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Abstract: The industrial control and automation sector has invested in the development and stan-
dardization of new wireless (WirelessHART, ISA 100.11a, and WIA-PA) and wired (Profibus/Profinet,
Modbus, and LonWORK) solutions aimed at automating processes to support standard monitor-
ing and control functions from the perspective of addressing critical applications, as well as those
integrated within the Building Internet of Things (BIoT) concept. Distributed data acquisition and
control systems allow modern installations to monitor and control devices remotely. Various network
protocols have been proposed to specify communication formats between a client/gateway and
server devices, with Modbus being an example that has been widely implemented in the latest
industrial electrical installations. The main contribution made in this paper concerns the completion
of the Modbus Extension (ModbusE) specifications for the server station in the classical Modbus
communication architecture, as well as their implementation and testing in an STM32F4 kit. A
general-purpose control architecture is proposed for BIoT sector, comprising both intelligent touch
switches and communication protocols of which the Modbus protocol is used extensively for the
monitoring and control part, especially between clients, smart switches, and devices. The specific
contributions concern the presentation of a scientific and practical implementation of improved
specifications and their integration as software modules on ModbusE protocol server stations. A
client station with a VirtualComm USB PC connection is also implemented in the lab to test the
operation of the proposed server with specific Modbus applications.

Keywords: communication; Modbus extension; acquisition cycle; server; Building Internet of Things;
remote terminal unit (RTU)

1. Introduction

Today, interest in Smart Cities (SCs), Smart Buildings (SBs), and Smart Homes (SHs) is
growing due to the particular technological developments driven by the rapid development
of the IoT, wired and wireless communication networks, the extensions of communica-
tion protocols such as Modbus [1–3], touch screen technologies, LCD, microcontroller
performance [4], and the use of cloud computing (CC) and smartphones. Academia, indus-
try, government, society, and the natural environment provide support for the development
and application of new technologies, while the active involvement of citizens can be consid-
ered crucial for this strategy; therefore, it is clear that the work and involvement of scientific
researchers are part of SH solutions [5].

Building automation includes a network of hardware and software interfaces and
electronic circuits. It integrates various appliances and devices around the building via
the Internet [6–8]. The communication of these devices within larger system networks,
e.g., with the Internet, can be achieved via wired communications such as RS485 with or
without proprietary protocols (Modbus, KNX, BacNET, LonWORK, M-Bus or Meter-Bus,
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other local industrial networks such as CAN, CAN-FD, XL, Profibus/Profinet, or Ethercat,
or wireless ones such as Wi-Fi [9,10], Bluetooth [11,12], ZigBee, LoRaWAN, SigFox, and
6LoWPAN). With the exception of Wi-Fi, the other networks need a gateway or controller
with a connection to the local network or the Internet.

The important technological advances that were presented for SHs are related to the
development of Industry 4.0, which symbolizes the beginning of the fourth industrial
revolution and represents the current trend of automation technologies in industry. This
mainly includes enabled technologies such as Cyber-Physical Systems (CPSs), IoT, and
CC, which integrate virtual space with the physical world. Before the advent of these
technologies, installing and configuring an SH system was a complicated step, as wired
systems and infrared sensors were used, which were considered challenging, complicating
the installation step and affecting user comfort. Nowadays, wireless technologies for SHs,
such as Wi-Fi, Bluetooth Low Energy, and ZigBee [13,14], are helping the development of SH
systems and SCs [15], in addition to enabling remote control via smartphone apps [16,17].
Classical SHs, IoT, and CC are the building blocks for achieving an advanced level of
integrated home automation systems. Each component brings its own attributes and
core technologies [18–21]. The specific problems that needed to be solved concerned the
synchronization of spatially distributed measurement devices and the collection of data
from multiple devices in large-scale experimental setups. The Modbus protocol extension
is based on these new technologies introduced at the UART level. The proposed extension
retains all the features of the Modbus RTU protocol except for the bit structure of a character.
To support this, we can have advantages given by situations generated by bus access (these
cannot occur because the dominant bit always wins and the driver circuitry will not be
stressed), and the three resistors used by the RS485 line driver to set the line insensitivity
zone, usually used at one end of the line, can be eliminated, driver direction monitoring is
not required, or whether or not the transmitted data are identical to the received data can
be checked.

Compared with the previous publication [22], the server module proposed in this
paper is a novelty because it is the first ModbusE (MBE)-based implementation integrated
into an SH. The system required the implementation of the Modbus RTU protocol at BIoT
(smart switch) server stations, respectively, as well as the completion and definition of new
requirements for the Modbus protocol extension called ModbusE at the MBE_RTU server
station level with 100% compatibility with the maintained Modbus RTU protocol [23]. The
STM32F429I-DISCO microcontroller development kit, the STM IDE Cube application de-
velopment tool, and the FreeRTOS operating system were used for laboratory modeling
and experimental testing, presenting an example of ModbusE and IoT-based SH usage.
The ModbusE architecture is based on the ISO/OSI 3-level reference model, i.e., levels
1, 2, and 7. The performance improvement is based on new microcontroller technolo-
gies and better data rates with increased communication speed, character length, and
embedded applications.

