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Abstract: Highway bridges stand as paramount elements within transportation infrastructure sys-
tems. The ability to ensure swift recovery after extreme events, such as earthquakes, is a fundamental
trait of resilient communities. Consequently, expediting the recovery process necessitates near real-
time diagnosis of structural damage to provide dependable information. In this study, a data-driven
approach for damage detection and assessment is investigated, focusing on bridge columns—the
pivotal supporting elements of bridge systems—based on simulations derived from nonlinear time
history analysis. This research introduces a set of cumulative intensity-based damage features, whose
efficacy is demonstrated through unsupervised learning techniques. Leveraging the support vector
machine, a prominent pattern recognition algorithm in supervised learning, alongside Bayesian
optimization with a Gaussian process, seismic damage detection and assessment are explored. En-
couragingly, the methodology yields high estimation accuracies for both binary outcomes (indicating
the presence of damage or the occurrence of collapse) and multi-class classifications (indicating the
severity of damage). This breakthrough opens avenues for the practical implementation of on-board
sensor computing, enabling near real-time damage detection and assessment in bridge structures.

Keywords: Bayesian optimization; bridge structures; damage detection and assessment; cumulative
intensity; support vector machine

1. Introduction

According to ASCE infrastructure report card [1], the majority of infrastructures in
the US are currently rated as mediocre to poor, with many nearing or surpassing their
initial design service life and showing signs of deterioration. Among these infrastructures,
reinforced concrete (RC) highway bridge systems play a crucial role in transporting goods
and people across natural terrains. Ensuring proper recovery after extreme events like
earthquakes is vital for building resilient communities. The effective management of post-
disaster consequences requires reliable information about the impact of seismic events,
thereby necessitating the allocation of existing resources and skills [2]. A resilient system
is characterized by its ability to achieve “reduced time to recovery” [3]. Consequently,
rapid condition monitoring of highway bridges is imperative [4], with an emphasis on
near real-time assessment of structural integrity to determine their safety for reoperation.
Traditionally, visual inspections have been the primary method for post-disaster condition
assessment. However, deploying dedicated teams for manual inspection poses challenges
in terms of both time efficiency and financial resources. Significant efforts have been
made to automate the visual inspection process (e.g., [5–8]). Despite these advancements,
automated inspection methods can only detect visible larger defects, leaving the possibility
of serious invisible defects going unnoticed [9].

Vibration records serve as another valuable source of information in Structural Health
Monitoring (SHM), operating under the assumption that dynamic properties and responses
undergo changes in the presence of damage. This approach has been studied extensively
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over the years (e.g., [10,11]). The model-based approach treats SHM as an inverse problem,
utilizing the finite element method and model updating for analysis (e.g., [12–16]), which,
however, poses challenges for near real-time implementation. More recent developments
in SHM involve data-driven methods. Worden et al. [17] applied outlier analysis to de-
tect damage in a three-degree-of-freedom spring system, utilizing Mahalanobis squared
distance as the discordancy measure. Santos et al. [18] explored kernel-based algorithms
for damage detection under varying operational and environmental conditions. A hybrid
approach based on the expectation-maximization algorithm and Gaussian mixture models
was proposed by the same group [19] to identify the normal state of a bridge. Another
combined approach, utilizing the concept of symbolic data analysis [20], was applied for
structural modification assessment using vibration data from a continuously monitored
bridge structure. Abdeljaber et al. [21] proposed the use of one-dimensional convolutional
neural networks for damage detection, validated on a grandstand simulator. Other re-
searchers have successfully implemented and applied auto-associative neural networks
(e.g., [22–24]), auto-regressive models (e.g., [25]), and cluster analysis (e.g., [26,27]) for
damage detection in recent years. Modal identification and model updating have also been
studied using a Bayesian model (e.g., [28–30]).

