480 0.343

Dtrain
MS−SW12 1.305 0.500

Dtrain
MS−SW16 1.577 0.832
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Figure 5. (a,b) are bar charts, respectively, for datasets derived from Dtrain
FS and Dtrain

MS by swapping
thermal masks. Bar charts (a,b) are created from Table 4. The provided values correspond to the
losses computed using Equation (3) on Dtest

FS and Dtest
MS.

As mentioned earlier, it is important to collect a dataset with thermal images de-
picting humans in different locations and sizes. In order to assess the robustness of
Algorithms 1 and 2 when dealing with highly unbalanced human locations in a collected
dataset, we generated Dtrain

FS−NL from Dtrain
FS by removing samples where the human masks

are located in the left one-third section of the image. Dtrain
FS−NL comprises 27 samples. Sim-

ilarly, we created Dtrain
MS−NR by removing samples where the human masks are located in

the right one-third of the image. Dtrain
MS−NR consists of 36 samples. We generated these

two imbalanced pose datasets from various imbalanced datasets that can be created to
serve as a representative sample of this issue. As Table 5 shows, the mentioned unbalanced
condition decreases performance when compared with the performance on a balanced
dataset of a similar size in Table 3. However, Algorithm 2 is less affected by this in compari-
son with Algorithm 1. Therefore, it is important to have humans in diverse locations in
the thermal camera’s field of view; otherwise, the pose imbalance can negatively affect the
extrinsic calibration.

Table 5. Comparing Algorithms 1 and 2’s test loss values calculated using Equation (3) on Dtest
FS and

Dtest
MS under unbalanced human locations in a collected dataset.

Algorithm 1 Algorithm 2

Dtrain
FS−NL 1.482 1.415

Dtrain
MS−NR 0.463 0.356

To assess the importance of each component in Algorithms 1 and 2, we systematically
removed one component at a time and reported the results by calculating the Equation (3)
loss using the test dataset Dtest

FS , as shown in Table 6. The table reveals that removing
elitism results in divergence and has the most significant impact. Subsequently, both the
crossover and mutation exhibit notable importance, albeit to varying degrees. Removing
the condition that projects 50% of the point cloud into the thermal image during the creation
of the initial population has the least impact on test loss.

To observe the impact of the changes in certain hyper-parameters of Algorithms 1 and 2
and explain our intuition for selecting default values of hyper-parameters, we modified
one parameter at a time while keeping all other parameters constant, as specified in Table 1.
The corresponding results are presented in Table 7. In most cases, selecting values near
the default showed no significant degradation in the performance of both algorithms. To
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demonstrate a more pronounced effect, we opted for more extreme values in comparison
with the defaults. However, even in this scenario, in many cases, the results were not
substantially different from the results of the default hyper-parameters.

Table 6. The effect of removing different components from Algorithms 1 and 2 on the loss of
Equation (3) on the dataset Dtest

FS .

Removed
Part None Elitism Mutation Crossover No Init.

Const.

Algorithm 1 0.953 3756.001 1.596 8.082 0.972

Algorithm 2 0.798 3391.615 1.595 23.626 0.928

As depicted in Table 7, a small population size (Npop) results in poorer outcomes than
the default value due to insufficient diversity. Conversely, a large population size slows
down convergence and adds unnecessary computational overhead, approaching results
similar to the default value. A low value of pctelite implies that many of the found good
solutions do not directly transition to the next generation, diminishing their contribution to
the overall population quality. Conversely, a large value of pctelite restricts the introduction
of new individuals. In both cases, the results are inferior compared with the default value.
A smaller value of pctcrossover implies that fewer individuals in the next generation are
produced by crossover, and more individuals are created by mutation. In the proposed
algorithms, crossover covers a large area in the optimization space, and, as shown, a
small value of pctcrossover resulted in significantly poorer performance compared with the
default value. In these algorithms, the mutation operation allows for the discovery of
better solutions in the proximity of an existing solution. On the contrary, a large value of
pctcrossover means less mutation, leading to lower performance compared with the default
values. Finding a balance between the crossover and mutation is crucial for achieving good
results. σrot and σtrans represent the noise levels for the mutation operator, determining
how much change in a found solution is applied to generate a new individual. A very
small amount does not alter parameters in the optimization space enough to produce a
meaningful change in the outcome, while a large amount results in an individual that is
very different from the original solution and does not retain its attributes. As shown, in
both cases, the results are worse than the default values.

A low value of thresholdsample imposes a stringent criterion for considering a sample in
the dataset as an inlier, potentially causing issues by incorrectly classifying many good pairs
in the data as outliers and rejecting them from the calculation of extrinsic parameters. Con-
versely, a high-value results in the ineffective detection of outlier samples in data. In both
cases, the performance is weaker compared with the default value. As depicted in Table 3,
augmenting the pairs for optimizing extrinsic parameters generally leads to improved
performance. A small value of thresholdsample results in the identification of suboptimal
extrinsic parameters, leading to poor outlier detection performance. Conversely, when
the value of thresholdsample is large, there is a higher likelihood of including a significant
amount of outliers. The algorithm may face challenges in identifying a robust model amidst
the abundance of irrelevant data. As indicated in Table 7, in both scenarios, the perfor-
mance is diminished compared with the default value. We selected the default value for
minsample, as represented in Table 1, based on the performance of Algorithm 1 in Table 3. As
shown in Table 7, a low value for minsample can result in obtaining a poor initial estimate for
extrinsic calibration parameters, thereby impacting the performance of determining inliers.
Additionally, a large value can lead to the exclusion of a significant number of samples
from the determination of whether they are outliers or not, resulting in poorer results. As
can be interpreted from Table 7, a small value for iteroutlier can cause many samples not to
be examined for being outliers, resulting in a decrease in performance. On the other hand,
a large value does not contribute to finding more outliers, and the performance remains
similar to a balanced iteroutlier while only increasing computation. As indicated by the
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values in Table 7, a low value of ratiosolution does not alter the performance in the specific
experiment of Dtest