The contributions made in this paper concern the server implementation included in
the BIoT and SHs that is based on the MBE protocol extension; this is intended to extend
the classical Modbus specification with the following purposes:

• To transform the Modbus protocol into a fully defined protocol by specifying a flexible
acquisition cycle and a BIoT device description language;

• The current implementation as a derived contribution contributes to achieving deter-
ministic behavior by implementing the acquisition cycle and assignment of tasks to
ensure temporal consistency of information when certain decisions need to be made:
decisions based on a set of data produced by distributed systems and applications.

• An algorithm is proposed for StartTaskServerMBECycle task implementation logic
dedicated to serverMBE stations.

The following goals are defined for ModbusE or the acquisition cycle of gateMBEx:

• The acquisition cycle can have n slots, where n ϵ 3 ÷ 246, with each slot supporting n0,
n1, . . ., nn−1 characters sent and received;
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• The minimum number of slots in an acquisition cycle is 3;
• A slot consists of ni × 10 × θ ticks;
• Each slot has a data structure attached with status, control, and data;
• A ModbusE station, by configuration, can subscribe to multiple transmit/receive slots.

The remainder of this paper is organized as follows: Section 2 reviews current BIoT-
and Modbus-based projects. Section 3 describes the conceptual model for the proposed
server version based on the acquisition cycle of ModbusE communication, and Section 4
validates the implemented laboratory model based on the MBE server. Section 5 presents
the conclusions and future research.

2. Related Works

In the paper in [24], the authors conduct research on the unreliability of the Modbus
protocol. Thus, a scenario of injecting false commands hidden by the SCADA controller
is realized. Such a scenario would cause significant damage to SCADA systems. Thus,
following the research carried out, the authors propose valuable solutions to eliminate
these situations. The attack scheme integrates two main phases. The first preattack phase
is carried out in offline mode, namely, an attacker sniffs, collects a sufficient number of
pairs of valid response requests, and stores them in a database. After this initial stage,
the attack phase in online mode is presented. In this stage, the attacker sends the false
command and retrieves a valid response from their database, and they do so for every
request sent by the HMI user. In the paper in [25], a new address translation scheme is
proposed through which the slave PLCs use the serial Modbus protocol in a SCADA system
which gives the possibility of integration with IEEE 802.15.4. Thus, XBee modules do not
require a specific PLC configuration. At the same time, the scheme proposed by the authors
effectively eliminates the need to link any XBee module to a specific PLC. In this way, the
paper describes the hardware architecture on which the scheme proposed by the authors is
implemented. The process of realizing address translation and Modbus integration with
the IEEE 802.15.4 network is also presented. As a contribution from the authors, the address
translation scheme can be highlighted.

The paper in [26] proposes a method for designing a measurement system using the
Modbus TCP. The authors successfully present the structure of the measurement system and
a description of the algorithmic software that implements the telecommunication function.
In [27], the authors conduct research on monitoring PLC energy meter data using Modbus
over RS485 through an application-based monitoring system to detect irregularities that
occur remotely. In the proposed implementation, if there is any anomaly on the distribution
line on the HMI, an alert is displayed indicating that the set parameters have been deviated
and, in addition, the Node-Red platform will keep track of the data. Therefore, the system
proposed by the authors was tested and obtained the desired results in the context that
there are several specialized automation protocols and standards that can be used.

In the paper in [28], a Modbus RTU/TCP to Profibus gateway is designed. This at-
tempts to solve the incompatibility problem between Modbus and Profibus. Raspberry Pi
manages the functionality of the complete system and handles the Modbus traffic communi-
cation, while VPC3 + S controls the Profibus-DP communication layer. Experimental results
obtained by the authors based on Modbus and Profibus communication demonstrate the
correct operation of the dedicated gateway consisting of a Raspberry Pi and the VPC3 + S
intelligent chip. In [29], the authors design and implement an RTU server for verification
intellectual property (VIP) development and testing that has been intentionally subjected
to errors to test the VIP. Simulations were performed using Questasim 2021.4. The VIP
capability was able to trace all errors in the embedded design as a fraction of the error
sequence. An alternative Modbus control design was successfully simulated with the VIP
where the server was also able to identify errors in the form of protocol faults.