The aforementioned works exemplify damage detection under operational events.
In earthquake engineering, there is significant interest in the rapid condition monitoring
of structural health for post-earthquake safety assessment. González and Zapico [31] in-
troduced a seismic damage detection method based on artificial neural networks (ANNs)
for buildings with steel moment-frame structures. De Lautour and Omenzetter [32] pre-
sented an approach using ANNs to identify seismic-induced damage in two-dimensional
(2D) reinforced concrete frames. Elwood et al. [33] proposed an approach based on fuzzy
pattern recognition for seismic damage detection in concrete building structures. Zhang
et al. [34] employed regression trees and random forests to map building response and
damage patterns to residual collapse capacity. Recent methods include using convolutional
neural networks [35–37] and hybrid deep learning models [38]. Notably, most research
efforts in seismic damage detection have focused on 2D building structures subjected to
unidirectional ground motion excitation.

This paper introduces a data-driven methodology for damage detection and assess-
ment, utilizing acceleration data obtained from over 60,000 nonlinear time history analysis
(NTHA) simulations conducted on two representative RC highway bridge systems sub-
jected to bidirectional GM inputs. This study puts forth a set of low-dimensional cumulative
intensity-based damage features, including fractional ones, specifically tailored for bridge
columns, which are pivotal components of RC highway bridge systems. The effectiveness
of these features is evidenced through their estimated joint probability density function
(PDF). A comparative analysis is carried out on selected representative bridge systems un-
der different conditions: normal circumstances and earthquake scenarios with probabilities
of exceedance (POEs) of 50%, 10%, and 2% in 50 years, respectively.

This study leverages the support vector machine (SVM), a widely recognized pattern
recognition algorithm, to scrutinize structural damage features. The SVM plays a pivotal
role in identifying collapse occurrences, detecting damage presence, and assessing severity.
Addressing the challenge of overfitting, hyperparameter tuning is conducted through
Bayesian optimization [39], wherein the generalization performance of the learning algo-
rithm is modeled as a Gaussian process (GP) sample. To the author’s knowledge, this paper
marks the pioneering application of SVM with Bayesian optimization in SHM for civil
infrastructures. The outcomes demonstrate highly promising accuracies and robustness
(to a significant amount of noise) in both binary (indicating the presence of damage or
collapse) and multi-class (indicating the severity of damage) classifications. This research
opens up possibilities for leveraging onboard sensor computing, enabling near real-time
damage detection and assessment.
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2. Damage Feature Extraction

An ideal damage feature is a low-dimensional quantity extracted from the system
response data, demonstrating a robust correlation with the structural damage state. In
this study, the SHM process is simulated by emulating the placement of four accelerom-
eters (virtual sensors) on the bridge column, as illustrated in Figure 1. Among these,
two sensors capture the bidirectional ground motion (GM) excitation, while the other
two record the acceleration time histories of the column’s top in both longitudinal and
transverse directions.
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It is to be noted that these features serve as the parameters that machine learning
algorithms will analyze to identify and quantify damage. Consequently, these damage
features are ideally expected to exhibit a monotonic change as the damage levels increase.
In this paper, a set of cumulative intensity-based damage features is proposed as follows:

Ig
η =

∫ Td

0

∣∣ag(t)
∣∣η dt (1)

where ag(t) represents the acceleration time history of the GM input and Td denotes the
duration of the earthquake. Consequently, this series of damage features incorporates both
amplitude and temporal contributions. It is noted that η = 1 and η = 2, respectively, lead
to cumulative absolute velocity (previously proposed as a damage feature in [40]) and Arias
intensity (multiplied by a constant π/2g), as illustrated in Figure 2. The damage feature
suggested in Equation (1) holds broader applicability, as η can be any positive real number,
thereby eliminating the constraint of being a positive integer. This flexibility allows for
the incorporation of potential damage features based on fractional cumulative intensity.
To provide a comprehensive assessment of the bridge column’s damage conditions, an
additional related feature is introduced as follows:

