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Abstract: Bite force measurements are crucial in the realm of biomedical research, particularly in the
areas of dentistry and orthodontic care. Various intraoral devices have been used to assess biting
force, but each has limitations and drawbacks. Fiber optic sensors (FOSs) offer advantages such
as electrical inertness, immunity to electromagnetic interference, and high sensitivity. Distributed
fiber optic sensing allows an increase in the number of sensing points and can interrogate numerous
reflections from scattering events within an optical fiber. We present four dental bites with heights
of 6 mm, which enabled bilateral measurements. U-shaped sensors were prepared by embedding
fibers into silicone by folding a single-mode fiber into four lines and multiplexing eight parallel
nanoparticle-doped fibers. Dental bite models were created using two silicone materials (Sorta Clear
18 and Sorta Clear 40). The developed sensors were calibrated by applying weights up to 900 g,
resulting in a linear response. Experiments were conducted to compare the efficacy of the dental
bites. The collection of massive data was enabled by constructing a 2D map of the dental bites during
multi-point sensing.

Keywords: fiber optic sensors; distributed fiber optic sensors; scattering-level multiplexing; bite force
measurements; dentistry

1. Introduction

In the field of healthcare, novel sensor designs have the potential to offer significant
advantages in the field of biomedicine, particularly in terms of disease prevention and
therapy optimization monitoring [1,2]. Among these parameters, bite force measurements
hold a significant place, especially in dentistry and orthodontic treatments [3]. The term
“bite force” pertains to the amount of force exerted by the upper and lower teeth within the
masticatory system during dental occlusion. The study of the biting process is motivated by
the need to understand the correlation between force magnitude and proper occlusion [4].
Measuring bite force is essential for the optimization of dental prostheses and implants,
as well as for the explanation of dental traumas and bruxism [5]. Additionally, it can aid
in enhancing the understanding of oral illnesses, dysfunctions related to mastication, and
temporomandibular disorders [6,7]. Moreover, bite force measurement is a crucial aspect
of assessing the chewing process within the human masticatory system, particularly in
relation to ontogenetic changes [8]. Inappropriate functions of the chewing process can
lead to the development of cardiovascular disease (CVD) [9]. Therefore, the quantitative
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assessment and correction of biting force hold considerable importance in the diagnosis
and management of oral diseases.