The paper in [30] presents an educational guide for integrating the EcoStruxure Power
Monitoring Expert application with Schneider Easergy P3/P5 protection relays as well
as the IEC 61850 communication standard [31]. The contribution of the authors concerns
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proper and effective teaching, i.e., the use and application of these tools in industrial protec-
tion monitoring. The work helps to strengthen training in key areas for the industrial sector
and promotes practical and applied training of great importance for the training of engi-
neers and technicians in the field of industrial automation and communication. According
to [32], in the midst of various CPS entities, AMI (Advanced Metering Infrastructure), i.e.,
the smart grid, is among the most important entities essential for the rapid transformation
of CPS, where Modbus protocol (RS-485) is commonly used in smart meters for communi-
cation on the physical layer. The Modbus Attack DataSet for AMI (MAMI) is experimented
on, and the authors’ results demonstrate that the FL design approach is remarkably effi-
cient in identifying critical smart meter assaults. In addition, data confidentiality concerns
are protected.

In [33], the use of the Modbus protocol for SB security is presented. Thus, an embedded
network communication protocol gateway has been designed that bridges the traditional
serial Modbus fieldbus interface and Ethernet connectivity, and the implementation is
built on the Modbus TCP interface. The authors propose a Modbus-protocol-based design
for SB security so that the proposed system adopts the Modbus protocol format for data.
Also, an ARM5708-based hardware system as the development and design support of the
development board, Linux OS, JavaWeb, and database management technology realizes
the data interaction, storage, display, and identification. To meet the demand of embedded
data acquisition monitoring systems of industrial automation applications, a Modbus-
and Linux-protocol-based platform is proposed and extensively presented in the paper
in [34]. Thus, the Modbus client realized by this embedded platform is stable and reliable.
It also has excellent prospects in data acquisition monitoring systems incorporated in
new automation applications. As a result, communication with various serial equipment
Modbus protocol can be successfully tested by implementing Modbus for a serial port,
which includes two types of communication modes, namely ASCII and RTU.

3. Basic Architecture of serverMBU_i Application with ModbusE

The success of Modbus comes from the compromise to keeping it simple, while
recognizing that factory automation applications are not and that there are also benefits
in delegating the management of application diversity [35]. An example of a Modbus
network is illustrated in Figure 1. As you can see, gateways are employed to interconnect
the lower layers of the network, HMIs represent human–machine interface terminals, and
PLCs constitute programmable logic controllers. Modbus messages/transactions are used
to exchange data units for application protocols [36].

While the Application Protocol Data Unit (APDU) is identical for all Modbus lower
layers, the client/server scheme used by Modbus exploits the full potential of the different
possibilities afforded by the lower layer presently in use. The following is a summary of
the ModbusE extension described in the literature in [2,22]. Thus, ModbusE uses two types
of objects:

• PDO (Process Data Object) for transferring processing data;
• SDO (Service Data Object) for setup, servicing, and testing.

The communication of these objects over the network is carried out with messages,
with several messages making up transactions. There can be three types of messages:

• SDA (Send Data with Acknowledge) sends data with acknowledgment (request–
response);

• SDN (Send Data with No Acknowledge) sends data without acknowledgment (request);
• SRD (Send and Request Data) sends and requests data (request–response).

From the point of view of the communication paradigm, the following architectures
can be distinguished:

• Master–Slave (Client–Server);
• Producer–Consumer.
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Figure 1. Modbus network example.

ModbusE maintains compatibility with Modbus RTU. Table 1 shows the set of tables
that feature distinct functionalities. The differences between inputs and outputs and bit
addressable versus addressable at the 16-bit word level of the data items do not involve
any software functionality. It is completely permissible and highly common to deem all
four tables as overlapping, if this is the very natural representation of the specific target
host. For individual primary tables, the protocol enables a single selection of 65,536 data
entries, and read or write operations on those entries are intended to scale across multiple
sequential data items up to a data size limit that relies on the operation function code. It is
evident that all data managed by Modbus, such as bits or registers, needs to be located in
application memory on the machine. However, the physical address in memory may not
be mixed up with the reference data. The only condition is to link the reference data with
the physical address. Modbus logical reference numbers, which are commonly referred to
in Modbus functions, are unsigned integer indices beginning at zero [36].

Table 1. The Modbus absolute address ranges (984 scheme) and data model.

Table Name and Operations Allowed Data Addreasess and Type Modbus Codes Coil/Register Numbers

Discrete outputs (“coils”), read
(R)/write (W) 0000 ÷ 270E/1 bit 01 (R), 05 (W single), 15 (W multiple) 00001 ÷ 09999

Discrete inputs (“contacts”), R 0000 ÷ 270E/1 bit 02 (R) 10001 ÷ 09999

Analog input registers, R 0000 ÷ 270E/16-bit size 04 (R) 30001 ÷ 39999

“Holding” registers, R/W 0000 ÷ 270E/16-bit size 03 (R), 06 (W single), 16 (W multiple) 40001 ÷ 49999

The application level for Modbus precisely specifies the addressing logic of the PDU. In
each Modbus PDU, every datum is addressable from 0 to 65,535. Furthermore, it precisely
describes a Modbus data model consisting of four blocks with multiple elements ranging
from one to n. Within the Modbus data model, the elements in a data block are individually
referenced from one to n.