FS . However, a high value of ratiosolution led to poor performance, as the
proportion of inliers in each iteration of Algorithm 2 was smaller than the ratiosolution, and,
consequently, the detected outliers were rejected.

In Figure 6, the dots represent projected points in the LiDAR point cloud onto a
thermal image using a set of R and t. This figure presents a qualitative comparison of
Algorithm 2 (blue dots) with FS[R,t] and MS[R,t] (red dots) on two frames from Dtest

FS and
Dtest

MS. As can be observed, both the red and blue dots are closely aligned, demonstrating
that our proposed algorithm and FS[R,t] and MS[R,t] are in close agreement. However, as
depicted in the zoomed-in patches in Figure 6b,d, the blue projected points that correspond
to humans in the point cloud are more closely aligned with the humans in the thermal
images. Additionally, in Figure 6d, the blue points are more centered on the streetlight.

(a) (b)

(c) (d)

Figure 6. Images (a,c) respectively show a comparison of Algorithm 2 (blue dots) with FS[R,t] and
MS[R,t] (red dots) on two samples from FieldSAFE [11] and MS2 [13] datasets. The dots represent
projected points from the LiDAR point cloud onto the thermal image. Additionally, the images
(b,d) are zoomed-in patches taken from the frames on (a) and (c), respectively. To enhance visual
interpretation, the image in (c) and its zoomed-in patches in (d) were pseudocolored from the original
grayscale image.

Table 7. The effect of changing some of the default hyper-parameters on Algorithms 1 and 2 on the
loss of Equation (3) on the dataset Dtest

FS .

Hyper-
Parameter All Npop pctelite pctcrossover σrot σtrans

Value Default 100 800 2% 60% 10% 90% 0.005 0.2 5 200

Algorithm 1 0.953 1.588 0.962 2.209 0.97 1.011 1.043 1.021 1.023 1.509 1.049
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Table 7. Cont.

Hyper-
parameter All thresholdsample minsample iteroutlier ratiosolution -

Value Default 0.5 6.0 10 30 1 5 0.1 0.9 -

Algorithm 2 0.798 0.952 0.845 0.957 0.84 0.95 0.8 0.798 0.95 -

5. Conclusions and Future Work

In this paper, we have highlighted the advantages of combining data from thermal
cameras and LiDAR sensors and emphasized the importance of accurately determining
the rotation matrix R and the translation vector t to effectively utilize data from both the
thermal camera and LiDAR. Also, we mentioned certain challenges associated with using
specific targets visible in thermal cameras, especially when dealing with regular sensor
drift or changing settings. To address these challenges, we have introduced an extrinsic
calibration algorithm. This algorithm aligns a thermal camera and a LiDAR without the
need for a dedicated target. This calibration is achieved by matching segmented human
subjects in both modalities using pairs of thermal images and LiDAR point clouds that
were collected during the sensor setup’s movement. Firstly, we introduced the procedure
for constructing a dataset comprising pairs, where each pair consists of thermal camera
data and its corresponding point cloud. Secondly, we presented a novel loss function that
quantifies the alignment between the LiDAR and thermal camera coordinate systems given
the rotation matrix R and translation vector t. Thirdly, we introduced two evolutionary
algorithms, one of which does not explicitly address the issue of outliers, while the other
mitigates the impact of outliers. Also, our proposed algorithm obviates the need for an
initial estimate of R and t. Finally, we conducted a series of comprehensive experiments to
assess the efficiency of the proposed algorithms under various settings and to compare the
performance of them with the provided extrinsic parameters in the FieldSAFE dataset [11]
and the MS2 dataset [13]. This comparison offers a quantitative and qualitative assessment
of our method’s performance, providing valuable insights into its effectiveness and ro-
bustness. In one instance, our method exhibits a noteworthy 4.43% improvement in the
designed loss compared with extrinsic parameters derived from target-based calibration in
the FieldSAFE dataset. In another instance, distorting a dataset by randomly swapping
thermal cameras of four pairs in the data with another four pairs to create a new dataset
with eight mismatches between thermal images and point clouds only resulted in an 8.7%
increase in the loss, showcasing its robustness.

For future work, we plan to explore several directions based on the different ex-
periments presented. Firstly, we aim to achieve better results with fewer pairs in the
dataset. Secondly, as demonstrated, the dataset collected from thermal cameras indicates
that humans are often not in varying positions, and distances from the camera can nega-
tively impact the quality of the extrinsic calibration. We will investigate methods, such as
weighting different pairs, to address this issue. Thirdly, we will explore multi-objective
optimization to incorporate more complex information about masked humans in both
modalities in order to obtain better results.
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