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Abstract: Deep learning has rapidly increased in popularity, leading to the development of perception
solutions for autonomous driving. The latter field leverages techniques developed for computer vision
in other domains for accomplishing perception tasks such as object detection. However, the black-box
nature of deep neural models and the complexity of the autonomous driving context motivates
the study of explainability in these models that perform perception tasks. Moreover, this work
explores explainable AI techniques for the object detection task in the context of autonomous driving.
An extensive and detailed comparison is carried out between gradient-based and perturbation-based
methods (e.g., D-RISE). Moreover, several experimental setups are used with different backbone
architectures and different datasets to observe the influence of these aspects in the explanations.
All the techniques explored consist of saliency methods, making their interpretation and evaluation
primarily visual. Nevertheless, numerical assessment methods are also used. Overall, D-RISE
and guided backpropagation obtain more localized explanations. However, D-RISE highlights
more meaningful regions, providing more human-understandable explanations. To the best of our
knowledge, this is the first approach to obtaining explanations focusing on the regression of the
bounding box coordinates.

Keywords: explainable AI; autonomous driving; object detection

1. Introduction

Object detection is a computer vision task for several domains to localize and identify
objects within an image. In the autonomous driving (AD) context, object detection consists
of a perception task that aids the system in understanding its surrounding environment.
The architectures of neural models that perform this task are dense [1,2], with many convo-
lutions that extract features from the input image and subsequent operations that identify
the objects regarding their localization and classification. Consequently, the networks make
decisions in a black-box manner.

The autonomous driving context forces deep learning models to make critical decisions
affecting the safety of their users, which makes it essential to consider legal aspects [3].
As such, the need to obtain explanations for the inferences performed by these models
emerges. Furthermore, researchers can better grasp the model’s behavior, especially when
it returns wrong predictions.

Explainable AI (xAl) is a research topic that tackles the challenge of developing models
whose decisions can be understood by humans. In the context of autonomous driving,
these techniques increase trustworthiness, transparency, and accountability for the state-
of-the-art black box models. Its relevance has been increasing abruptly across several
domains, including computer-vision-related tasks or other general deep learning models
(e.g., health [4], vehicle networking [5]).

The body of knowledge concerning xAl techniques applied to driving contexts is
mainly focused on the decision-making process of the system, which results from all
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operations performed by these systems (e.g., perception, localization, planning, control,
and management). Moreover, the data that flows in the models used for autonomous
driving tasks also need to be exchanged with some infrastructure that serves as a base
station [6].

Furthermore, XAl techniques for the perception part of these systems could be more
extensive. Moreover, most techniques target class-discriminative explanations (i.e., iden-
tifying the most critical aspects to classify an object with a particular class). This work
aims to take existing perception-based explanation techniques as a starting point and adapt
them to the bounding box coordinates regression context. This first approach will explore
visual explanations through model-agnostic methods, namely gradient and perturbation-
based techniques. Ultimately, the goal consists of obtaining meaningful interpretations
that convey information about the network’s reasoning behind the localization of the
detections. The approaches developed with this goal in mind will improve state-of-the-
art explainability methods to produce more comprehensive information regarding the
output of the model being explained. In the context of autonomous driving, there are
no scientific contributions that leverage the techniques used in this article and adapted
from other domains to produce explanations for the regression part of the object detec-
tion task, i.e., the prediction of the localization of the bounding box. As such, this paper
will extend what we have seen previously regarding explanations for perception models.
In addition, the techniques explored here can be readily applied to several models. On
the other hand, this work can also be extended to provide even richer interpretations
(e.g., leveraging multi-modal data).

In addition, the explanations produced should be evaluated and compared using
subjective observations and performance metrics. This assessment phase helps to identify
the aspects that play an essential role in the quality of the explanations. As such, the
experimental setup should have varying characteristics concerning the object detectors
explained, datasets used, and hyperparameters of each method.

This article is structured into five sections. The introduction (Section 1) gives a slight
overview of the autonomous driving context and the xAlI field. Section 2 explores different
techniques in the literature that aim to achieve explainability in computer-vision tasks.
Section 3 explains the approaches used to tackle the challenge at hand, including the
theoretical fundamentals behind each strategy. Section 4 shows the results obtained for
each technique, establishing a comparison that takes into consideration different aspects
important to assess the quality of explanations generated. Finally, Section 5 concludes the
study, referring to its findings and future directions that the work may follow.