Subsequently, the Modbus data model must be linked to the device application, IEC-
61131 object, or other application model. The preliminary mapping between the Modbus
data model and the device application is entirely vendor-device-specific. In terms of the
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operating model of the server, i.e., the smart switch device, a holding register with a specific
address will store a specific value and a different number of buttons will be displayed on
the touch interface depending on this value. Another ModbusE address can be assigned to
configure the effects of touching the buttons so that button functionality can be selected
in two modes, namely toggle or nontoggled state. In the same mode, the audible mode
of operation can also be implemented, whereby each button can also have audible effects.
This operation, once activated, will be valid for all buttons, and a specific ModbusE register
will manage the sound effect for each button.

3.1. ModbusE Acquisition Cycle Structure

In a ModbusE acquisition cycle, as shown in Figures 2 and 3, the following statements
are summarized:

• The basic time unit is referred to as tick (θ). The size of this tick is chosen so that it is
supported by all stations in the local industrial network.

• The acquisition cycle (AC) consists of time slots (S) of length l (i.e., lθ). It follows that
slots can have different lengths. These are chosen at setup and, during operation, are
considered fixed slot lengths.

• Slots may have priority (PRi).
• Within a cycle there are periodic and aperiodic slots. At least one slot must be aperiodic

for SDO communication. It must be long enough to allow the whole transaction to
take place.

• The slot allocated to SDO messages should not exceed 10 ÷ 15% of the value of the
acquisition cycle.

• A particular case is where slots, PDOs and SDOs, are being sent based on separate
queues. PDOs are placed in a queue and are sent based on a round-robin algorithm,
and SDOs are placed in a FIFO queue. If there are SDOs in the queue, allocate an
alternative communication medium, i.e., a PDO or an SDO.

• Within the acquisition cycle there can be subcycles (SACs). The network collects mes-
sages characterized by type (SDA, SDN, or SRD) and maximum transfer Mi(type, t).
Thus, the message is indivisible.

• A transaction is composed of several TRi(t) messages and is indivisible.
• A transaction or message occupies one slot in the cycle.
• An erroneous message or communication error is not allowed to delay the slot. How-

ever, for unpredictable situations, the cycle will extend with a safety interval.
• The cycle can also be provided with an alarm or emergency slot and possibly with a

slot (the first one) for synchronization.
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The acquisition cycle consists of a slot called SYNC (optional) that can be used by the
client (gateMBE station as Modbus RTU client) to initiate a broadcast command, such as
“start scanning inputs” or “a new acquisition cycle has started”.

The cycle optionally ends with a SEND (Slot END) end-of-cycle slot, which indicates
the end of the acquisition cycle and may possibly retrieve some errors that led to the
lengthening of some of the slots. Slots S1 to SN allow for transactions whose length is a
multiple of a tick (θ). Optionally, the tick can be omitted by expressing the slot directly, for
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example, in microseconds. For simplicity, the option of using equal slots can also be chosen.
The acquisition cycle time (tAC) is simply calculated with Equation (1).

tAC = tSYNC + tSEND + tS1 + . . .. . .. + tSN (1)
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3.2. User Modbus Commands Handled by ModbusE

At least the following new commands are required to implement the ModbusE protocol:

• PDO transmit/receive mapping command;
• Command to read a transmission/reception for PDO;
• Command mapping of physical addresses, slot addresses, and classic Modbus commands.

In the Modbus protocol, functions between 100 and 110 are public. We propose to
use codes 100, 101, and 102 for these three types of functions. Mapping allows Modbus
messages to be sent without a header, so overhead can be reduced. The primary benefit
of having timestamps added to a simple protocol such as Modbus is time consistency,
i.e., a single vision of the managed and controlled process. Time consistency becomes
particularly relevant in the deployment of industrial process control algorithms. By adding
this extra information, we can introduce a low-cost characteristic specific to advanced
protocols. This option is implemented at the fieldbus level for Modbus, as the timestamp
is added by the BSG, both on the controller and on the ModbusE fieldbus. These options
are either ticked or not at the set-up phase of the BSG and in terminals that have ModbusE
capability. The ModbusE 100 function, map transmit/receive PDO, is a classic Modbus
message for mapping so that the headers for the request are sequential and do not exceed
the number of bytes in the function header. The ModbusE function 101 reads the mapping
for PDO transmit/receive PDO. The total number of bytes of the message must be fewer
than 253. If one of the component messages is unknown to the server station, the mapping
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is not executed and the corresponding error code is returned. The ModbusE 102 function
configures the server stations so that the request contains the new address for the SDO
(1 byte 129 ÷ 249).

3.3. BIoT System Architecture Using gateMBEx

Figure 4 shows how the gateway fits into a more general BIoT or even Industrial
Internet of Things (IIoT) system. In this sense, gateMBEx must provide the following:

• A Modbus TCP-IP server with an Ethernet connection and optional Wi-Fi;
• A Modbus RTU server with VirtualComm connection using the USB port, optional

Bluetooth communication, GSM, etc.;
• The two servers will also execute local Modbus commands that will allow access to

the hardware and software resources of the gateway, including all the data handled by
the ModbusE protocol. In this way, the application on a host system, a client of these
servers, can use classic drivers and applications specific to the Modbus protocol. Thus,
it is not necessary to write a specific ModbusE driver; only the data will be defined
and interpreted accordingly.