Rη =
Ict
η

Ig
η

=

∫ Td
0 |act(t) |η dt∫ Td
0

∣∣ag(t)
∣∣η dt

(2)

where act(t) represents the acceleration time history sensed at the bridge column top. When
analyzing the bridge column as an input–output system from an energy perspective, the
ratio shows a decreasing trend with higher energy dissipation, signifying an escalation in
the acquired damages on the bridge column. Nevertheless, normalizing absolute intensity
measures through the calculation of the corresponding ratio in Equation (2) leads to the loss
of information regarding the magnitude of the input energy. Taking into account that Ig

η

corresponds to the input energy of excitation [41], it is prudent to incorporate both absolute
and relative intensity measures as inputs. As a result, considering the bidirectional GM
input in x and y directions, for each selected η, a total of four damage features are taken
into account in this study, i.e., Ig

η−x, Ig
η−y, Rη−x and Rη−y.
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3. Pattern Recognition

A pattern recognition algorithm is one that assigns a class label to a sample of measured
data, typically by training a diagnostic. Supervised learning algorithms, a category within
pattern recognition, educate the diagnostic by presenting it with the true label for each
dataset. Consequently, these learning algorithms are crucial for evaluating factors such as
the severity of damage, where datasets representing various damage states are employed
for training and classification purposes. In this investigation, the use of support vector
machine (SVM), a prominent representative of supervised learning algorithms, is explored.

3.1. Support Vector Machine

The aim of using the SVM is to construct a hyperplane as defined in the following
equation to separate two different classes of data samples (yi ∈ {−1, 1}) and to maximize
the margin from the hyperplane to the closest data points in either class:

f (x) = h(x)Tβ+ β0 = 0 (3)

where x denotes the selected damage features, i.e., Ig
η−x, Ig

η−y, Rη−x and Rη−y for each η.
This hyperplane is in terms of the extended features h(x). Accordingly, the optimization
problem for SVM can be expressed as follows [42]:

min
β, β0

1
2∥β∥

2 + C
N
∑

i=1
ξi

s.t. ξi ≥ 0, yi

(
h(xi)

Tβ+ β0

)
≥ 1 − ξi ∀i

(4)

where N is the total number of sampled points, C is the cost parameter to control the
tradeoff of bias and variance, and ξ is the slack variable to allow for some data points to be
on the wrong side of the margin. The solution to Equation (4) changes Equation (3) into the
following:

f (x) = h(x)Tβ+ β0

=
N
∑

i=1
αiyiK(x, xi) + β0

(5)

In this paper, the radial basis kernel function as in Equation (8) is used.

K(x, x′) = exp
(
−γ∥x − x′∥2

)
(6)
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3.2. Bayesian Optimization

To avoid overfitting, the common practice is to minimize the K-fold cross-validated
(CV) [42] loss (CVLK) of the SVM model with respect to its hyperparameters, the cost
parameter C and the kernel scale γ in this study. First, one splits the training set into K
non-overlapping subsets. For k = 1, 2, . . . , K, the test set is represented by the k-th subset,
while the training set is represented by the remaining K–1 subsets. For the k-th iteration, the
loss EK(λ) is evaluated, with λ = (C, γ), while the K-fold CV loss is computed as follows:

CVLK(λ) =
1
K

K

∑
k=1

Ek(λ) (7)

The objective function at hand is evidently non-convex, lacking a closed-form ex-
pression, and thus its derivatives are inaccessible. One can only acquire observations of
this function at sampled values, and such evaluations come at a considerable cost. Con-
sequently, direct application of common optimization algorithms, like the Monte Carlo
method or Genetic Algorithm, appears impractical. Bayesian optimization emerges as
a potent strategy for extremum discovery in cases where the objective function, such as
the one presented in Equation (10), is difficult to assess. What sets Bayesian optimization
apart is its approach: it constructs a probabilistic model for the objective function and
utilizes this model to determine the next point for evaluation. The aim is to leverage all
available information from previous evaluations, thus avoiding an exclusive reliance on
local gradient and Hessian approximations [39]. Despite the additional computational
effort required to determine the next point for evaluation, Bayesian optimization generally
proves to be effective in identifying the minimum of challenging non-convex functions
with relatively few evaluations [43].

