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Abstract: Current road extraction models from remote sensing images based on deep learning are
computationally demanding and memory-intensive because of their high model complexity, making
them impractical for mobile devices. This study aimed to develop a lightweight and accurate road
extraction model, called Road-MobileSeg, to address the problem of automatically extracting roads
from remote sensing images on mobile devices. The Road-MobileFormer was designed as the back-
bone structure of Road-MobileSeg. In the Road-MobileFormer, the Coordinate Attention Module was
incorporated to encode both channel relationships and long-range dependencies with precise position
information for the purpose of enhancing the accuracy of road extraction. Additionally, the Micro
Token Pyramid Module was introduced to decrease the number of parameters and computations
required by the model, rendering it more lightweight. Moreover, three model structures, namely
Road-MobileSeg-Tiny, Road-MobileSeg-Small, and Road-MobileSeg-Base, which share a common
foundational structure but differ in the quantity of parameters and computations, were developed.
These models varied in complexity and were available for use on mobile devices with different
memory capacities and computing power. The experimental results demonstrate that the proposed
models outperform the compared typical models in terms of accuracy, lightweight structure, and
latency and achieve high accuracy and low latency on mobile devices. This indicates that the models
that integrate with the Coordinate Attention Module and the Micro Token Pyramid Module surpass
the limitations of current research and are suitable for road extraction from remote sensing images on
mobile devices.

Keywords: road extraction; deep learning; remote sensing; coordinate attention; mobile device

1. Introduction

With the advancement in remote sensing technology and its widespread use, the
extraction of roads from high-resolution remote sensing images has become increasingly
crucial in various fields, such as automated navigation [1], autonomous driving [2], and
urban planning [3]. While a higher resolution of remote sensing images has significantly
improved the accuracy of extracted road information, it has also increased image data,
thereby reducing the efficiency of image processing to some degree. Image processing
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efficiency will have a great impact on the efficiency of the extraction of roads. Additionally,
there is an urgent requirement for portable and convenient road extraction equipment in
practical engineering applications, especially in outdoor environments, to improve work
efficiency. Therefore, the accurate and rapid extraction of road data from high-resolution
remote sensing images and its implementation on portable devices (e.g., mobile devices)
present a present-day challenge.

Road extraction from high-resolution remote sensing images involves two main as-
pects: (1) the extraction of road regions [4–6] and (2) the extraction of road centerlines [7–10].
The road centerline is typically extracted from the road region using algorithms, such as
morphological refinement, in digital image processing technology [11]. This process is
straightforward and can yield satisfactory results. Therefore, current research on road
extraction focuses on extracting road regions from remote sensing images. Road region
extraction methods generally fall into two categories [12]: traditional methods and deep
learning-based methods.

Traditional methods typically involve methods based on digital image processing and
classical machine learning. They manually define the type of road based on certain features and
construct the corresponding feature extraction model to perform road extraction [13,14]. In the
digital-image-processing-based methods, Valero et al. [15] introduced path opening and
path closing according to mathematical morphology to extract structural pixel information
from images, and employed advanced directional morphological operators to extract road
information, which can be used to extract curved-shape roads. Garcia-Garcia et al. [16] used
binary segmentation based on statistical evaluation of textures to extract roads, and could
effectively identify regular roads in urban areas. Common methods for road extraction
using classical machine learning algorithms include Support Vector Machine (SVM) [17],
random forest (RF) [18], clustering [19], and decision tree models [20]. SVMs have demon-
strated excellent high-dimensional data processing capabilities and strong robustness to
successfully solve road extraction problems from high-resolution remote sensing images.
Soni et al. [17] proposed a supervised multistage framework that uses a least-squares SVM
(LS-SVM) to categorize image regions into two parts: road and non-road. The framework
was designed to improve classification accuracy and minimize errors in extracting roads
from images. Random forest models require relatively few adjustment parameters and
generally only require setting parameters such as the number and depth of trees, which are
easy to train. For example, Xu et al. [18] converted road networks from lines to polygons
and used polygonal geometric descriptors to train a random forest classifier and identify
candidates, then applied the model to extract roads. Clustering is usually used for unsuper-
vised learning, where the dataset is not labeled, leading to significant time savings, e.g.,
Fengping et al. [19] examined an enhanced neighborhood FCM (fuzzy C-means) algorithm
for extracting road regions. In this algorithm, the spatial distance and gray-level difference
are calculated based on neighborhood characteristics, which are used as parameters of the
objective function. The objective of this algorithm is to eliminate noise and improve the
accuracy of road extraction. Zheng et al. [20] proposed a decision tree-based road recogni-
tion method. In this method, point cloud data, which are acquired by the roadside LiDAR
sensors with low vertical resolution, are projected onto a plane rasterized to grids of points,
and these grids are first classified into background grids and road grids using a decision
tree. Finally, the accurate road boundaries are obtained by a minimum circumscribed
rectangle algorithm. This method can perform road recognition more accurately and faster.

Traditional road extraction methods are valued for their low computational resource
requirements, high stability, and fast speed. However, traditional methods become chal-
lenging when dealing with irregular road shapes and varying road surface colors and
materials, making them unsuitable for large-scale road extraction [21,22].