A considerable amount of research has been performed to assess biting force utilizing
a variety of intraoral devices [10]. There are several types of sensors, such as resistance
strain gauges and piezoresistive, piezoelectric, and capacitive sensors [11]. Nevertheless,
it is crucial to acknowledge that each of these intraoral devices possesses its own set of
limitations and drawbacks [12]. These sensors predominantly rely on electrical properties
to measure bite force. The use of electrical parameters for sensing can be considered not
fully acceptable for in vivo research. Fiber optic sensors, with advantages such as electrical
passiveness, immunity to electromagnetic interference, and high sensitivity, effectively
address certain limitations associated with electrical sensors [13]. FOSs present a degree
of flexibility, allowing them to adapt to the various shapes of the human body [14]. The
biocompatibility of the fibers results from being composed of silica glass. Moreover, embed-
ding FOSs into diverse materials enables their operation in tools that can be sterilized [15].
FOSs, particularly those exploiting fiber Bragg gratings, are predominantly employed for
bite force applications [16,17]. Fiber Bragg gratings (FBGs) and arrays of FBGs are well-
established technological solutions that offer significant advantages as a result of precise
measurements and cost-effective installation [18]. For the purpose of measuring dynamic
biting forces in living organisms, Umesh et al. introduced a novel method utilizing fiber
Bragg grating (FBG) sensors [19]. The results of that study demonstrated the presence
of clinically significant variations in bite forces along the dental arch. Milczewski et al.
investigated the application of FBG sensors for the purpose of monitoring the internal
strain exerted by orthodontic equipment on the teeth and surrounding bone [20]. The afore-
mentioned findings provide collective evidence that supports the utilization of FBG sensors
for the purpose of measuring bite force in the field of dentistry. FBGs, however, are limited
in their ability to perform high-resolution measurements due to constraints related to the
density of FBGs within an array [21]. Distributed fiber optic sensing allows an increase
in the number of sensing points, thereby broadening the potential applications of fiber
optic systems in biomedicine [22,23]. Distributed fiber optic sensors have the capability
to interrogate the numerous reflections that arise from scattering events within an optical
fiber [24]. The use of the Optical Backscattered Reflectometry (OBR) technique makes
it feasible to interrogate an extremely weak Rayleigh backscattered signal that presents
chaotic but deterministic spectral features, and it can be considered as a sort of signature for
each portion of the fiber strand [25]. Based on the correlation of the backscattered spectra
of both reference and measured signals, the derived wavelength-shift value presents the
variation of physical parameters, such as temperature and strain [26]. By employing this
approach, a simple standard single-mode fiber (SMF-28) used for telecom applications can
be transformed into a highly efficient distributed sensor, thereby facilitating the attainment
of precise and accurate measurements [21,27]. In order to enhance the potential of fiber
optic systems in medical contexts, which require dense sensing within planar systems,
the implementation of a multiplexing technique known as scattering-level multiplexing
(SLMux) has been developed [28]. SLMux utilizes fiber branches that contain custom-
made high-scattering nanoparticle-doped fibers spliced to normal low-scattering SMF-28,
enabling spatial overlap within the branches of the multiplexed setup [29,30]. OBR can
be used to analyze the high-scattering peaks observed during the interrogation of the
nanoparticle-doped fiber so that the spatial multiplexing configuration is obtained. The
possibilities of fiber optic sensing technology can significantly improve the performance of
current bite force measuring systems.

In this work, we exploited a 2D strain mapping technique [31] to assess and mea-
sure bite force in order to prove the concept of the high-density distributed fiber sensing
technique for future development in dentistry applications. We introduced two silicone
bites that exploited distributed sensing technology. These bites had a 2 mm by 2 mm
resolution and were formed by four parallel fiber lines arranged in the shape of a dental
arch. The achievement of parallel lines was accomplished using two distinct methods: the
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utilization of a single-mode fiber (SMF-28) and the implementation of nanoparticle-doped
fiber lines arranged in a scattering-level multiplexed manner. Experiments were conducted
to examine, assess, and verify the efficacy of the pressure detection technology.

2. Materials and Methods
2.1. Silicone Bite Designs
2.1.1. Materials

To conduct experiments to determine the distributed bite force along the occlusion,
four silicone dental bites were prepared using molds and silicone materials. In order to
organize the fiber lines in the shape of a dental arch, transparent silicone materials (Sorta
Clear 18 and Sorta Clear 40) were utilized as construction materials. The silicone materials
Sorta Clear 18 and Sorta Clear 40 had Young’s modulus values of 0.664 MPa and 1.696 MPa,
respectively, which were defined using their nominal shore toughness [32]. First, the
bottom molds were 3D-printed with a specific pattern for encapsulating fiber lines into the
transparent silicone. Then, silicone liquids were made by combining part A and part B of
the Sorta Clear materials with a weight-to-weight ratio of 100:10. The mixture was stirred
for 2 min and underwent a 2–3 min degassing process in a vacuum chamber to remove
any trapped air. The mixture was then poured into the prepared mold for the bottom part
and pressed from above with the upper mold, which had the pattern shown in Figure 1a,e.
After that, the molds with the mixture were placed on a flat surface for 16 h to cure. After
solidification, the bottom layer of the dental bite, with a height of 3 mm, was extracted, and
fiber lines were inserted into grooves according to the fiber configuration, as depicted in
Figure 1b,f. The spiral topology based on SMF-28, shown in Figure 1b, and the parallel
topology based on enhanced optical fiber lines, shown in Figure 1f, were used to obtain a
2D pressure map. The SMF-28 had about 85 cm of folded fiber, and 44.5 cm of the fiber was
grooved and embedded. For the SLMux topology, 10 cm of nanoparticle-doped fiber was
utilized, and 6 cm of it was embedded in a silicone bite.
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Figure 1. The fabrication steps of prototypes based on two topologies. The spiral topology: (a) the
first layer, (b) the first layer is placed in the second mold and the fibers are fixed, (c) the second layer
prepared on top of the first, (d) fabricated silicone. The parallel topology: (e) the first layer, (f) the
first layer is placed in the second mold and the fibers are fixed, (g) the second layer prepared on top
of the first, (h) fabricated silicone.
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On top of the attached fiber lines, the remaining part of the silicone liquid was poured
at a height of 3 mm, as depicted in Figure 1c,g. After the silicone solidified, 6 mm thick,
flexible, transparent silicone dental models with embedded fibers were produced. The
mass of the prepared silicone was 15 g, and the final prototypes of the fiber-embedded
silicone are illustrated in Figure 1d,h.