The fundamental assumption adopted in Bayesian optimization is that the function
CVLK(λ) is drawn from a GP prior, i.e., CVLK(λ) ∼ N(0, K) (without loss of generality,
the prior mean is given as 0), whose kernel matrix is given by

K =

k(λ1,λ1) . . . k(λ1,λt)
...

. . .
...

k(λt,λ1) . . . k(λt,λt)

 (8)

where k
(
λ,λ′

)
is the covariance function. From previous iterations, the following ob-

servation is acquired: D1:t =
{
λ1:t, CVLK

1:t
}

, where CVLK
1:t = CVLK(λ1:t). λt+1 is ob-

tained as the next point to evaluate and denote the value of the function at λt+1 as
CVLK

t+1 = CVLK(λt+1). Under the GP prior, CVLK
1:t and CVLK

t+1 are jointly Gaussian
and one can obtain the following expression for the predictive distribution [39,44]:

CVLK
t+1

∣∣∣D1:t ∼ N
(

µ(λt+1), σ2(λt+1)
)

(9)

where
µ(λt+1) = kTK−1CVLK

1:t (10)

σ2(λt+1) = k(λt+1,λt+1)− kTK−1k (11)

k =
[
k(λt+1,λ1) k(λt+1,λ2) · · · k(λt+1,λt)

]T (12)

Therefore, the predictive posterior distribution CVLK
t+1

∣∣D1:t is sufficiently character-
ized by its predictive mean function µ(λt+1) and predictive variance function σ2(λt+1),
which solely depend on the selection of the covariance function k

(
λ,λ′

)
. In this study, the
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automatic relevance determination (ARD) Matérn 5/2 kernel recommended in [43] is used
as follows to permit greater flexibility in modeling function:

kM52
(
λ,λ′

)
= θ0

[
1 +

√
5r2

(
λ,λ′

)
+

5
3

r2(λ,λ′
)]

exp
(
−
√

5r2
(
λ,λ′

))
(13)

where

r2(λ,λ′
)
=

D

∑
d=1

(
λd − λ′

d
)2/θ2

d (14)

where θ0 and θd, d = 1, . . . , D, are the hyperparameters of the ARD Matérn 5/2 kernel that
are learned by “seeding” with a few random samples and maximizing the log-likelihood
of the evidence given θ = (θ0, θ1, . . . , θD) [32,36]. In this case, D = 2 corresponds to the
dimensionality of λ = (C, γ).

To sample efficiently, Bayesian optimization uses an acquisition function to determine
the next location λt+1 for evaluation. The acquisition function used in this study is the
Expected Improvement (EI), which is to maximize the EI over the best current value λbest =
argminλi∈λ1:t CVLK(λi). This has a closed-form solution under the GP [44] assumption as
follows:

aEI(λt+1) = σ(λt+1)[Z Φ(Z) + ϕ(Z)] (15)

where

Z =
CVLK(λbest)− µ(λt+1)

σ(λt+1)
(16)

and Φ(·) and ϕ(·), respectively, denote cumulative distribution function and PDF of the
standard normal. Unlike the original unknown objective function in Equation (7), aEI(·)
can be cheaply sampled to be maximized. Note that GPs scale cubically with the number
of observation; in summary, the goal of Bayesian optimization is to efficiently discover the
global optimum with a limited number of evaluations by intelligently allocating additional
computing power to identify the next point for assessment. The algorithm of SVM with
Bayesian optimization is summarized in Algorithm 1.