• A ModbusE server will manage the protocol extension as a client and will service the
requests of Modbus TCP-IP and RTU servers. External devices do not have direct
access to this server, but they do via Modbus servers.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 4. BIoT and IIoT system architecture using gateMBEx. 

If gateMBEx is connected to a system running OPC UA applications implementing 
AMQP (Advanced Message Queuing Protocol) and supporting Modbus RTU and TCP-IP 
drivers, then gateMBEx can be easily integrated into an IIoT architecture like the one 
shown in Figure 4.  

A higher degree of integration can be achieved using the new multicore microcon-
trollers in Cortex-Ax and Cortex-Mx combinations or other specific architecture by imple-
menting the OPC UA server on the gateMBEx itself (gate_MBEx_UA). Thus, the commu-
nication speed is 10.5 Mbit/s with 30 slots. In the ModbusE-based server implementation, 
in addition to the myTaskCycle.c acquisition cycle implementation task, the following 
tasks were ported and tested: 
• myTaskUsbServer.c: Implements Modbus RTU on VirtualComm using the USB port. 

The USB server sends the request to the USB client. 
• myTaskMbeGate.c: It has a limited role in the USB communication being provided 

for Modbus TCP/IP, and USB-TCP/IP is used for compatibility at the socket. 
• myTaskDispathS.c: It takes the command from the USB client and sends it to the MBE 

dispatcher server, which processes it and sends it to the MBE client that executes it, 
and the response is then sent back to the dispatcher server, which sends it back to the 
USB client, and from there, it goes to the USB server, which then sends it to the USB 
client, e.g., a PC application.. 

• AppMBEglobatData: It is a file filled with global data to be accessed as Modbus and 
MBE registers. 

4. Proposed Modbus Extension Server Implementation 
4.1. ServerMBE_i Station Requirements 

This section presents the most important requirements for MBE servers. Some re-
quirements are also added throughout this paper. The communication requirements for 
MBE servers, including ModbusE, are as follows: 
• Support the communication speed and structure of ModbusE messages and frames;  

Figure 4. BIoT and IIoT system architecture using gateMBEx.

The ModbusE server must map application objects to readable and writable Modbus
objects in order to set or retrieve application object attributes and provide a way to initiate
services at the application object level. At runtime, the Modbus server must analyze the
received Modbus request, process the requested action, and send back a Modbus response.
Modbus record and tab data types are less well-known, being used with only a few function
codes. The Modbus record data type, from the point of view of an application user (client),
is a set of registers, characterized by the address of the first register and their number. In
the context of this definition, the registers involved have also been called references. Server
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stations implementing the ModbusE protocol will benefit from all its advantages, while
those implementing Modbus RTU, if they support communication speed, will work in
normal Modbus RTU mode.

If gateMBEx is connected to a system running OPC UA applications implementing
AMQP (Advanced Message Queuing Protocol) and supporting Modbus RTU and TCP-IP
drivers, then gateMBEx can be easily integrated into an IIoT architecture like the one shown
in Figure 4.

A higher degree of integration can be achieved using the new multicore microcon-
trollers in Cortex-Ax and Cortex-Mx combinations or other specific architecture by imple-
menting the OPC UA server on the gateMBEx itself (gate_MBEx_UA). Thus, the communi-
cation speed is 10.5 Mbit/s with 30 slots. In the ModbusE-based server implementation, in
addition to the myTaskCycle.c acquisition cycle implementation task, the following tasks
were ported and tested:

• myTaskUsbServer.c: Implements Modbus RTU on VirtualComm using the USB port.
The USB server sends the request to the USB client.

• myTaskMbeGate.c: It has a limited role in the USB communication being provided for
Modbus TCP/IP, and USB-TCP/IP is used for compatibility at the socket.

• myTaskDispathS.c: It takes the command from the USB client and sends it to the MBE
dispatcher server, which processes it and sends it to the MBE client that executes it,
and the response is then sent back to the dispatcher server, which sends it back to the
USB client, and from there, it goes to the USB server, which then sends it to the USB
client, e.g., a PC application.

• AppMBEglobatData: It is a file filled with global data to be accessed as Modbus and
MBE registers.