In recent years, many studies have applied deep learning methods to extract roads
from high-resolution remote sensing images due to their exceptional ability in image
segmentation. This approach typically transforms the road extraction problem into a
semantic segmentation problem in computer vision and automatically acquires road in-
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formation [23,24]. Because of its robust generalization, this method is well-suited for
large-scale implementation, which has contributed to its growing popularity in current
research on road extraction from remote sensing images. In the context of deep learning-
based road extraction, because model performance directly affects the quality of road
extraction results, numerous studies have focused on improving model performance for
various applications.

Some researchers have used convolutional neural networks to extract roads directly
from raw remote sensing images [25,26]. Lu et al. [27] applied multiscale feature integration
within a neural network to improve the robustness of road extraction. U-Net [28], an
improved convolutional neural network model, has brought about better results in image
segmentation. It can gradually reconstruct image resolution and capture intricate local
details, image shapes, and global features while compressing the image. In addition, it can
process global and local information simultaneously, making it effective in tasks such as
medical image segmentation and road extraction. At present, more researchers have made
further improvements in road extraction. Shao et al. [29] integrated spatial and channel
attention mechanisms into the U-Net framework. The spatial attention mechanism was
applied to extract road-related spatial details, whereas the channel attention mechanism was
used to adjust the spectral characteristics of remote sensing images. Furthermore, Sultonov
et al. [30] replaced the conventional convolutional layers in U-Net with ConvMixer layers,
which significantly reduced the computations of the model. In addition, Alshaikhli et al. [31]
combined U-Net and residual blocks and used fewer convolutional layers, achieving better
prediction results than the standard U-Net model. Yu et al. [32] proposed EnRDeAU-Net,
where the encoder is composed of input channels of residual U-Net Blocks, and the decoder
is composed of attention gates in the output channels, which enables the effective extraction
of roads from images with complex noise. Hou et al. [33] introduced the multiscale dense
dilated convolution into U-Net, significantly enhancing its ability to detect hidden or
obscured roads.

Nowadays, attention mechanisms have been incorporated into many deep learning-
based models for road extraction to segment the road contour more accurately. Hu et al. [34]
proposed a multiscale deformable Transformer network that can capture more compre-
hensive features than traditional Transformers in road extraction. Xie et al. [35] used the
efficient LinkNet as the basic architecture and incorporated the Middle Block between the
Encoder and Decoder to preserve both the global context semantic information and the
information across different feature channels, resulting in a significant increase in extraction
accuracy. In certain mountainous regions, road extraction has become even more challeng-
ing because of the interference of the road-like terrains and the shadows cast by mountains.
Xu et al. [36] used an improved DSDNet to successfully extract roads in mountainous
regions. Shao et al. [37] combined atrous convolutions with a pyramid pooling module
to integrate multilevel features, making the information extraction more comprehensive.
Wan et al. [38] proposed a dual-attention road extraction network, which could effectively
solve the problem of incomplete and incoherent roads due to object occlusion. Li et al. [39]
used the global attention module to acquire contextual information about the road, thereby
improving the integrity of the road area.

Although deep learning technology is currently popular in road extraction, mainstream
deep learning models typically have a large number of parameters, which leads to increased
storage and computing resource consumption on devices. In particular, models with better
performance often require more resources, which cramps their widespread applications [40,41].
This limitation is particularly evident in mobile devices that have limited memory, lower
computational capabilities, and slower processing speed [42–47]. Some researchers are now
working on improving the lightweight design of the model to decrease its size and computa-
tions while still maintaining its performance. Liu et al. [40] introduced depth-wise separable
convolution to reduce the computations of the model and decrease the number of parameters.
However, they only considered the parameters of the model, excluding the amount of calcula-
tion. Liu et al. [41] constructed a lightweight decoder using the transposed convolution and
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skip connections, reducing both the number of parameters and the amount of computation
required by the model. Nevertheless, these studies only focus on reducing model parameters
and computations without investigating portability to mobile devices. Currently, several
lightweight segmentation models based on deep learning have been proposed for adaptation
to mobile devices [42–47]. However, it is unclear whether these models can effectively extract
road information on mobile devices, as there are no research results demonstrating their
application to road extraction to date.

In summary, deep learning has achieved remarkable results in extracting roads from
remote sensing images in some studies. However, the following issues still persist:

(1) While deeper and more complex deep learning networks often achieve better model
performance [48,49], they also tend to consume more resources during loading and
running procedures and typically require a large amount of computations that exceed
the computing capacity of embedded devices, negatively impacting operational effi-
ciency. These characteristics have hindered the implementation of current models for
extracting roads on mobile devices with limited computing capabilities.

(2) The lightweight design of deep learning models is a practical and efficient approach
to enable their implementation on mobile devices and ensure smooth operation
with limited computational resources. However, it is uncertain whether the existing
lightweight road extraction models [40,41] are suitable for deployment on mobile
devices because they were not specifically developed for mobile applications, even
though they can reduce model parameters and calculations to some extent. Mean-
while, the effectiveness of current lightweight segmentation models for mobile ap-
plications in extracting road information on mobile devices has not been further
verified [42–47].

In short, none of the current lightweight models have been validated to effectively
perform road extraction when deployed on mobile devices. This highlights the urgent need
to develop a mobile-friendly lightweight model for extracting roads from remote sensing
images without sacrificing extraction accuracy [46,47].