Algorithm 1 SVM with Bayesian optimization

for t = 1, 2, . . . do

1. Calculate predictive mean function µ(λt+1) and predictive variance function σ2(λt+1)
using the selected kernel function kM52

(
λ,λ′

)
2. Find λt+1 = (Ct+1, γt+1) by optimizing the acquisition function over the
GP:λt+1 = argmaxλaEI(λ|D1:t )
3. With SVM parameterized by Ct+1 and γt+1, evaluate the objective function: CVLK(λi+1)

4. Augment the data D1:t+1 =
{

D1:t,
(
λt+1, CVLK

t+1
)}

and update the GP

end for

The proposed pattern recognition algorithm is implemented through the following
steps:

1. Generate damage features from the training data, as detailed in Section 2;
2. Train and fine-tune support vector machines (SVMs) according to the procedures

outlined in Section 3. This involves using the generated damage features from Step 1
along with corresponding labels (e.g., damaged or not);

3. Employ the trained SVMs from Step 2 for future predictions when a new set of
acceleration records is acquired.

4. Case Study

In this section, the proposed framework is investigated on RC highway bridge systems.
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4.1. Computational Bridge Model and Ground Motion Selection

Two representative RC highway bridge systems (designed after 2000), Jack Tone
Road Overcrossing (denoted as Bridge A) and La Veta Avenue Overcrossings (denoted
as Bridge B), are selected for this study. Comprehensive analytical modeling and simu-
lations of these bridges can be found in [45]. The software platform OpenSees (version
3.5.0) [46] is employed for both the modeling and simulations. The computational models
explicitly encompass the superstructure, column-bents, and seat-type abutments. Given
that modeling assumptions can significantly influence the dynamic response characteris-
tics of short bridges [47,48], verified and/or validated modeling techniques are adopted
whenever feasible.

The bridge superstructure (depicted in Figure 3), comprising the bridge deck and cap
beam, is modeled using elastic beam–column elements with uncracked section properties.
Exceptionally high torsional and out-of-plane stiffness values are assigned to the cap beam
due to its integral construction with the deck. To accurately capture dynamic responses,
the mass of the superstructure, including rotational mass, is distributed to the superstruc-
ture elements. The bridge column is represented by nonlinear force-based beam–column
elements (as illustrated in Figure 3), incorporating fiber-discretized cross-sections. This
approach employs three concurrent constitutive models: (1) confined concrete for the
core, (2) unconfined concrete for the cover, and (3) steel for the reinforcing bars. For both
cover and core concretes, following the methodology in [49], the Concrete01 constitutive
model is applied. This model represents a uniaxial Kent–Scott–Park concrete material
object with degraded linear unloading/reloading stiffness and no tensile strength. The
steel reinforcing bars are modeled using the Steel02 material, which represents a uniaxial
Giuffre–Menegotto–Pinto steel material object with isotropic strain hardening [50].
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Two modeling approaches, designated as Type I and Type II, are under consideration
for the abutment (refer to Figure 4). Both approaches explicitly address longitudinal,
transverse, and vertical responses. In Type I (as illustrated in Figure 4a), the model employs
two nonlinear springs, each located at the ends, connected in series to gap elements.
These springs, modeled with an elastic-perfectly plastic (EPP) backbone, represent the
passive backfill response and the expansion joint, respectively [51]. The transverse direction
incorporates an EPP backbone relationship to model the backfill–wingwall–pile system,
with the Type I model ignoring the resistance of the shear keys for simplicity. The vertical
response of the bearing pads and stemwall is captured using two parallel springs. The first
spring represents the flexible part of the elastomeric bearing pad in the vertical direction,
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and the second represents the vertical stiffness of the stemwall. In Type II (depicted in
Figure 4b), the longitudinal response is modeled using five abutment nonlinear hyperbolic
springs connected in series to gap elements. Additionally, the resistance provided by
the shear key is modeled in the transverse direction using a nonlinear spring with a tri-
linear backbone relationship. It is noteworthy that the modeling technique employed in
this study aligns with the approach utilized by Cruz and Saiidi [52], validated through
a large-scale four-span bridge test at the University of Nevada, Reno, demonstrating a
comparable correlation between seismic demands derived from analytical models and
experimental data.
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Utilizing a magnitude 7 earthquake scenario outlined in [53], 99 pairs of seed bidirec-
tional horizontal ground motion (GM) records are selected from the PEER Next Generation
Attenuation (NGA) Project GM database [54]. Subsequently, these 99 pairs of GM records
are scaled based on the lognormal distribution of peak ground velocity (PGV) as detailed
in [55]. For this investigation, 25 PGV values (representing 25 intensity levels) to encompass
this distribution are chosen. Additionally, various intercept angles, ranging from 0 to 150 in
increments of 30 (refer to Figure 3), are explored. Consequently, considering both Bridges
A and B, abutment modeling Types I and II, and the six intercept angles mentioned above
for all 99 unscaled GMs with 25 PGV values, a total of 59,400 NTHA simulations are con-
ducted. In this extensive set, simulations for the first five intercept angles are designated for
training, while those for the last intercept angle constitute the test set. Both sets comprise
representative samples, including damaged and undamaged instances, addressing the
classification problem related to the existence of damage.