4. Proposed Modbus Extension Server Implementation
4.1. ServerMBE_i Station Requirements

This section presents the most important requirements for MBE servers. Some require-
ments are also added throughout this paper. The communication requirements for MBE
servers, including ModbusE, are as follows:

• Support the communication speed and structure of ModbusE messages and frames;
• Determine correctly and efficiently the end of a message (minimum 3.5 characters);
• There must be a known timeout from receiving a message to replying to it, if applicable

(can only be unanswered subscription);
• Receive all slot messages in the acquisition cycle, or at least the following:

a. Slots 0, 1 (if 1 is included in the acquisition cycle) and asynchronous slot;
b. Slots to which it responds (publishes) and where it is the only one that responds

to the client (request–response);
c. Slots that subscribed to either on request or response but are not the server re-

sponding to the request. In this case, serverlMBE_i may be the client (subscriber) of
the gateway or another serverMBE0j. This also implements publisher/subscriber
communication, with message delivery provided in hardware by the RS485 multi-
point line bus.

• Be programmable for certain MBE facilities either OFFLINE, ONLINE, or preferably both;
• Have a procedure for removing and reinserting the serverMBE_i station from and into

the system;
• Be able to be reprogrammed online without changing the acquisition cycle structure;
• Know and execute those commands (from the 100 series such as 100, 101, 102, . . .) for

slot operations;
• Have a wrapper that converts the data in the data area of an MBE message into one

or more classic Modbus messages to maintain compatibility with eventual software
using classic Modbus messages. This would make it easier to upgrade some Modbus
applications to ModbusE applications;
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• Create a language to describe MBU server stations.

Figure 5 shows some examples of connections for ModbusE. Thus, for slots 0 and 1, if
the presence of slot 1 is set in the AC, a request (publication) is issued by the MBE client
on the gateway (publication to which all stations must subscribe). For slot 2, a request
(publication) is issued by the gateway MBE client to which only serverMBE_2 (hereafter
referred to as sMBE2) subscribes, and it may publish a reply message to the gateway client
to which the gateway has a mandatory subscription, i.e., it is checked whether the server
has received the message correctly. For slot 3, a request (publication) is issued by the MBE
client on the gateway to which sMBE3 and sMBEi also subscribe. sMBE3 thus publishes a
reply to the client on the gateway, and the gateway, sMBE11, and sMBEi + 1 subscribe to this
reply (publication) of the sMBE3 server. For slot 5, a request (publication) is issued by the
MBE client on the gateway to which sMBE5 and sMBE11 subscribe, and sMBE5 publishes a
response to the client on the gateway. The gateway, sMBEi-2, and sMBEn-2 subscribe to this
response (publication) from the sMBE5 server. For slot 11, a request (publication) is issued
by the gateway MBE client to which sMBE11 subscribes, and sMBE11 publishes a response
to the gateway client. Subsequently, the gateway, sMBEi, sMBEin-1, and sMBEn-2 subscribe
to this response (publication) from the sMBE11 server. For slot m-1, the last slot in the AC,
a request (publication) is issued by the gateway MBE client to which sMBEn-1 subscribes,
and sMBEn-1 publishes a response to the gateway client. Only the gateway subscribes to
this response (publication) of the sMBEn-2 server, since it is a typical Modbus command to
which only the station having the same address as the (slot) number sent by the last slot
in the cycle can respond. To eliminate confusion, these classic Modbus addresses must be
greater than or equal to 0x80. As an observation, it should be noted that slots in or out of
the cycle (<0x0c80) may also contain Modbus messages in classic format.
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The sMBE2, 3, 5, 11, n−1 are those that publish in response to a request (publish) from
the MBE client for slots with the same ID number on the RS485 network, but this is not
mandatory. Servers sMBEi, i + 1, i + 2, i + 3, and sMBEn-2 only subscribe to some MBE
client requests (publications) from the gateway or to some responses from other servers.
As a result, like the gateway, these stations are MBE clients and eventual servers on the
asynchronous slot. The architecture also considers publisher–subscriber communication.



Sensors 2024, 24, 475 11 of 22

4.2. ModbusE Implementation in the STM32F4 Microcontroller

STM32F4 communication devices have a single transmit buffer and a single receive
buffer [37]. As a result, user software must read data from the receive buffer before the data
are overwritten by the next received data. By using interrupts, there is a risk that the data
will be overwritten. Furthermore, if each received character generates an interrupt, the
microcontroller will be requested for additional processing time, and the time consumed
with communication may become significant. The DMA in the STM32F4 prevents data
overwriting, but usually, the number of bytes of data to be received is not known. For the
ModbusE protocol, the byte count is usually known after the reception of four characters.
As a result, the receiving end of the transfer is known later. The solution is to implement an
emulation of a FIFO based on DMA and interrupts. A timeout is required for the DMA in
order to indicate to the application that no further data will be received. Thus, the DMA
facilities in the STM32 microcontrollers significantly simplify FIFO implementation. The
DMA facilities that simplify FIFO implementation are the following:

• Transfers independent of source and destination size (byte, half-word, word) to emu-
late data packing and unpacking;

• Support for circular buffer management;
• Access to flash memory, SRAM, and APB1, APB2, and AHB peripherals as source

and destination;
• Programmable number of data that can be transferred (up to 65,536).