In this study, to address the limitations of current research, we propose a mobile-
friendly, accurate, and lightweight model, Road-MobileSeg, which consists of two main
components: Road-MobileFormer and Segmentation Head. This model is characterized
by fewer parameters, less computation, and high accuracy, making it suitable for road
extraction from remote sensing images on mobile devices. The main contributions and
advantages of this study are summarized as follows:

1. A model for extracting roads, called Road-MobileSeg, has been developed. It is
designed to be used on mobile devices and can extract roads from remote sensing
images end-to-end.

2. The Road-MobileFormer, which serves as the backbone structure of Road-MobileSeg,
was developed. It consists of an improved Token Pyramid Module and several
Coordinate Attention Modules, which can achieve lightweight model structure and
high accuracy of road extraction, thus ensuring smooth operation on mobile devices.

3. Three model structures, named Road-MobileSeg-Base, Road-MobileSeg-Small, and
Road-MobileSeg-Tiny, were designed with different levels of complexity according
to their backbone structures to adapt to the needs of mobile devices with different
memory capacity and computing power.

4. Latency tests for different models on mobile devices with a CPU processor were
conducted to validate the effectiveness and feasibility of our suggested models.

The rest of this paper is organized as follows. Section 2 presents the details of the
proposed method. Section 3 gives the experimental configurations and experimental results.
Finally, comprehensive discussions are presented in Section 4 followed by our concluding
remarks in Section 5.
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2. Methodology
2.1. Overall Architecture

Figure 1 depicts the overall structure of Road-MobileSeg, which consists of a Road-
MobileFormer and a Segmentation Head. The Road-MobileFormer, which is used as
the backbone structure of Road-MobileSeg, comprises three modules: The Micro Token
Pyramid Module, the Coordinate Attention Module, and the Fusion Module. The Micro
Token Pyramid Module is used to extract local features from an image, thus generating local
feature maps, i.e., local tokens. In road extraction, incorporating the position information
of roads will greatly improve the accuracy of the extraction result; therefore, the Coordinate
Attention Module in Road-MobileSeg enables the model to fully capture and use the
position information of roads. The Coordinate Attention Module, which is composed
of multiple Coordinate Attention Blocks, is used twice in Road-MobileSeg. The Fusion
Module then integrates both local features and global semantics, enabling the tokens to
effectively incorporate rich spatial and semantic information. The Segmentation Head
consists of two convolutional layers and uses the fused information as the input to produce
the final segmentation image.
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2.2. Micro Token Pyramid Module

We adopt the Micro Token Pyramid structure, which is lighter than the Token Pyramid
in TopFormer [42] because it uses fewer local tokens, to extract local features from the
image and generate corresponding local feature maps, as depicted in Figure 2. The Micro
Token Pyramid Module uses the input image to create local tokens of different sizes. These
tokens are then downsampled to new tokens of uniform size and connected along the
channel dimension to generate scale-aware global semantics, which we refer to as scale
tokens. In this paper, the average pooling technique is used to perform downsampling to
generate uniformly sized new tokens. These newly connected tokens are used as input to
the Coordinate Attention Module.

Specifically, the Micro Token Pyramid structure consists of stacked MobileNetV2
Blocks (as described in [50]), and takes an image, I ∈ RC×H×W, as input. Here, C represents
the RGB channels with C = 3, H represents the image height, and W represents the image
width. The image passes through these MobileNetV2 Blocks to generate local tokens of
size H/4 × W/4, H/8 × W/8, and H/16 × W/16, respectively. These local tokens are
then average pooled into new tokens with the target size, i.e., H/32 × W/32. Although
using fewer tokens may neglect certain local feature information and potentially result in a
slight decrease in processing accuracy, it can effectively reduce the number of parameters
and computations. Because tokens from the Micro Token Pyramid Module are used as
input for the Coordinate Attention Module, the computation required by the Coordinate
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Attention Module will consequently decrease, leading to a substantial reduction in the
overall computational requirements of the model.
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2.3. Coordinate Attention Module

In Road-MobileSeg, coordinate attention is used to improve model performance
because the position information of roads is crucial for road extraction. Coordinate atten-
tion [51] not only focuses on channel information but also embeds position information
into the attention module, enhancing the model’s attention. The Coordinate Attention
Module is composed of stacked Coordinate Attention Blocks, which can be viewed as
computational units to enhance the expressive power of the learned features for the model.
In a certain range, increasing the number of attention blocks would result in more attention
computations for the tokens at the current scale, thereby enhancing the model’s ability
to capture position information and improving its accuracy. However, this would also
increase the model’s complexity.

Applying the Coordinate Attention Module to local tokens of every scale can provide
more abundant location information, which may improve the accuracy of road extraction
to some degree. However, this would greatly increase the model’s complexity, resulting in
excessive computational burden and impacting its usability on mobile devices. Hence, it is
exclusively employed on the local tokens of size H/16 × W/16 in this study. Therefore,
the Coordinate Attention Module is employed twice in Road-MobileSeg: once for the scale
tokens to obtain scale-aware global semantics, and once for the local tokens to capture
the position information of roads and to yield position-related tokens, which are taken
as input for the Fusion Module like other local tokens. Although only two Coordinate
Attention Modules are deployed in the model, the accuracy of the model was verified
through multiple experiments, indicating that the setting of the attention modules in this
study is reasonable and feasible.