4.2. Damage Feature

The efficacy of Rη proposed in Equation (2) as a damage feature is demonstrated
through unsupervised learning, where a statistical model (such as a joint Probability
Density Function) of damage features during the undamaged state is established [56,57].
Monitoring data are then compared against this model. In this study, the multivariate
probabilistic model of Distributions with Independent Components [58,59] is employed,
with univariate distributions modeled through kernel density estimation (KDE) [60]. The
dataset is derived from 99 ground motions with small scaling factors, ranging from 0.01
to 0.1 in increments of 0.01. This dataset comprises a total of 990 NTHA simulations,
representing undamaged conditions for each investigated bridge system configuration
(e.g., Bridge A with Type I abutment modeling). The detailed procedure is outlined in the
Appendix A.

Three sets of 40 GMs, which correspond to the earthquake scenarios with 50%, 10%,
and 2% POE in 50 years, are selected to represent three damage levels for the bridges. As
a demonstration, Figures 5 and 6, respectively, show the comparisons between the joint
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PDF (the heat maps) and the three groups for R1 and R2 (red dots), respectively. It is
noted that the joint PDF of R2 is much flatter than that of R1 (e.g., peaks from 1.6 to 1.8 for
R1−x compared to those from 2.3 to 2.8 for R2−x), which explains the order of magnitude
difference between their color bars. As the damage level increases (i.e., from 50% POE in
50 years to 10% POE in 50 years, and then to 2% POE in 50 years), clear monotonic trends
are discernible for both damage features (as groups), showcasing a gradual shift of ellipses
(encompassing most of the red dots), toward the left lower corner. Consequently, R1 and
R2 are effective damage indicators for bridge column of the investigated RC highway
bridge systems and can be used as damage features in the pattern recognition algorithm
introduced next.
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Figure 6. Comparisons between joint PDF of R2−x versus R2−y for the undamaged condition and
R2−x versus R2−y of three damage levels: 50%, 10%, and 2% POE in 50 years. (a) 50% POE. (b) 10%
POE. (c) 2% POE.

4.3. Simulated Measurement Noise

For earthquake event applications, it is crucial that the damage detection and assess-
ment algorithm remains robust in the presence of measurement noise in sensor recordings.
To simulate such noise, the following procedures are proposed:

1. Random Gaussian noise, with a noise-to-signal ratio of 30% (calculated as the ratio
of standard deviations within the duration of each ground motion), is added to
the acceleration time history of the input GM excitation at the column bottom (see
Figure 1);

2. The acceleration time history at the column top is obtained by summing up the accel-
eration at the ground level (with noise) from Step 1 and the relative acceleration from
NTHA simulations. Note that the relative acceleration is recorded in OpenSees [48]
for the column top;

3. Again, random Gaussian noise with a noise-to-signal ratio of 30% is added to the
obtained acceleration time history at the column top in Step 2. Figure 7 illustrates the
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comparison of the acceleration signal at the column top with and without noise for
one GM scaled to the highest intensity level.
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Figure 7. Time history reading of the column top for one GM scaled to the highest intensity level.

Following these procedures, for each GM, the noise-to-signal ratio consistently in-
creases with the increase in intensity level. Figure 8 depicts such trends, presenting the
average noise-to-signal ratio for the selected 99 ground motions across all four bridge
configurations for the 30-degree intercept angle.
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Figure 8. The average noise-to-signal ratio of the four bridge configurations under all intensity levels
for the 30-degree intercept angle.