2. Related Work

Before jumping into explainable Al methods, it is important to fully understand the
challenges inherent to object detection. This computer-vision task is widely studied in
the context of real-world problems across several domains (e.g., medicine, autonomous
driving, agriculture, retail). Object detection models must be able to identify and localize
the objects within an image, using point cloud or RGB data. As such, instead of using a
single loss function that guides the backpropagation during training, object detection needs
at least two different losses, i.e., classification loss and localization loss.

Object detection architectures can be categorized into two types. The one-stage-
detector family is led by YOLO [2], and is able to locate and classify objects simultaneously.
Therefore, these models are often time-efficient, outperforming their counterparts. On
the other hand, the two-stage-detectors consist of a Region Proposal Network (RPN) that
extracts Regions of Interest (ROIs), which are then used to classify the object contained
within it. The backbone is the initial feature extraction step that exists in all architectures.
This module of the network is responsible for learning and obtaining useful features that
the subsequent layers will use to make decisions. Autonomous driving models leverage
object detection models to understand the environment in which the vehicle is placed.
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Thus, these models are crucial to the perception phase of autonomous driving and will be
thoroughly studied in this paper.

Regarding explainable AI (xAl) targeting autonomous driving, the literature studies
all the different stages of an autonomous driving model. Reference [7] presents an extensive
review of several techniques that can be applied to deep-neural-network-based models
included in the perception, decision-making, and even in the information security of
autonomous vehicles. However, the literature regarding the explaining of perception
models, and more specifically, of the regression of bounding boxes, could be extended.

In the xAl literature, there is a difference between explaining a neural network and
developing an intrinsically explainable one. Chen et al. [8] developed ProtoPNet, which
obtains global explanations for image classification tasks in an inherently explainable
manner by leveraging information in prototypes learned during optimization. These
prototypes consist of a representation of each class in the latent space. The ProtoPNet
method established itself as one of the main techniques for obtaining inherently explainable
models. Several subsequent contributions consist of slight improvements to the original
formula (e.g., [9-11]).

On the other hand, techniques known as model agnostic techniques consist of methods
applied after the model has been adequately trained. These methods can be applied
to any model, regardless of the specific algorithm or architecture used, and typically
involve analyzing the input-output relationship of the model. The main benefit of being
independent of the model is preserving its original performance.

Gradient-based methods perform the retro-propagation of information in the net-
work, evaluating the gradient of the output to compute a heat map consisting of the most
contributing regions. Zeiler and Fergus [12] proposed a visualization technique called
deconvnet, that reproduces individual feature maps at any network layer. More recently,
deep learning researchers developed improved versions of this technique [13]. Moreover,
the study by Das and Rad [14] contains an extensive review of xAl techniques applied to
several domains, including autonomous driving. The explanations explored in the latter
survey are class-discriminative.

Grad-CAM [15] is one of the methods used for obtaining visual explanations. This
approach leverages information contained in the gradient of the output, producing a
heatmap that highlights the most important features of the outcome returned by the
model. The gradients consider the predicted score for class ¢ as the output (y¢). As such,
the calculation is performed with this score with respect to the feature map activation
at a particular convolutional layer (AF). The weights are then global average pooled
and normalized, resulting in a single-dimension vector with length K, equivalent to the
number of channels in the feature map returned by the considered convolutional layer.
The latter vector consists of K weights, that will multiply by the K feature maps obtained
through the normal process of forward-propagation across the backbone. The final heatmap
results from a weighted addition between the feature maps multiplied by the weights.
Guided backpropagation [16] has gained considerable attention for its ability to highlight
the important features and regions within an input that influence the network’s decision-
making process. Similar to Grad-CAM, this approach takes as a parameter a value for which
the influence of the pixels in the input image is observed. In the related literature, tackling
the usual problems of Grad-CAM with Smooth Grad [17] is common. This technique
introduces a form of regularization by leveraging the concept of gradient noise to enhance
the quality and reliability of the model’s predictions.