All of these facilities work together to minimize the software overhead associated with
data storage. The DMA’s memory address incrementing mode is very useful because the
data pointer can be incremented automatically. Thus, the DMA buffer emulates the FIFO
buffer, the write buffer pointer (DMA pointer) is automatically incremented, and the DMA
counter is automatically decremented when writing to the FIFO. The read buffer location is
incremented by software each time data are retrieved from the FIFO buffer. When FIFO
is implemented by software, the data are received and stored in a circular DMA buffer,
where they remain until they are managed and removed. The transmitter sends n data
items using DMA, and the message length n is known in advance. The receiver receives m
data items using DMA, a potentially unknown number, but it is still possible to pick up the
RXNE interrupt from the peripheral, even when using DMA. In fact, the interrupt from the
peripheral emulates the “buffer is not empty” FIFO interrupt. The following considerations
can be made for reception:

• There is no need to clear the RXNE flag in the interrupt handling routine as it is
automatically cleared by the DMA read operation. However, the interrupt remains
captured in the NVIC even if the RXNE flag is no longer set;

• Two buffers are used, namely RxBuffer2 and RxBuffer2_SW. The RxBuffer2 buffer
emulates the FIFO buffer and is defined as the DMA base memory address from which
the data will be read. RxBuffer2_SW is a software buffer used within the interrupt
routine on receive to transfer data from the FIFO. It is the final destination of the
stored data.

• Within the interrupt handling routine, the DMA address/number pointer is used
to indicate how many bytes of data are available in the FIFO buffer (RxBuffer2) to
be transferred to the final storage buffer (RxBuffer2_SW) and what the current FIFO
location of the data is;

• When DMA requests are served, the input data are temporarily stored in the FIFO
buffer. Data extraction from the FIFO and/or processing is triggered by the receive
interrupt. One problem with this method is message end detection. This can be
performed by detecting an End-of-Frame (EOF) character or by detecting the pause at
the end of the data block.

The following presents the implementation of the timeout to detect the 3.5-character
length without transmission, end of message, or receive DMA timeout. If the receive
DMA is used, the end of the transfer cannot be detected unless the number of bytes to be
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transferred is known in advance. As a result, a DMA timeout should be implemented when
no more data are received. For this, two methods are presented in [37], namely:

• Connecting USART_RX to the capture input of a timer;
• Using a system clock and interrupt reception from USART.

For the first method (Figure 6), i.e., connecting the USART_RX to the capture input of a
timer, the method is to use a timer in slave reset mode, whose counter is reset in response to
the rising edge of a signal connected to the receive pin of the USART (USART_RX). On each
rising edge on the receive input pin, the counter is reset. By programming the comparison
output value with the desired timeout, when no more data are transmitted, the counter
continues its operation until the comparison value for the user-defined timeout is reached.
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Consequently, the timer generates a comparison interrupt (already activated) which
informs the application about the occurrence of the timeout. Figure 6 illustrates this first
method. As for method 2 (Figure 7), a system clock and the USART receive interrupt of the
STM32F4 microcontroller are used. This method is used to detect a timeout in the 1 ÷ 2
period range of the system clock. Figure 7 illustrates this method, with the mechanism
working as follows:

• Validate the USART receive interrupt and DMA requests;
• Validate system clock overflow interrupt;
• When the USART receive interrupt is triggered, set a variable and disable the receive

interrupt. This ensures that at least one receive interrupt has occurred;
• When the overrun interrupt is triggered at the timer, the value of the variable is

checked, and the following actions are performed:

a. If it is set, it means that no timeout has occurred. The variable must be deleted
and the receive interrupts must be reactivated.

b. If cleared, this means that a timeout has occurred, i.e., no reception interrupts
have occurred during the programmed time.

Regarding the solution chosen for the MBU_i server regarding the DMA timeout,
the first solution was to use a timer in the RESET slave mode. It works as a resettable
monostable, the external signal used being the receive signal, more precisely its rising
edge (pin PA10 was connected to PB4). This edge resets the timer counter. If there are no
edges, the timer increments up to a comparison value at which, if reached, an interrupt
is generated signaling the end of reception. The initialization sequence of this operation
is shown in Figure 8. Figure 9 illustrates the interrupt handling routine generated by the
timer when the receive line goes into IDLE.
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The interrupt handling routine clears the compare interrupt and cancels the inter-
rupt given by timer 3. Using the RTOS function, osThreadFlagSet signals the task my-
TaskServerMBEcycle that a new message has been received (Figure 8). Another aspect
presented is the signaling of the beginning of the message. Thus, it is important to detect
when the reception of a message starts. The USART1 circuit provides an IDLE interrupt,
which signals the first falling edge after the duration of an IDLE character (10, 11 bits per 1).
The routine for handling this interrupt (USART interrupt) will allow clearing the interrupt
given by the IDLE status, deactivating it, and starting timer 3 to handle the end of the
message. The vUsart1RecvData function is intended to prepare USART1 for the message
read operation. This function performs the following:

• RS485 driver receive switch (slightly redundant);
• Deinitialize and reinitialize DMA2-stream 2 channel for receive and fetch and program

DMA with counter for number of bytes to be transferred (maximum receive buffer
length (2 buffer-e)), memory address of receive buffer used, address of DR receive reg-
ister in USART1, and enable DMA channel, i.e., transmission complete (TC) interrupt
flag given by counter termination;

• Activate USART1 for DMA reception;
• Clearing the IDLE interrupt at USART1 if any;
• Activate the IDLE interrupt to trace the start of the message at USART1.