In order to conduct research on the distribution of strain over the surfaces of dental
bites, a dental jaw was prepared. It was modeled using the free-form feature in Fusion 360
(Autodesk, San-Francisco, CA, USA) and 3D-printed with PLA material. However, only
the upper jaw was utilized to simplify the experimental procedure. The model is depicted
in Figure 2.
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Figure 2. A 3D-printed model of a human jaw.

2.1.2. Methodology

Two dental bite topologies were examined in our study. The first prototype, based on
an SMF folded in a spiral shape, was successfully developed by employing a distributed
fiber optic sensing method. Distributed sensing is accomplished by exploiting the principle
of Optical Frequency Domain Reflectometry (OFDR). The basic concept of OFDR involves
the spectral demodulation of distributed reflections that take place within an optical
fiber, utilizing a tunable laser swept over a broad band between 1525 and 1610 nm. The
distributed reflection phenomenon can arise due to Rayleigh backscattering, which is
present in every segment of the fiber core, and it behaves as a distinctive characteristic of the
fiber. By comparing the Rayleigh backscattered spectra of the measured and unmeasured
states of a fiber, it is possible to detect the strain variation along the fiber. To achieve a
planar view with the help of only one SMF, a spiral-based topology was implemented by
folding a single-mode fiber into four loops, each with a distance of 2 mm, to resemble the
curvature of a dental arc.

A second model based on enhanced scattering optical fibers was prepared by exploit-
ing the scattering-level multiplexing (SLMux) method. The primary objective of SLMux is
to use the strong scattering properties exhibited by a distinct, custom-manufactured optical
fiber doped with nanoparticles (NP) [30]. The use of enhanced backscattering fiber is not
new in the field of distributed sensing, and it has been suggested for different purposes,
including parallel multiplexing, the enhancement of sensitivity, and the improvement of
interrogation systems in terms of cost-effectiveness [33]. Several strategies can be used to
enhance fiber backscattering. The use of NP-doped fiber presents advantages in terms of
manufacturing costs with respect to other proposed solutions, such as treatment with an
ultrafast laser or exposure to UV light [34,35]. In fact, the fabrication of NP-doped fiber
relies on a conventional MCVD process, and the NPs are obtained directly in the fiber, so
the overall manufacturing cost of NP-doped fiber is comparable to standard SMF-28. The
use of NP-doped fiber enables the realization of a spatially multiplexed configuration [28].
The concept of multiplexing revolves around the utilization of a configuration of parallel
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fibers. In this parallel design, a segment of SMF-28 was utilized as the separator in each
branch. SMF-28 fibers with different lengths were spliced to an NP-doped fiber, which
worked as the sensing component of the parallel fiber lines. In the dental bite configuration,
a total of eight branches were employed, with each of these branches being connected to a
1 × 8 splitter. As a sensing part of our branch, NP-doped high-scattering fibers with lengths
of 6 cm were used. The NP-doped fiber was spliced with SMFs with different lengths to
provide distinguishable measurements from each sensing part of the branch. To verify the
correct construction of the spatial multiplexed setup and the correct spacing between the
fiber separators, the backscattering trace was detected using OBR. The backscattered trace
of the SLMux setup for our dental bite is depicted in Figure 3.
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Figure 3. The power scattering trace representing power (P) in the OBR in the SLMux configuration.