Perturbation-based methods slightly modify the features in a specific region of the in-
put and observe the behavior of the network in these new circumstances. Petsiuk et al. [18]
proposed the RISE method, which uses random masks to compute similarity scores that
produce a final heatmap. Petsiuk et al. [19] consists of a subsequent iteration of this method
that allows more information to flow into the explanation. These perturbation-based
approaches have not been applied to the autonomous driving context.
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Local approximation methods approximate the behavior of a machine learning model
around a specific input data point by fitting a simpler model to the model’s output in
the vicinity of that point. In Local Interpretable Model-agnostic Explanations (LIME) [20],
the simple model uses a weighting scheme based on the distance of each data point from
the point of interest. SHAP (SHapley Additive exPlanations) [21] uses a game-theoretic
approach based on the Shapley values from cooperative game theory.

In addition, counterfactual analysis approaches can also be employed to understand
the decision-making reasoning of the neural network. In counterfactual analysis, re-
searchers seek x’, a modified version of x. With this new input, it is possible to define
which input features contributed to the outcome of the classification. There have been some
contributions related to this technique [22], aiming to reduce both the distance between
predictions and the distance between the inputs.

3. Proposed Framework

The present section explores the different experimental setups used in this work.
Section 3.1 performs an in-depth analysis of the datasets chosen, as well as the detectors,
which will then be explained in the later stages. The remaining subsections propose
different techniques, which are adapted from other domains to better fit the context of
autonomous driving.

3.1. Training Procedure

The models are a crucial part of the experimental setup. Therefore, they must be
appropriately trained and evaluated before moving onto the explanation part of the work,
as it focuses solely on model-agnostic techniques. The dataset selection was carefully
tailored to suit the requirements of the project, with a deliberate choice to utilize the KITTI
autonomous driving benchmark [23]. Additionally, the Pascal VOC 2012 [24] dataset was
employed for validation purposes, given its widespread use and recognition in the relevant
academic literature. Table 1 contains exploratory data analysis regarding the characteristics
of each dataset. As we can see, the autonomous driving context is significantly distinct
from other datasets studied in the object detection literature. From a general perspective,
KITTI images contain more objects (primarily cars) with a lower image area than Pascal
VOC images. The characterization of each dataset is vital in the study carried out, as the
quality of explanations can be volatile according to the input image used in the inference.
Regarding the training setup, both datasets are divided into three sets, with the train set
representing 80% of the data, while both the validation and the test set are assigned 10% of
the dataset being used.

Table 1. Exploratory data analysis on datasets.

Pascal VOC 2012 Kitti
Detections per image (avg) 2.76 6.93
Average object area (pixels) 36,016.50 9096.60
Std object area 45,313.50 17,198.60

This work employs the Faster-RCNN two-stage detector [1]. For comparison purposes,
several models were trained against each dataset. Moreover, different backbones were used,
varying the number of convolutional layers. Several Faster-RCNNs were trained using
the ResNet [25] architecture. The training process was performed for each dataset using
ResNets with 50 and 101 convolutional layers. Additionally, a separate model was trained,
considering solely the regression losses for the optimization. The goal of including this
particular network in this study is to observe whether this regression-focused optimization
brings advantages to the explanations obtained, especially in gradient-based methods that
directly leverage features captured in the backbone.

Table 2 shows the test performance of all models with respect to the mean Average
Precision (with 50% IoU threshold) and the smooth L1 loss. These metrics are also con-
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sidered during the training of the Faster-RCNN, hence their inclusion in this comparison.
The results obtained are aligned with state-of-the-art studies using Faster-RCNN for both
datasets. As can be seen, the regression-focused model achieves the best performance
concerning the smooth L1 loss. The difference between the mAP values is related to the
number of classes between datasets, i.e., Pascal VOC contains 19 classes, while KITTI
contains 9. The training setup was successful because all detectors achieved satisfactory
results, which indicates that the models are learning meaningful patterns. This ultimately
guarantees that the explanation techniques, which are the focus of this work, will not be
limited by the models’ behavior.

Table 2. Performance of all models according to mAP and Smooth L1 metrics. Bold values in the
table highlight the best model concerning each metric.