4.4. Classification Results

For visualization purposes, Figure 9 shows the training results using R1 and R2, (refer
to Equation (2)), respectively, as damage features for predicting the occurrence of collapse
(i.e., when the peak column drift ratio exceeds 8% [61]) and the existence of damage (i.e.,
when the peak column drift ratio exceeds 2% [62]) for Bridge A with Type I abutment
modeling. The decision boundary is determined by the labeled training data and an SVM
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tuned using Bayesian optimization. It is important to note that the decision boundary
is nonlinear, and the damage regions exhibit discontinuities due to the utilization of a
nonlinear kernel, as defined in Equation (6). Figure 10 illustrates the minimization of the
10-fold cross-validated loss (adopted as the objective function in this paper) using Bayesian
optimization. Both classification tasks—detecting the existence of damage and predicting
the occurrence of collapse—are performed for all investigated bridge configurations using
the damage features outlined in Table 1. In this study, the damage feature vector is of
around ten dimensions [4]. As mentioned earlier, for each η, a total of four damage features,
i.e., Ig

η−x, Ig
η−y, Rη−x and Rη−y, are considered. Consequently, only two or three values of

η are taken into account. The values of η in Table 2 are selected based on the minimum
10-fold cross-validated loss achieved by performing SVM with Bayesian optimization
under different two and three η combinations. It is found that the loss is smaller for all
investigated classification cases when three values of are considered. Therefore, 12 damage
features serve as the input for the SVM classifiers.
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Table 1. Selected damage features for investigated classification cases.

Bridge Abutment
η Considered

Existence of Damage Occurrence of Collapse Severity of Damage

A
I 0.1, 1.0 and 1.5 0.1, 0.5 and 1.5 0.1, 0.5 and 1.5

II 0.1, 0.5 and 1.0 0.1, 1.5 and 2.0 0.2, 1.0 and 1.5

B
I 0.2, 1.0 and 1.5 0.5, 1.5 and 2.0 0.1, 1.0 and 2.0

II 0.1, 0.2 and 0.5 0.5, 1.5 and 2.0 0.5, 1.0 and 2.0

Table 2. Hyperparameters selected using Bayesian optimization for investigated classification cases.

Bridge Abutment
Existence of Damage Occurrence of Collapse Severity of Damage

C γ C γ C γ

A

I 113.82 0.97 3.82 0.66

45.11 0.88

128.88 0.63

3.91 1.00

II 234.37 1.64 38.67 2.55

250.66 2.55

736.63 0.37

32.86 1.45

B

I 978.48 2.55 19.69 2.28

446.32 1.51

154.75 3.50

263.41 4.16

II 960.34 1.09 9.39 1.34

888.00 7.59

13.53 1.08

242.96 6.30

With the hyperparameter values of the SVM models (Table 3) determined using
Bayesian optimization (searching over a cube with C, γ ∈ [0.001, 1000], as shown in
Figure 8), the training, CV, and testing accuracies for all scenarios are documented in
Table 4. Notably, the CV accuracy (i.e., 1-CVLK; note that CVLK is the cost function as in
Equation (9) for minimization) closely approximates the testing accuracy. While a subtle
decrease in testing accuracy is observed with more intricate structures—from single-column
Bridge A to two-column Bridge B and from Type I abutment modeling to Type II with
additional springs and gap elements—the testing accuracies remain remarkably high for
these two binary classifications. Figures 11 and 12 provide example confusion matrices
for both training and testing sets, illustrating accuracies and misclassification errors for
each class. The SVM is further extended to handle multi-class classification problems. In
this paper, a three-class classification is conducted: no damage, damaged without collapse,
and collapse (i.e., peak column drift ratio below 2%, between 2% and 8%, and above
8%). This entails three SVM classifiers, each time comparing one of the three classes to
the remaining two. In this case, λ in Algorithm 1 becomes a vector with six elements,
representing three cost parameters and three kernel scales-one pair for each SVM classifier.
The last two columns of Table 2 contain the hyperparameters values for the three SVM
models, i.e., from top to bottom, (0, 2%), [2%, 8%), and [8%,+inf) versus the remaining
two classes. Remarkably, promising accuracies of approximately 90% are achieved (Table 3).
Additionally, Figures 13–16 present the confusion matrices for training and testing sets in
the three cases, thereby providing the predicted accuracies for each class. It is noteworthy
that the accuracies for training and testing sets in all cases are comparable, indicating
that the Bayesian-optimized SVM classifiers exhibit robustness against overfitting. The
advantages of Bayesian optimization are evident in the comparisons of achieved testing
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accuracies with and without adopting Bayesian optimization for hyperparameter selection
(Table 4). It is important to note that the hyperparameters leading to testing accuracies
without Bayesian optimization are randomly selected (i.e., those used in the first iteration
of the corresponding Bayesian optimization).