Coordinate attention encodes both channel relationships and long-range dependencies
with precise position information in two steps: coordinate information embedding and
coordinate attention generation. The structure of the Coordinate Attention Block is shown
in Figure 3.
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2.3.1. Coordinate Information Embedding

To enhance the model’s ability to capture global information, we employ global pooling
during coordinate information embedding. This process integrates all position information
from the entire feature map into a global feature vector, while also significantly reducing the
number of model parameters. This approach is commonly applied in channel attention to
globally encode spatial information; however, it squeezes global spatial information into a
channel descriptor, making it difficult to preserve positional details. Therefore, global pooling
is decomposed into a pair of coordinate feature encoding operations to prompt attention
blocks to capture long-range interactions spatially with precise position information.

For an input feature map X, we encode each channel by applying kernels of dimensions
(H, 1) and (1, W) along the horizontal and vertical directions, respectively. The resulting
output for the c-th channel at height h is formulated as

zh
c (h) =

1
W ∑

0≤k<W
xc (h, i) (1)

where xc (h, i) represents the value of the feature map at height h and width coordinate i for
channel c; W represents the width of the feature map.

Similarly, the output for the c-th channel at width w is expressed as

zw
c (w) =

1
H ∑

0≤j<H
xc (j, w) (2)

where xc (j, w) represents the value of the feature map at height j and width coordinate w
for channel c; H represents the height of the feature map.

The above two transformations correspond to X Average Pooling and Y Average
Pooling in Figure 3, which aggregate features along the two spatial directions respectively,
yielding a pair of direction-aware feature maps and facilitating the model’s capturing of
position information.

2.3.2. Coordinate Attention Generation

The two transformations, expressed as Equations (1) and (2), respectively, consolidate
features along two spatial directions, creating a pair of direction-sensitive feature maps.
The purpose of coordinate attention generation is to leverage the expressive representations
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that result from the transformations. The two feature maps are concatenated and subjected
to a 1 × 1 convolutional transformation to yield f. After undergoing batch normalization
(BatchNorm) and non-linear activation, f is partitioned into two separate tensors, fh and
fw, along the spatial dimension. Subsequently, fh and fw are individually transformed
into tensors, gh and gw, with the same number of channels as the input X by applying
a 1 × 1 convolutional layer and an activation function for each. Afterward, gh and gw

are expanded and used as attention weights, respectively. Finally, the output Y of the
Coordinate Attention Block, which is of the same size as X, can be denoted as

yc(i, j) = xc (i, j) × gh
c (i) × gw

c (j) (3)

where xc (i, j) represents the value of the feature map at height i and width coordinate j for
channel c; gh

c (i) represents attention weights on the height dimension, and gw
c (j) represents

attention weights on the width dimension.

2.4. Fusion Module and Segmentation Head

After acquiring the scale-aware global semantics, we cannot directly add the local
tokens obtained from the Micro Token Pyramid Module with the global semantics obtained
from the Coordinate Attention Module due to the semantic gap between them. The Fusion
Module, therefore, helps alleviate the semantic gap during the fusion process.

Figure 4 shows the structure of the Fusion Module, which takes the local tokens from
the Token Pyramid Module and the global semantics from the Coordinate Attention Module
as input. The local tokens undergo processing via a 1 × 1 convolution and a BatchNorm
operation to create the feature to be injected. Global semantics sequentially pass through a
1 × 1 convolutional layer, a BatchNorm layer, and a sigmoid layer, generating semantics
weights. Meanwhile, the global semantics also pass through a 1 × 1 convolutional layer,
followed by a BatchNorm layer, to obtain the corresponding semantic feature. The three
outputs above are of the same size. Subsequently, the global semantics are injected into the
local tokens via Hadamard production and added to the feature obtained by Hadamard
production, ultimately achieving the fusion between local tokens and global semantics.
The outputs of multiple Fusion Modules share an equal number of channels, denoted as C.
After the fusion process, the augmented tokens from diverse scales capture both spatial and
semantic extensive information, which is critical for semantic segmentation. Additionally,
the semantic gap among tokens is alleviated greatly in the fusion process.
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Figure 4. Architecture of the Fusion Module.

In the segmentation stage, we apply the Segmentation Head structure from TopFormer [42]
(see Figure 5). First, we take the three sets of tokens acquired from global semantic fusion as input,
and upsample the low-resolution tokens with sizes of H/8 × W/8 and H/16 × W/16 to the same
size as the high-resolution tokens, i.e., H/4 × W/4, as illustrated in Figure 1. Then, we combine
the three groups of tokens from all scales by element-wise addition. Finally, the feature passes
through a 1 × 1 convolutional layer, two BatchNorm layers, and another 1 × 1 convolutional
layer to restore the image to its original size, producing the final segmentation map.
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2.5. Architecture Variants

To adapt Road-MobileSeg to the conditions of different mobile devices, we have
designed three different model structures based on Road-MobileSeg by setting different
numbers of the Coordinate Attention Blocks (i.e., M and N) and that of output channels
of the Fusion Module (also known as the number of input channels in the Segmentation
Head), namely Road-MobileSeg-Tiny, Road-MobileSeg-Small, and Road-MobileSeg-Base.
The structures of the three models have different levels of complexity. Table 1 lists the
detailed configurations of the three different model structures.

Table 1. Configuration details of model structures.