Model mAP_50 Smooth L1
faster-RCNN (ResNet-50)—Kitti 0.72 10.53
faster-RCNN (ResNet-101)—Kitti 0.74 10.05
faster-RCNN (ResNet-50)—VOC 0.58 25.72
faster-RCNN (ResNet-101)—VOC 0.60 23.15
faster-RCNN Regression - 9.60

The xAl methods studied in this paper are versatile in the sense that they can be readily
used with different object detection architectures. In fact, this is an advantage of using
model-agnostic xAl. Consequently, for comparison reasons, it is also crucial to include in
this study a one-stage detector. As such, a YOLO model was trained against the KITTI
dataset. The training setup for the latter model was different from all the ones listed in
Table 2, as no early stopping was employed, and the train ended after 20 epochs, which
is roughly the same number of iterations that the Faster-RCNN-based detectors took to
converge. Moreover, the train, validation, and test split had the same proportions, but the
sets were different. Regarding the performance achieved by YOLO, the mAP was 0.647.
The regression loss used by YOLO is the Mean Squared Error (MSE) loss, instead of the
Smooth L1 loss used by Faster-RCNN. In our setup, the YOLO model obtained an MSE
loss of 1.168.

Despite the fact that YOLO is a modern architecture, the results with respect to normal
object detection and machine learning metrics are worse for the one-stage detector. In this
setup, this might be related to the significant number of small objects in the images, i.e., cars
are often far from the camera. This is a known issue of YOLO, as the division of the scene
into a grid can introduce difficulty in identifying objects that do only appear in a small
portion of the image.

3.2. Grad-CAM

Grad-CAM is a gradient-based technique for obtaining visual explanations, as ex-
plored in Section 2. Its versatility makes it easier to implement in any object detector
and makes it suitable for multiple contexts. In this context, we use Grad-CAM as a first
approach to generate saliency maps. The remaining gradient-based techniques derive some
of the Grad-CAM’s mechanisms.

The overview of the experimental setup described is shown in Figure 1. The image
flows in an unidirectional way since it is picked from the validation set, passing through an
inference achieved by the detector, and finally, using the resulting feature maps to compute
the final heatmap.

Bounding boxes are rectangles identified by two pairs of coordinates. As such, ap-
plying the Grad-CAM method to highlight the features important in localization requires
adaptations to the original algorithm. The original algorithm relies on class scores y° to
produce heatmaps, resulting in class-discriminative saliency maps. As such, we propose
applying Grad-CAM using two scalar transformations as the output of the gradients, which
are computed with respect to the parameters of the last convolutional layers. The aforemen-
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tioned transformations consist of the euclidean diagonal distance and the geometric slope
given by the coordinates that identify the bounding box. Thus, the heatmap produced by
the Grad-CAM method identifies features that are positively correlated to both measures
for a particular detection in the input image. Throughout the paper, whenever a transfor-
mation T (bbox) is mentioned, that means one of the methods transforms the bounding box
into a scalar, i.e., either the euclidean distance or the slope.

oT (bbox)

ZZ 5 Ak (1)

Equation (1) formalizes our approach to Grad-CAM. T (bbox) symbolizes the transfor-
mations made to convert the bounding box into a scalar value; A* represents the feature
map of the kth convolutional layer; and Z is the normalization factor applied to the weights.
Mathematically, the saliency maps obtained with the weights resulting from the latter for-
mula convey information concerning the physical attributes of the explained bounding box.

¥

Faster-RCNN

.
F_r—p. .

Scalar Transformation

Backprop until last conv layer

aT bbox)

SLLi

|

y wia'
k

Figure 1. Diagram of the experimental setup used in this section. Red regions contain higher
activation values, whereas blue regions represent regions with lower activation values.
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3.3. Guided Backpropagation

Guided backpropagation is another prominent gradient-based technique that involves
computing gradients and leveraging them to produce an interpretation heatmap, as ex-
plained in Section 2.

The difference between this approach and Grad-CAM is in the computation of the
gradients. As explored in Section 3.2, grad-CAM computes the gradients of the outputs with
respect to the weights of a particular convolutional layer in the backbone, while gradient
backpropagation projects these gradients to the input image. Consequently, localization
issues resulting from the final upsampling step in grad-CAM do not interfere with the
results in guided backpropagation.

Our approach to guided backpropagation uses the transformation methods discussed
in Section 3.2 to compute the gradients, resulting in heatmaps that show the important
areas for the localization of the bounding boxes.

3.4. Smooth Grad

Smooth Grad is a Grad-CAM-derived model that obtains several interpretations
using the latter method and smoothens the noise that is captured. The context of au-
tonomous driving is intrinsically noisy, with many objects interfering with the quality of
the explanations generated. Consequently, considering the nature of Smooth Grad and
the problems that it intends to solve, it is important to check whether it is a viable alter-
native to Grad-CAM despite needing heavier computational effort due to the need for
multiple backpropagations.