In the fabrication step, eight branches of sensing fibers were carefully placed in the
silicone material. Specifically, the first set of four sensing fibers was strategically installed
on the right side of the dental bite. Subsequently, the four remaining sensing fibers were
fixed on the left side of the silicone bite, which is depicted in Figure 1. Table 1 shows the
key properties of the two dental bites.

Table 1. The comparative analysis of two dental bite topologies.

Criteria The Dental Bite Based on SMF-28 The Dental Bite Based on NP-Doped Fiber

The thickness 6 mm 6 mm

The material Simple and cheap SMF-28 Nanoparticle-doped fibers

The resolution 2 mm × 2 mm 2 mm × 2 mm

The sensing points ~232 ~200

The pressure sensitivity 1.672 pm/kPa 2.376 pm/kPa

The arrangement of fiber lines Spiral topology SLMux

The covering area Posterior and anterior regions of dental arc Only posterior region of dental arc

The limitations Unsuitable for in vivo measurements, low
sensitivity

The anterior part of the dental arch cannot be
measured.
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2.2. The Experimental Setup

To facilitate the investigation of silicone dental bites sensorized with fibers, the ex-
perimental setups depicted in Figure 4 were developed. The diagrams in Figure 4a,b
serve as graphical representations of the connection of the two dental bite topologies. The
experimental configuration utilized to reconstruct the two-dimensional representation of
pressure distribution consisted of the following elements: a rack structure employed to
apply local force; the upper part of the dental jaw; silicone bites featuring two different
fiber configurations (one of which was parallel with a 1 × 8 splitter); and an OBR equipped
with data processing software to analyze the fiber spectra. The rack structure for point
sensing, which is not shown in the actual setup, was described in our previous work [31].
The pressing part of the rack system had a tip diameter of 2 mm. The configuration for
an SLMux-based silicone bite with a 1 kg load on top of a 3D-printed upper dental jaw is
illustrated in Figure 4c,d.
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The optical backscatter reflectometer (OBR) was an OBR4600, a commercial model
manufactured by Luna Inc., Roanoke, VA, USA [25]. Due to the ability to detect the
Rayleigh backscattered spectrum along the sensor, the OBR with a tunable laser scanning
from 1525 nm to 1610 nm with a dynamic range of 80 dB enabled the utilization of a
single-mode fiber as a valuable spatially distributed sensor. The OBR, which permits
resolutions far smaller than one centimeter, is exceptionally well suited for the investigation
of applications where a high number of sensing points are required, including dental bite
force measurement. The sensor spacing for our research was set to 2 mm.

Our research investigated the distributed sensing technique based on SMF-28 and
SLMux for bite force applications. For this purpose, two dental bites were prepared in the
form of dental arches, and their pressure sensitivity was evaluated. In order to provide
a symbolic representation of the fibers and measurement locations, the U-shaped dental
models were divided into two equal halves, as depicted in Figure 5a,b.
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dental model and (b) for SLMux-based silicone dental model.

The fibers on the right side were assigned numerical labels ranging from 1 to 4, while
the fibers on the left were labeled with numbers ranging from 5 to 8. Along the height of
the silicone bite, the fiber lines on the dental model were marked with the letters A, B, C,
and D. The anterior portion of the dental bite with a spiral-based topology was denoted by
the letter Z, and the lines were assigned in ascending order. Due to the slight curvature
caused by the installation of nanoparticle-doped fibers, this area was not considered for
displaying results for this type of prototype. Figure 5 depicts a schematic representation of
the coordinates on the surfaces of the two silicone bites.