Stage Output Size Tiny Small Base

Micro Token Pyramid
Module

512 × 512 Conv, 3 × 3, 16, 2
MB, 3, 1, 16, 1

Conv, 3 × 3, 16, 2
MB, 3, 1, 16, 1

Conv, 3 × 3, 16, 2
MB, 3, 1, 16, 1

256 × 256
MB, 3, 4, 16, 2 MB, 3, 4, 24, 2 MB, 3, 4, 32, 2
MB, 3, 3, 16, 1 MB, 3, 3, 24, 1 MB, 3, 3, 32, 1

128 × 128
MB, 5, 3, 32, 2 MB, 5, 3, 48, 2 MB, 3, 4, 64, 2
MB, 5, 3, 32, 1 MB, 5, 3, 48, 1 MB, 3, 3, 64, 1

64 × 64
MB, 3, 3, 64, 2 MB, 3, 3, 96, 2 MB, 3, 4, 128, 2
MB, 3, 3, 32, 1 MB, 3, 3, 96, 1 MB, 3, 3, 128, 1

Coordinate Attention
Module 32 × 32 M/N = 2/2 M/N = 3/3 M/N = 4/4

Fusion Module 256 × 256, 128 × 128, 64 × 64 C = 128 C = 192 C = 256

The size of the input is 1024 × 1024, (Conv, 3 × 3, 16, 2) indicates that Conv is a convolution layer with a 3 × 3
convolution kernel, its output channels = 48 and stride = 2. (MB, 3, 1, 16, 1) represents a MobileNetV2 Block with
kernel size = 3, expand ratio = 1, output channels = 16 and stride = 1. M, N are the numbers of Coordinate Attention
Blocks, and C is the number of output channels of the Fusion Module.

3. Experiments and Evaluation
3.1. Dataset

We validated the effectiveness of Road-MobileSeg using the Deep Globe Road Extrac-
tion dataset [52], where each image measures 1024 × 1024 pixels and the resolution of the
image is approximately 0.5 m. The dataset contains 6226 labeled images in total, which
were randomly divided into a training set of 4981 images and a testing set of 1245 images
for model training in our experiments.

3.2. Experiment Settings
3.2.1. Training Settings

During training, the model was trained using Adam with decoupled weight decay
(AdamW) as the optimizer, where the weight decay was set as 0.01. The training was
performed for 60 epochs under the following conditions: the batch size was set to 16, the
polynomial decay learning rate scheduling strategy was adopted with an initial learning
rate of 0.01, and the loss function adopted was CrossEntropyLoss. The GPU employed for
model training was the Nvidia GeForce RTX 4090 with 24 GB of memory.
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3.2.2. Latency Test Settings

Latency tests were conducted on ARM-based devices equipped with a single Qual-
comm Snapdragon 888 processor to gauge the implementation latency of the model on
mobile devices.

3.3. Evaluation Metrics

The performance of Road-MobileSeg was compared with several state-of-the-art mobile
terminal models, including TopFormer [42], Segformer [43], BiseNet [44], and PP-Liteseg [45],
to evaluate its effectiveness in extracting roads from remote sensing images on mobile devices.
Meanwhile, four evaluation metrics, namely Mean Intersection over Union (MIoU) [16],
parameter count, Floating-Point Operations (FLOPs) [53], and latency, were selected. The first
three metrics were used to evaluate the model’s performance, while the last one was used to
measure and compare the model’s processing speed on different devices.

MIoU is a standard used to assess the accuracy of semantic segmentation by measuring
the degree of overlap between the predicted and actual target regions of the entire dataset.
It is a frequently used and vital evaluation metric. To calculate MIoU, we computed the
Intersection over Union (IoU) for each class k in the original dataset and then calculated the
average of these individual IoU scores. The IoU and MIoU are defined respectively as follows:

IoU =
TP

TP + FP + FN
(4)

MIoU =
1
n∑n

k=1 IoUk (5)

where TP is true positive, indicating that the model correctly detected the positive class
targets, FP is false positive, indicating that the model incorrectly identified areas of the
negative class as positive class targets, and FN is false negative, indicating that the model
failed to detect the actual positive class targets. n represents the total number of categories.

The parameter count and the amount of computation are used to measure the overall
complexity of a model, and the volume of these two metrics determines whether a road
extraction model is suitable for mobile devices. An increase in parameter count will directly
increase the model’s complexity. The amount of computation, measured in terms of FLOPs,
reflects the demand for computing power and resources when running the model on
devices. Latency is correlated with factors such as model structure, image preprocessing,
model inference time, and device performance. It reflects the model’s running speed on the
device, and lower latency indicates faster processing.

3.4. Visual Evaluation

According to the road network density, we classified the road networks with different
images as sparse or dense, selecting two samples for visual evaluation, respectively.