The algorithm applied takes the instructions given in the original paper and follows
the majority of them while making some modifications to better fit the context of this work.
The noise level (¢) is the standard deviation used to generate random floating values that
should be added to the original image. The authors of the original paper conclude that a
value between 10% and 20% is optimal for maintaining the image’s structural aspects and
sharpening the generated heat maps. In this work, the ¢ value was set to 15%. Regarding
the sample size (1), the authors also observed little to no smoothening for cases where
more than 50 perturbed images are analyzed. Despite setting # to 50 in an initial phase, the
empirical results point out that, in this autonomous driving context, the sample size can be
lowered even further without significant differences regarding the results” quality. As such,
25 is a comfortable sample size that balances the computational effort required per image
and the quality of explanations generated.

3.5. Contrastive Explanations

The application of Grad-CAM using simple numerical transformations to the bounding
box structures often produces vague explanations. Thus, the idea of employing visual
counterfactual explanations to generate heatmaps more aligned with human explanations
emerges. This approach requires the existence of a contrastive detection that ultimately aids
the contextualization of the regions activated in the final heatmap. In this work, contrastive
bounding boxes are produced via simple translations and scaling to the original bounding
box predicted by the model. Figure 2 illustrates the production of a contrastive example
from a particular bounding box to be explained. Our method strives for counterfactual
examples that consist of sliding the original prediction so that the manufactured example is
mislocalized by a small but noticeable margin. In addition, scaling can also be applied so
that the contrastive bounding box can be bigger or smaller than the original prediction.

Prabhushankar et al. [26] introduce the idea of obtaining contrastive explanations
with grad-CAM. In the paper, the authors calculate the gradients of relative loss between
two classes with respect to the model’s parameters. In this work, we propose adapting
this technique to the regression context by using the smooth L1 loss instead of the cross-
entropy loss originally used for the class-discriminative explanations obtained in the
aforementioned paper.
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Figure 3 summarizes the Grad-CAM approach using contrastive explanations. The
method is similar to that explained in Section 3.2, with the main difference being the
formula used to obtain the weights. The existence of a second bounding box removes the
need for transforming the predicted rectangle into a scalar value, as the difference between
both detections is given by a relative loss function that is already well established in the

object detection literature.

Bounding box

Contrastive box

Figure 2. Illustration of the method used to produce the contrastive bounding box starting from a

predicted detection.

’ Smooth L1 loss ‘

Backprop until last conv layer

1 dL(by.b2))
w — e e—r—
YTz };g dAL,

|

y et
k

Figure 3. Overview of the Grad-CAM contrastive approach. The red bounding box is the predicted

one and the green rectangle is the contrastive example.
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3.6. Perturbation-Based Approach

Perturbation-based methods attempt to obtain explanations by iteratively generating
noise to the input image and observing the model’s behavior in these new circumstances.
Petsiuk et al. [18] created RISE (Randomized Input Sampling for Explanation), which
systematically eliminates from the heatmap regions that are irrelevant to the detection.
Petsiuk et al. [19] is a subsequent technique based on RISE that generates explanations
similarly. However, the detection vectors computed after each inference determine the
information that flows into the saliency map. The authors use detection vectors comprising
three elements for each detection, comprising localization and classification information,
and an additional objectness score (Equation (2)). In our work, the similarity scores’
computation method is the same as the one proposed by the authors of the D-RISE paper.

d; = [Li/ p;, Oi] = [(xmin/ Ymins Xmax, ]/max)/ (plr ceey pc)/ Oi} ()

The images are perturbed with randomly generated masks that obscure some of
their original regions. The saliency maps result from inferences made on the masked
images, as the model returns values that are used to compute a detection vector. The
weights of this operation are the similarity scores between the detection vector of the
bounding box predicted on the original image and that of its corresponding detection
on the image perturbed by the mask. Furthermore, this method was tested on the MS
COCO dataset [27], which presents characteristics similar to Pascal VOC and offers an
environment different from the autonomous driving context. As such, a modification was
made to the hyperparameters used by the D-RISE method, namely regarding the mask
generation process: the probability threshold (p) was reduced from 0.5 to 0.25 to prevent
the occurrence of masks that entirely occlude object detection. Before this adjustment, it
was empirically verified that several iterations were irrelevant, especially when explaining
detections with a lower area.

In this work, two separate experimental setups were used: one of them considered the
classification information while the other did not. This approach establishes a comparison
regarding the influence of classification similarity on the localization capability of the
saliency maps generated.