In order to produce an optical-fiber-based two-dimensional depiction of dental occlu-
sion, U-shaped semi-ellipsoids were utilized. The outer surface of the silicone model was
denoted by the coordinates ao = 6 and bo = 5 cm, while the inner surface was delineated
by ai = 4 and bi = 4 cm. The semi-ellipsoidal configuration of the fiber lines repeated at
two-millimeter intervals between the inner and exterior ellipsoids; each line contained a
distinct number of sensing points.

Figure 6 demonstrates each step in the construction of the two-dimensional recreation
of the force mapping. Figure 6a shows the response of the wavelength-shift value along the
folded fiber lines for the spiral-based silicone model. In contrast, Figure 6b demonstrates
the shift of the wavelength peak of the highly scattered portion of four parallel fiber lines
for the SLMux topology. In Figure 6c,d, the embedded parts of the fiber lines are depicted in
the form of dental arches for the spiral-based and SLMux-based silicone bites, respectively.

As a result, the sensing points were arranged in a semi-ellipsoidal configuration. To
illustrate the correlation between the applied mass and the wavelength shift, in the last
step, a two-dimensional map was produced using the cubic spline interpolation method in
MATLAB’s Curve Fitting tool. The force mapping results for the silicone bites based on
spiral and SLMux topologies are illustrated in Figure 6e,f, respectively.
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3. Results and Discussion
3.1. Calibration

In order to conduct the calibration experiment, the calibration weights were applied
to a particular coordinate on the surface, representing each dental bite. The coordinate
B2 was chosen above the silicone bites for a calibration experiment to prove that the
applied pressure and the wavelength shift have a linear relationship. The calibration
weights, ranging from 100 g to 900 g with 100 g steps, were applied to detect the pressure
sensitivity. Figure 7 demonstrates the wavelength-shift response along the fiber lines and
the wavelength-shift curve.

As illustrated in Figure 7a–d, the value of the wavelength shift peak increased based
on the calibration weight applied at a particular point for the silicone bites. Figure 7e shows
the linear characteristics of dental bites with SLMux-based and spiral-based topologies
made of Sorta Clear 18 (SC18) and Sorta Clear 40 (SC40). The R2 value, mass, and pressure
sensitivity coefficient for each silicone material and topology are given in Table 2.
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Table 2. Comparative analysis of silicone bite parameters using various topologies and materials:
impact of applied weight using a 2 mm diameter tip.

Topology Material R2 Sensitivity
(nm/kg)

Sensitivity
(pm/kPa)

Spiral-based
silicone bite

SC18 0.98 1.672 0.535

SC40 0.99 0.875 0.28

SLMux-based
silicone bite

SC18 0.99 2.376 0.762

SC40 0.98 2.037 0.653

In the context of fabricated materials, it has been observed that there is a higher oc-
currence of nonlinearities in SC18 compared to SC40 materials. This disparity may be
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attributed to variations in the Young’s modulus of the silicone used. The SC40 silicone
exhibited consistent and dependable performance under the most extreme pressure con-
ditions, surpassing the capabilities of the SC18 silicone, which, in certain instances, fell
outside the parameters of the OBR. Additionally, in the context of this discussion, it is
important to consider the various topologies. The analysis of the wavelength-shift curves
of the dental bite topologies revealed that the use of a nanoparticle-doped fiber increases
the sensitivity to the applied weights, which is mainly related to the enhancement of
Rayleigh backscattering.

Specific measuring locations were selected to assess the validity of the obtained
sensitivity measurements and establish the consistency across the surface of the silicone
bite. Figure 8a–c depict the outcomes of a two-dimensional mapping of applied pressure
at a specific location (B2), illustrating the reaction to gradually increasing the calibration
weights. A dental bite composed of Sorta Clear 40 silicone material was used as an
illustrative case.
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600 g (b), and 900 g (c) applied at B2 and 900 g of pressure applied at coordinates E1 (d), A1 (e), and
C4 (f).

Similar patterns of response can be observed in relation to other forms of dental
models. Figure 8d–f illustrate the responses of the dental bite when subjected to 900 g of
pressure at coordinates E1, A1, and C4 on various parts of the silicone bite.