Table 3. Training, CV, and testing accuracies achieved for investigated classification cases.

Bridge Abutment
Existence of Damage Occurrence of Collapse Severity of Damage

Training CV Testing Training CV Testing Training CV Testing

A
I 99% 97% 98% 99% 98% 99% 99% 96% 97%

II 97% 95% 95% 99% 97% 98% 99% 92% 93%

B
I 98% 95% 96% 99% 96% 96% 98% 92% 92%

II 96% 93% 93% 99% 94% 95% 97% 87% 88%

Table 4. Comparisons of testing accuracy between with and without Bayesian optimization for
hyperparameters.

Scenario Existence of Damage Occurrence of Collapse Severity of Damage

Bayesian Optimization No Yes No Yes No Yes

Bridge A
Type I 73% 98% 76% 99% 61% 97%

Type II 80% 95% 75% 98% 62% 93%

Bridge B
Type I 64% 96% 76% 96% 63% 92%

Type II 67% 93% 77% 95% 63% 88%
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5. Conclusions

This paper introduces a novel data-driven approach for detecting damage in bridge
columns through nonlinear time history simulations conducted on a reinforced concrete
highway bridge system. The proposed structural health monitoring method simulates the
placement of four accelerometers on the bridge column. Two of these accelerometers mea-
sure bidirectional GM excitation, while the other two record the acceleration time histories
of the column’s top in both longitudinal and transverse directions. A set of cumulative
intensity-based damage features, including fractional ones, is derived from the acceleration
time histories. These features have been proven to be effective and reliable indicators of
damage through unsupervised learning. The analysis takes into account distributions with
independent components, utilizing univariate kernel density distributions. Subsequently,
a support vector machine is applied, with its hyperparameters optimized using Bayesian
optimization. This approach is used to address various binary and multi-class classifica-
tion problems related to damage diagnosis, such as predicting the occurrence of collapse,
identifying the existence of damage, and assessing its severity. Remarkably high accuracies
and robustness are achieved, even when subjected to simulated measurement noise with a
high signal-to-noise ratio. This suggests the model’s potential for implementation in sensor
networks equipped with onboard computing capabilities, thereby enabling near real-time
damage detection and assessment.
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Appendix A

The procedure of Distributions with Independent Components (DIC) using Kernel
Density Estimation (KDE) for the univariate distributions is as follows:

1. Apply Independent Component (IC) analysis to the data X, e.g., X =
(

R1−x, R1−y
)
,

in the original space to obtain the data Y in the IC space as follows:

Y = P(X − µX)
X = µX + QY

(A1)

where µX stands for mean matrix of X and Q = P−1.
2. Apply KDE to each IC and the joint PDF in the IC space can be obtained as follows:

pY(y) = pY1(y1) · pY2(y2) · . . . · pYn(yn) (A2)

3. The joint PDF in the original space can be obtained as follows with |•| denotes the
determinate of the matrix:

pX(x) =
1
|Q|pY[P(x − µX)] (A3)
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