Furthermore, D-RISE takes advantage of including detection vectors to study detector
failure cases. The authors compute the difference between saliency maps to outline regions
wrongly considered relevant by the model. In this work, we leverage this technique to
generate contrastive explanations. Instead of computing a saliency map with respect to the
ground-truth bounding box, we generate a separate heatmap for a counterfactual example
using the technique explained in Section 3.2. The contrastive explanation is obtained with
the difference between normalized activation maps related to the predicted bounding box
and the contrastive example.

4. Results and Discussion

The work carried out focuses solely on visual explanations. Consequently, the analysis
and evaluation regarding the quality of the results produced should be primarily visual and
subjective (Section 4.1). However, to address possible bias in the assessment of explanations,
a numerical metric is introduced and applied in the results in Section 4.2.

4.1. Visual Evaluation

Regarding visual evaluation, due to the context of this work, most examples should
evaluate the ability of methods to provide relevant and understandable explanations in the
autonomous driving context.

Figure 4 shows an overview of the results obtained using the Grad-CAM setup on
the autonomous driving dataset. Overall, Grad-CAM is known for its noise vulnerability
and spacial sensitivity. Moreover, increasing the number of convolutional layers enhances
noise propagation throughout the network. The high number of calculations during
forward propagation makes it hard to project the features back into the original input
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dimension. These limitations of Grad-CAM and gradient-based methods generally cause
some explanations to have characteristics similar to those observed in Figure 4d—f.

(d)

Figure 4. Visual explanations generated with Grad-CAM using scalar transformations in the cal-

culation of the gradients. Images in the third column explain the model that was optimized for
localization with a ResNet-101 backbone. Regions in red represent higher activations. (a) Distance
with RN-50, (b) distance with RN-101, (c) distance with RN-101 optimized for regression , (d) slope
with RN-50, (e) slope with RN-101, and (f) slope with RN-101 optimized for regression.

Figure 5 contains the results obtained with the guided backpropagation method for an
input image. The saliency map shown in the latter figure was obtained with the distance
transformation and the regression-focused model, as this combination achieved better
results according to an initial subjective visual assessment. Guided backpropagation
heatmaps are dispersed, activating a low number of pixels around the region where the
object is located. This technique does not perform any upsampling, as no feature maps are
used, as opposed to Grad-CAM. Consequently, localization problems introduced by linear
interpolation are not considered. Despite successfully identifying pixels near the object,
explanations are not intuitive or human-understandable, as they highlight pixels instead of
proper regions that positively influence the detection.

Figure 5. Guided backpropagation example using the ResNet-101 backbone optimized for minimizing
localization losses. The gradients were computed with the distance transformation. The green
dots close to the red bounding box represent the pixels that are activated in the backpropagation.
backpropagation example using the ResNet-101 backbone optimized for minimizing localization
losses. The gradients were computed with the distance transformation.

Figure 6 contains the results obtained through SmoothGrad and establishes a compari-
son to the grad-CAM method. The visual observation concludes that this iterative process
reduces the activated pixels. Figure 7a shows a localized explanation, where grad-CAM
does not capture noise introduced by other objects in the image. The smoothGrad algorithm
applied to this context reduces the number of activated pixels (Figure 7b). On the other
hand, the noise reduction capabilities of this algorithm are tested in the second image
studied, where the grad-CAM explanation contains noise in the region that belongs to an
irrelevant object (Figure 7c).



Sensors 2024, 24, 516

11 of 17

On the other hand, empirical observations concluded that the SmoothGrad
technique can only succeed when the original grad-CAM heatmap achieves some
localization capabilities.

Figure 6. SmoothGrad examples on the Kitti dataset. (a,c) shows grad-CAM interpretations for the

bounding boxes in red. (b,d) contains Smooth Grad results for the images used for (a,c), respectively.
All heatmaps were generated with the euclidean distance transformation and the best performing
model for regression.

(d,).;,,

Figure 7. Contrastive explanations with Grad-CAM. Red bounding boxes represent predictions
made by the models, while green bounding boxes are contrastive examples. (a,b) use a model with a
ResNet-50 architecture for the Pascal VOC dataset. (c,d) are explanations in the autonomous driving
context using a ResNet-101 backbone.