Figures 6 and 7, show a sparse road network, respectively. In Figure 6, there is only
one road, which is unobscured and clearly visible. All models could accurately extract the
road, except for Segformer and PP-Liteseg. Both models are unable to extract a continuous
road, resulting in incomplete road information. In Figure 7, compared with other models,
the roads extracted by Road-MobileSeg-Base are the most complete and consistent with
the ground truth. The roads extracted by other models exhibit different degrees of defects,
particularly in the extraction results of TopFormer, where the two roads overlap in certain
areas. Both sets of experiments demonstrate that the three models proposed in this paper
acquired better results in extracting sparse road networks.
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Figure 6. Road extraction results in the first set of sparse road networks. (a) original image;
(b) ground truth; (c) Segformer; (d) TopFormer; (e) BiseNet; (f) PP-Liteseg; (g) Road-MobileSeg-Tiny;
(h) Road-MobileSeg-Small; (i) Road-MobileSeg-Base. Areas for comparison with large differences are
outlined in red boxes.
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Figure 7. Road extraction results in the second set of sparse road networks. (a) original image;
(b) ground truth; (c) Segformer; (d) TopFormer; (e) BiseNet; (f) PP-Liteseg; (g) Road-MobileSeg-Tiny;
(h) Road-MobileSeg-Small; (i) Road-MobileSeg-Base. Areas for comparison with large differences are
outlined in red boxes.

Figures 8 and 9 illustrate two different dense road networks. In Figure 8, the roads
are regularly and neatly distributed. Discontinuity and width inconsistency of roads occur
in the extraction results of TopFormer, while Segformer extracts roads with even more
discontinuity. Compared with the two models mentioned above, the other models perform
better. Figure 9 shows that as the road network complication increases (e.g., the number
of roads increases and/or the shapes of roads become irregular), the accuracy of road
extraction results for each model declines to varying degrees. However, BiseNet and Road-
MobileSeg-Base still gain better extraction results compared with other models, and the
extracted roads are the most consistent with the ground truth. The extraction effect is as
good as BiseNet in that the coordinate attention is incorporated into Road-MobileSeg-Base,
which makes the extracted road positions more accurate and exhibit better road continuity.
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Figure 8. Road extraction results in the first set of dense road networks. (a) original image; (b) 
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Figure 8. Road extraction results in the first set of dense road networks. (a) original image;
(b) ground truth; (c) Segformer; (d) TopFormer; (e) BiseNet; (f) PP-Liteseg; (g) Road-MobileSeg-Tiny;
(h) Road-MobileSeg-Small; (i) Road-MobileSeg-Base. Areas for comparison with large differences are
outlined in red boxes.
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backbone, whose MIoU was 74.39%. The number of parameters determines the amount 
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Figure 9. Road extraction results in the second set of dense road networks. (a) original image;
(b) ground truth; (c) Segformer; (d) TopFormer; (e) BiseNet; (f) PP-Liteseg; (g) Road-MobileSeg-Tiny;
(h) Road-MobileSeg-Small; (i) Road-MobileSeg-Base. Areas for comparison with large differences are
outlined in red boxes.

3.5. Quantitative Evaluation

Table 2 compares the quantitative results of different models. The MIoU of Road-
MobileSeg-Base was the highest at 74.76%, followed by BiseNet with ResNet18 as the
backbone, whose MIoU was 74.39%. The number of parameters determines the amount
of memory occupied by the mobile device; therefore, fewer parameters result in less
occupied memory. Road-MobileSeg-Tiny achieved the best result with a parameter count
of only 1.41 M. On the other hand, BiseNet, which performed well in MIoU, had more than
nine times as many parameters as Road-MobileSeg-Tiny. Road-MobileSeg-Tiny had the
fewest FLOPs, followed by Road-MobileSeg-Small, Road-MobileSeg-Base, and TopFormer.
BiseNet had a significant amount of computation with over 200 G FLOPs.



Sensors 2024, 24, 531 15 of 21

Table 2. Quantitative evaluation results.

Method Backbone Parameters (M) FLOPs (G) MIoU (%)

Segformer MixVisionTransformer_B0 3.72 26.98 67.57
TopFormer TopTransformer_Base 5.07 6.54 70.83

BiseNet ResNet18 12.93 226.58 74.39
PP-Liteseg STDC2 12.25 38.57 69.99

Road-MobileSeg-Tiny Road-MobileFormer-Tiny 1.41 1.65 71.52
Road-MobileSeg-Small Road-MobileFormer-Small 2.83 2.93 73.36
Road-MobileSeg-Base Road-MobileFormer-Base 4.74 6.23 74.76

Note: Bold font indicates the best values of the respective columns.

3.6. Latency Test on Mobile Devices

To test the effectiveness of our suggested model on mobile devices with a CPU pro-
cessor, we employed PaddleLite to deploy the model on smartphones. PaddleLite is an
open-source framework for deep learning, specifically engineered to streamline inferences
on mobile, embedded, and IoT devices. It offers low-latency inferences for deep learning
on the device.

The latency tests were conducted on a Xiaomi 11 smartphone equipped with a single
Qualcomm 888 processor, running PaddleLite on a single thread. The Road-MobileSeg
model was converted to a PaddleLite model using the PaddleLite opt tool during inference
and then loaded onto the mobile device using PaddleLite in Android Studio. We used
images with a resolution of 1024 × 1024 pixels from the DeepGlobe Road Extraction dataset
as input for our experiments. When measuring the latency for each model, we averaged
the values of 50 measurements and made it as the experimental result. Table 3 presents the
latency test results for various models, allowing for easy comparison.

Table 3. Latency test results of different models.

Method Backbone Latency (ms)

Segformer MixVisionTransformer_B0 672
TopFormer TopTransformer_Base 298

BiseNet ResNet18 5680
PP-Liteseg STDC2 754

Road-MobileSeg-Tiny Road-MobileFormer-Tiny 112
Road-MobileSeg-Small Road-MobileFormer-Small 157
Road-MobileSeg-Base Road-MobileFormer-Base 295

Note: Bold font indicates the best values of the respective columns.