In agreement with the validation procedures, statistical values were obtained using
point-sensing measurements at 36 sensing sites for spiral-based silicone bites and 32 sensing
points for SLMux-based silicone bites. The mean values of wavelength shift at specific
coordinates in Table 3 demonstrate that the overall variance was minimal, confirming the
uniformity of behavior over the tooth-biting area.

Table 3. The wavelength-shift response to pressure applied above 32 chosen points.

Topology Material A B C D Z Variance

Mean value
of wave-

length shift

Spiral-based
silicone bite

SC18 1.477 1.485667 1.2555 0.7845 1.16875 0.082

SC40 1.033667 1.0175 0.998667 0.799167 0.87475 0.01

SLMux-based
silicone bite

SC18 1.789333 1.927667 1.945 1.438167 0.055

SC40 1.612833 1.6995 1.539667 1.297667 0.029
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3.2. The Comparative Analysis between Dental Bites

In order to ascertain the comprehensive distribution of applied pressure across the
entire surface of the dental occlusions, the structure of the human upper jaw was utilized.
The 3D-printed jaw was positioned above the silicone bites, and a calibration weight of
1.5 kg was placed on top of the jaw’s surface. Reconstructions of 2D representations of
dental bites on SC40 and SC18, utilizing spiral and SLMux topologies, are depicted in
Figure 9.
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Figure 9a depicts an SLMux model composed of SC40, which exhibits a maximum
wavelength shift of 0.5 nm. Conversely, Figure 9b showcases the SC18 approach, demon-
strating a somewhat lower value of 0.45 nm. Similar patterns are observed for the spiral-
based prototype depicted in Figure 9c,d. The wavelength-shift value for SC40 is 0.35 nm,
while for SC18 it is 0.3 nm, as illustrated in Figure 9c,d, respectively. However, the ob-
served inconsistencies between the obtained results and the calibration results may be
attributed to silicone materials’ responses to the sensing mode. During the point-sensing
mode, the comparative analysis of Figure 7a–d reveals that the wavelength-shift curve
of SC40 exhibits a more prominent peak than the response of SC18. In the context of
multi-point sensing, when pressure is applied to SC18, it is observed that the pressure is
distributed throughout the surface, resulting in a decrease in its measured value. SC40, due
to its higher toughness, demonstrates a greater degree of stiffness in its mechanical stress
response. Overall, the SLMux topology performed better than the spiral topology due to
the exploitation of nanoparticle-doped fibers.

4. Conclusions

This study introduces a novel use for distributed fiber optic sensing in dentistry,
specifically focusing on the use of silicone dental bites. The sensors were specifically
engineered to accurately detect and assess biting forces with a high level of precision,
presenting the possibility of transforming dental care and enhancing patient results. This
study introduces two silicone bite sensors that utilize distributed sensing technology.
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Distributed fiber optic sensing overcomes limitations regarding the number of sensing
points by enabling the interrogation of numerous reflections along an optical fiber. The
constructed dental models based on the distributed technique offer a high-resolution
approach with a grid area of 2 mm × 2 mm. The dental bites are created using four parallel
fiber lines that closely resemble the structure of a dental arch. The sensors are manufactured
utilizing a single-mode fiber (SMF-28) and fiber lines doped with nanoparticles, employing
a scattering-level multiplexing technique. Both systems effectively detected the pressure
at certain spots on the silicone bite. The utilization of the SLMux technique yielded
a higher sensitivity value compared to spiral-based dental bites. The silicone dental
bite with SLMux-based technology demonstrated high performance in the reconstruction
of two-dimensional force mapping. This technological advancement presents a unique
methodology for quantifying biting forces in the field of dentistry, thereby improving the
ability to diagnose and treat oral illnesses.

In future investigations, it would be advantageous to further extend the scope of this
study by augmenting the number of parallel fiber lines and expanding the number of
measurement locations. The implementation of this technique has the potential to improve
the precision and clarity of bite force measurement and the subsequent reconstruction of
bite force distribution.
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