Figure 7 outlines the empirical results obtained with the contrastive grad-CAM tech-
nique for both datasets, using different backbone architectures. The regions highlighted in
red represent features positively related to the increase of the relative loss between both
detections (i.e., areas that help the model decide for the predicted bounding box instead
of the contrastive example). On the other hand, blue zones represent a negative (or null)
correlation between the corresponding features and the relative loss. In addition, in the
autonomous driving context (Figure 7c,d), the noise level interfering with the saliency map
production is seemingly superior. However, even in the latter case, which is naturally more
demanding to explain, the method identifies regions within the predicted bounding box
as not positively correlated to the loss increase. On the other hand, the activations are
gradually increasing in the outer areas of the objects explained.

Figure 8 shows example explanations generated via the D-RISE method. Both exper-
imental setups obtain saliency maps with satisfactory localization capabilities (i.e., most
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activated regions are located inside or close to the bounding box explained). Moreover, the
D-RISE method effectively reduces the noise captured in the explanations, as regions far
from the detection have close to null activation values.

(b)

Figure 8. D-RISE explanations. The red rectangles show the predicted bounding boxes. The heatmap
highlights in red the most activated regions. (a) was generated with localization and classification
information. (b) solely considered localization for the similarity scores.

Figure 9 contains a contrastive explanation produced with this approach. The interpre-
tation of this heatmap is different from the one explained for gradient-based methods; most
activated pixels should be located in regions that exclusively belong to the predicted detec-
tion. D-RISE heatmaps are weighted with similarity scores, whereas gradient-based tech-
niques use the loss as the output for the gradients that act as weights for the saliency maps.

Figure 9. Contrastive explanation using the D-RISE method. The red bounding box represents the
predicted bounding box, and the green box shows the contrastive example. The heatmap highlights
the regions with higher activations in red.

Both families of xAI methods explored in this subsection focus on a single object
per saliency map, which can be a signnificant issue given the nature of autonomous
driving. This limitation can be overcome by producing multiple visual explanations for
each analyzed scene. With this approach, it becomes possible to explain inferences made
on multiple objects with the objects being explained separately.

4.2. Numerical Assessment

The visual explanations obtained from techniques explored in Section 3 produce visual
explanations and, as such, demand a primarily visual evaluation. However, this type of
subjective assessment can introduce bias in the evaluation. To address this problem, an
Explainable Al metric must be employed and introduced in this context to aid in evaluating
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the saliency maps. In this work, the metric chosen was the Pointing Game measure [28],
which explains the whole validation set and verifies in each heatmap whether the most
activated pixel is contained within the bounding box (hit). The final value given by the
metric consists of the proportion of success cases (hits) in the total amount of samples
tested (number of images in the validation set). The choice of this particular metric makes
sense in the context of this work, as all explanations generated consist of activation maps.
Moreover, it solely takes into consideration the localization aspects of the evaluation.
In summary, the Pointing Game metric is capable of evaluating the consistency of the
xAl methods to provide localized explanations across a significant number of test cases,
e.g., the whole validation set.

Table 3 compares all the experimental setups used for Grad-CAM explanations.
The distance transformation achieves better results than the slope operation, as it is gener-
ally more effective in describing the characteristics of a particular detection. As expected,
the regression-focused model obtains more localized explanations as it probably benefits
from the patterns learned during optimization that minimized the regression losses.

Table 3. Pointing Game scores for Grad-CAM on the Kitti dataset. Bold values mean better perfor-
mance. The ResNet-101* backbone was solely optimized for regression.

PG Distance Transformation Slope Transformation
ResNet-50 0.388 0.217
ResNet-101 0.38 0.097
ResNet-101* 0.439 0.154

Table 4 depicts the results from gradient and perturbation-based methods, comparing
these techniques. According to the results, gradient-backpropagation achieves better results
concerning the Pointing Game metric, with D-RISE obtaining a close performance. On
the other hand, it is verified that using detection vectors that solely encode localization
information is beneficial in this context. Lastly, the latter table concludes that contrastive
explanations are much more localized when produced via the perturbation-based approach.

Table 4. Pointing Game scores for D-RISE explanations. Bold values mean better performance. The
YOLO model (YOLOvV5*) contains noisy results, as it evaluated the same number of test images but
different samples.