4. Discussion

In the visual evaluation results of Section 3.4, both BiseNet and Road-MobileSeg-Base
performed well, as illustrated in Figures 6–9. The primary factor contributing to BiseNet’s
accurate road extraction is its utilization of a multi-path structure, i.e., the Spatial Path
and the Context Path. The Spatial Path comprises three convolutional layers, capable of
acquiring large spatial sizes of feature maps and preserving abundant spatial information.
The Context Path employs a lightweight model like Xception and global average pooling to
produce feature maps and provide sufficient receptive field, encoding high-level semantic
context information. The Spatial Path generates low-level output features, while the Con-
text Path generates high-level output features. These two types of features complement
each other, which results in high accuracy of road extraction. The reason Road-MobileSeg
can obtain accurate road extraction results is mainly due to its utilization of coordinate
attention. Coordinate attention decomposes the global pooling operation into a pair of one-
dimensional feature encoding operations along two spatial directions, known as encoding
each channel separately along the horizontal and vertical coordinates, thus obtaining a pair
of direction-sensitive feature maps. In this way, coordinate attention concentrates on chan-
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nel information and position information concurrently, and embeds position information
into the attention, enabling the capture of relationships between different positions in the
input feature map and thereby refining the model’s focus. Furthermore, Road-MobileSeg
employs two Coordinate Attention Modules. One module focuses on local tokens of size
H/16 × W/16 to yield position-related tokens, while the other module focuses on scale
tokens to acquire scale-aware global semantics. This manner further enhances the model’s
ability to capture position information and allows attention blocks to capture long-range
interactions spatially with precise position information.

PP-Liteseg simultaneously employs channel attention and spatial attention, allowing
the model to capture both channel and spatial information. This improves the accuracy of
semantic segmentation and enables the model to perform well in panoramic segmentation
for urban environments. Unfortunately, although the amount of calculation is reduced and
the speed of segmentation of the model is improved to some extent due to the reduction in
the channels of high-level features and low-level features in the design of the Flexible and
Lightweight Decoder, the accuracy of feature capturing decreases somewhat concomitantly,
resulting in unsatisfactory road extraction results for wild areas compared with other
methods, as shown in Figures 6f and 7f.

While self-attention is incorporated into Segformer, the extracted roads using this
model still suffer from inaccurate positioning because the model does not use positional
encoding, as displayed in Figure 7c. In general, the self-attention mechanism facilitates the
model to capture the relationships across various regions of the image and the positional
relationships between spatial dimensions and channels. As a result, using the self-attention
mechanism usually can improve the accuracy of road extraction to some extent. However,
the Positional-Encoding-Free Design used in Segformer would cause the self-attention to fail
in effectively capturing long-range dependencies of different regions in the image, leading
to the loss of position information in the input sequence during road extraction. Therefore,
when applying Segformer to road extraction that is sensitive to position information, the
use of the Positional-Encoding-Free Design impairs the benefits of self-attention and leads
to a drop in extraction accuracy.

TopFormer also utilizes a self-attention mechanism and incorporates an additional
type of local token with a size of H/32 × W/32 compared with Road-MobileSeg. However,
the road extraction accuracy of TopFormer is not superior to that of Road-MobileSeg-Base,
as shown in Figure 8. This is because TopFormer only uses attention modules to generate
global semantics, whereas Road-MobileSeg employs a Coordinate Attention Module for
not only global semantics generation but also for local tokens of size H/16 × W/16.
Despite using fewer local tokens than TopFormer, Road-MobileSeg achieves better overall
performance by incorporating multiple Coordinate Attention Modules. This also indirectly
demonstrates the superior effectiveness of the Coordinate Attention Module.

Based on the quantitative evaluation results of the models in Section 3.5, a more
intuitive comparison of the performance of each model can be obtained by examining the
relationship between the MIoU and FLOPs of each model portrayed in Figure 10 using
a bubble diagram. The bubble size represents the model parameter quantity, while the
coordinates of the bubble center indicate the model’s FLOPs and MIoU values, respectively.
As shown in Figure 10, all three model structures proposed in this study achieved high
MIoU values, low parameter counts, and few FLOPs, demonstrating that the overall
performance of these three structures surpasses that of other segmentation models when
being applied to mobile platforms for road extraction from remote sensing images.
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In Figure 10, both BiseNet and Road-MobileSeg-Base achieved high MioU, confirming
the visual evaluation results in Section 3.4. Nevertheless, BiseNet has significantly more pa-
rameters and computations compared with Road-MobileSeg-Base. Specifically, the FLOPs
of Road-MobileSeg-Base are only 1/36 of those of BiseNet. Therefore, Road-MobileSeg-Base
outperforms BiseNet in overall performance. In BiseNet, the use of multiple paths, such
as the Spatial Path and Context Path, and multiple convolutional layers in the Spatial
Path can enhance the accuracy of road extraction. However, this also increases model
complexity and computational burden. In particular, the configuration of convolutional
layers in Spatial Path poses a dilemma. While employing more convolutional layers can
undoubtedly enhance processing accuracy, it will also cause an increase in parameters and
computational load. In contrast, both the Coordinate Attention Module and the Micro
Token Pyramid Module in Road-MobileSeg have lighter structures, resulting in a significant
reduction in model parameters and computations.

As for Segformer, the self-attention employed in it necessitates a significant amount of
computation and causes Segformer to bear a sizable computational load on the whole, even
though the Positional-Encoding-Free Design and the Lightweight All-MLP Decoder incor-
porated in Segformer can reduce the computational burden of the model to some degree.
Conversely, Road-MobileSeg employs coordinate attention, which is less computationally
intensive than self-attention from a computational load perspective.

Road-MobileSeg-Tiny achieved a similar MIoU value as TopFormer, but with 3.66 M fewer
parameters and 4.89 G fewer FLOPs than TopFormer. This is attributed to the use of local
tokens with respective size of H/4 × W/4, H/8 × W/8, H/16 × W/16, and H/32 × W/32
in TopFormer, and these local tokens are pooled into H/64 × W/64 in the Token Pyramid
Module, while only local tokens of sizes H/4 × W/4, H/8 × W/8, and H/16 × W/16 are used
in Road-MobileSeg and pooled into new tokens with the target size H/32 × W/32 in Micro
Token Pyramid Module. As previously discussed, increasing the number of tokens used in
TopFormer can contribute to improving accuracy to some degree in road extraction, but it also
causes a significant increase in the model’s parameter quantity and computational load.

In PP-Liteseg, both channel and spatial attention are applied to enrich the fused feature
representations. This is conducive to improving the accuracy of road extraction; however,
it also results in an increase in the number of parameters and the computation of the model.
Therefore, it is not as efficient as Road-MobileSeg in terms of making the model lightweight.

Figure 11 shows a scatter diagram illustrating the relationship between latency and
MIoU for each model on mobile devices, based on the results of the latency tests in
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Section 3.6. The diagram provides an intuitive demonstration of the performance of
each model on mobile devices. The three model variants proposed in this study differ in the
number of attention blocks and the output channels of the Fusion Module. This results in
variations in parameter counts and computations for the three model structures, allowing
them to adapt to different working scenarios. Specifically, the number of attention blocks
configured in their respective attention modules is M/N = 2/2 in Road-MobileSeg-Tiny,
M/N = 3/3 in Road-MobileSeg-Small, and M/N = 4/4 in Road-MobileSeg-Base. Compared
with other models, these three model structures demonstrate superior overall performance
with lower latency and higher MIoU. Consequently, they are more suitable for applica-
tion on mobile devices. Among them, Road-MobileSeg-Base achieves the highest MIoU,
whereas Road-MobileSeg-Tiny exhibits the lowest latency. When high accuracy is required
on mobile devices, Road-MobileSeg-Base is the preferred option. Road-MobileSeg-Tiny is
an ideal option when faster processing speed is necessary or when computational resources
on mobile devices are limited. Road-MobileSeg-Small strikes a balance between accu-
racy and speed for road extraction on mobile devices, while requiring low computational
resources; hence it is well-suited for situations requiring both speed and accuracy.
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5. Conclusions

In this paper, we introduce a lightweight and accurate road extraction model from
remote sensing images, namely Road-MobileSeg, that can be used to extract road informa-
tion on mobile devices. Specifically, Road-MobileSeg consists of the following components:
Micro Token Pyramid Module, Coordinate Attention Module, Fusion Module, and Segmen-
tation Head. The Micro Token Pyramid Module greatly reduces the model’s complexity.
The Coordinate Attention Module increases the accuracy of the extracted road location
information. Three model structures were designed according to the number of attention
blocks in the Coordinate Attention Modules and that of the output channels of the Fusion
Module, i.e., Road-MobileSeg-Tiny, Road-MobileSeg-Small, and Road-MobileSeg-Base,
with different model complexities to adapt to the limited memory and computational
capacity of different mobile devices. The experimental results demonstrate that, compared
with other models, our models have the advantages of lower computational load, fewer
parameters, higher accuracy, and faster inference speed on mobile devices, making them
suitable for mobile devices to complete road extraction work from remote sensing images.
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In short, our research introduces an innovative approach for road extraction from
remote sensing images, yielding a road extraction model with better overall performance
that is suitable for mobile devices. However, in wilderness areas, there may be missed
detection in remote sensing images due to vegetation occlusion and other reasons. This
will most likely result in discontinuities in the roads extracted using our method, ultimately
affecting road extraction results negatively. Future research should utilize the fusion of
hyperspectral images, high-resolution remote sensing images, and other relevant data, such
as digital elevation model (DEM) data, to gather additional information and reduce missed
detections, thereby improving road extraction accuracy. The multichannel information of
hyperspectral images will contribute to derive roads information in the regions obscured
by vegetation, whereas DEMs can be used to address issues such as discontinuities in the
extracted roads caused by local topography, by providing more detailed terrain spatial
data through quantitative analysis. Furthermore, while the models proposed in this study
demonstrated strong performance on the dataset used in this paper, it is recommended
that additional datasets be employed in future work to evaluate the models’ efficacy not
only in road extraction, but also in the extraction of other objects, such as panoramic
segmentation in wild environments. Moreover, the architecture of the model should be
refined to expand its attention mechanisms to enhance model accuracy and decrease the
number of parameters and computations required, making it available for a wider range of
remote sensing applications on mobile devices.
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