PG Scores

D-RISE (Localization) 0.75
D-RISE (Localization and Classification) 0.72
D-RISE (Contrastive) 0.21
Grad-CAM 0.44
Guided backpropagation 0.76
YOLOv5* 0.65

The numerical results shown in the two tables mentioned above should not serve as a
stand-alone evaluation regarding the quality of explanations. Despite guided-backpropagation
being the method with better numerical results, its visual quality is minimal since the
saliency maps are localized but still highly dispersed. On the other hand, D-RISE produces
results with similar localization capability and highlights regions in a much more human-
understandable manner, with little to no noise being captured. On the other hand, the
high number of iterations needed for each explanation makes the perturbation-based
approach much slower than gradient-based methods, i.e., each iteration performs the
forward propagation of the perturbed image into the network. In contrast, gradient-based
approaches need only a single propagation through the detector.

Furthermore, Table 4 also shows results regarding the YOLO architecture. The ex-
perimental setup for this step solely considered localization information for the D-RISE
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detection vectors, as this method achieved the best overall performance in the Faster-
RCNN-based models. However, the saliency maps gathered for obtaining the latter result
were computed with respect to a validation set that was different from the one used by
detectors in the same table. Moreover, the nature of Pointing Game itself makes it a good
metric to establish this comparison, even across different architectures. Even though the
comparison was made in different setups, we still consider it a trustworthy manner of
effectively comparing the D-RISE computed with YOLO in the global scope of the work
carried out.

There is a significant difference between the results obtained for the YOLO model and
the remaining two-stage detectors. This disparity does not reflect different behavior in
the D-RISE algorithm for the models. Rather, it mirrors the discrepancy in the inferring
capacity of these models (Section 3.1). The nature of post hoc perturbation-based methods
make them maintain similar behaviors when exposed to different setups, i.e, the visual
explanations in Section 4.3 are similar to those in Section 4.1.

4.3. Other Architectures

As stated in Section 3.1, a YOLO model was trained, so that its results could
be explained with the xAI methods explored. As visual explanations obtained through
D-RISE were significantly better than those produced by gradient-based explanations,
YOLO results were explained using the perturbation-based approach.

Figure 10 shows the results of D-RISE when operating against inferences performed
by the one-stage detector trained in our experimental setup. The visual quality of the
saliency map is seemingly similar to those produced using two-stage detectors, which is
quite satisfying. Moreover, it is also important to highlight that D-RISE can successfully
produce explanations regarding different objects within the same image, even if they are
close to one another. Such results could not be depicted by gradient-based techniques,
as the presence of objects close to the detection being studied is sufficient to introduce
noise to the saliency map, which will ultimately result in visual explanations that are not
understandable.

Figure 10. YOLO explanations obtained for two different objects in the same image. The bounding
boxes are marked in green. Saliency maps highlight in red the regions with higher activations.
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5. Conclusions

The study extensively experimented with different explanation techniques and dis-
tinct setups for each approach. Most of the algorithms used consist of previously exist-
ing methods adapted to the regression context. In gradient-based methods, this adapta-
tion meant computing scalar transformations from the bounding box object. In contrast,
in D-RISE, the algorithm was slightly changed so that explanations better reflect the
most important regions for the localization of each object. Moreover, contrastive expla-
nations allowed a different way of explaining object detection that was more intuitive
and human-understandable.

The main disadvantage of the D-RISE approach is the computational effort needed
to generate a single explanation. However, the visual explanations produced with this
perturbation-based approach are consistent and provide human-understandable inter-
pretations in the vast majority of cases. As such, this approach is better than the much
faster alternatives provided by gradient-based explanations, especially if the system is not
concerned with the overhead introduced by the xAl module.

The comprehensiveness of the work carried out allowed a meaningful comparison
between all methods used. It ultimately fulfilled the original goal of establishing an
initial study regarding xAI in object detection for the context of autonomous driving.
We can draw from this study that the challenges offered by the autonomous driving con-
text require complex explanation methods. The lower area and higher number of objects
studied significantly impact the saliency maps produced. As such, especially in applica-
tions where time is not a constraint, D-RISE offers better explanations even with more
challenging images.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Autonomous Driving

Al Artificial Intelligence

AP Average Precision

CNN Convolutional Neural Network

D-RISE Detector Randomized Input Sampling for Explanation

Grad-CAM  Gradient-weighted Class Activation Mapping
ProtoPNet  Prototypical Part Network
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ResNet Residual Neural Network
R-CNN Region-based CNN

RPN Region Proposal Network
xAI Explainable Al
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