The vUsart1SendData function is responsible for preparing USART1 for the message
write operation. This function performs the following actions:

• Switching the RS485 driver to transmit;
• Programming DMA2-stream 7 for transmission, retrieving and programming the DMA

with the counter for the number of bytes to be transferred for a maximum receive
buffer length of 2 e buffers, the memory address of the transmit buffer used, and the
address of the DR transmit register in USART1, and activating the DMA channel or
the TC interrupt given by the counter termination.

The slot is a basic message, both as a request and as a response, and is an integral part
of an acquisition cycle. The slot has three parts, namely slot address or Modbus address,
data, and CRC (Figure 10). The characteristics of ModbusE slots are as follows:

• Slots are composed of 0 or more sections, and all slots in the 0 and 1 range have both
request and response;

• The length of a slot may be 3 and a maximum of 256 bytes, and the user slot address
may be between 2 and 127 (MAX_SLOTS). Request or response slots may not have a
data field;

• The addresses in the acquisition cycle are sequential addresses between 0 (0 and
1 are special request type slots) and maxim-1 slots in the acquisition cycle (0 . . .
MAX_SLOTS_IN_LOOP-1);

• If more slots than MAX_SLOTS_IN_LOOP are defined in the device, slots outside
the acquisition cycle (OUT_OF_CYCLE) may be used by indirection of slots in the
acquisition cycle (IN_CYCLE);

• The slot address field may also be a Modbus address, and the data field may be a
Modbus PDU (Protocol Data Unit);

• A slot to which the address is a Modbus device address is regarded as a Modbus APU
(Application Data Unit);

• A request slot always requires a response slot (except for slots 0 and 1) and is only
launched by the client;

• A request slot can be sent less frequently by defining a number of idle cycles for it. If
this number, for example, is 5, then the request will be sent once every 5 slots;

• The last slot in the cycle can be a ModbusE slot with classic Modbus commands,
usually the last slot in the cycle. Only one device responds on this slot, or none if it is
faulty or outside the Modbus network;
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• Request-type slots perform only write operations, based on the configuration of that
slot, and response-type slots perform read operations to the device selected to issue
the response or write operations to another device that has subscribed to the response.
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For the device sending the request–response, the length of the request must be different
from the length of the response slot. A server station can subscribe to both a request message
and a reply message. If these two messages have the same address, the server station cannot
distinguish whether it is the request or the reply. The length of the message is a parameter
that can differentiate a request from a response. For this, the request length must be
different from the reply length. Server devices do not have an FSM to know that they have
received a request or a reply. With different message lengths and message types, it is easy
to differentiate. As can be seen in the block diagram shown in Figure 10, the USART is
programmed on receive with DMA to retrieve messages from the RS485 bus.

Thus, the end of the message, signaled with a timer-based mechanism in slave RESET
mode, allows signaling to the myTaskServerMBEcycle task, implemented with the name
StartTaskServerMBEcycle, the reception of a message. This task checks if the message
has the correct CRC, reads the message length from the DMA, and then checks if the slot
address is part of the slots parsed by the device. The number of these slots, as well as slots
0, 1, and the slot dedicated to asynchronous Modbus messages with an acquisition cycle, is
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signaled to the myTaskServerMBEProtocol task, implemented as StartTaskServerMBEPro-
tocol. This task will handle the new values in collaboration with the other tasks cooperating
on updates to the device application memory using the Modbus data and addressing
model. If the slot address does not match the device’s Modbus address for the request
and response subscription slots, the myTaskServerMBEcycle task moves the data from
the slot to the application memory organized by Modbus data and addressing model.
This operation is performed with the function “void vexecuteRecvSlotWriteRegs(uint8_t
SlotIndex)” given the Modbus write functions 5, 6, 15, 16, 22, 23 based on the information
in the MY_SLO_PARAM slot structure. When the current device sends the response on the
bus, if the slot address does not match the device’s ModbusE address for the correspond-
ing response slots, the myTaskServerMBEcycle task moves the data from the application
memory organized by Modbus data and addressing model into the slot with the function
“void vexecuteRecvSlotWriteRegs(uint8_t SlotIndex)” given the Modbus read functions 1,
2, 3, 4, 7, 11, 23 based on the information in the MY_SLO_PARAM slot structure. For slots
with Modbus APDU, i.e., when the slot address matches the Modbus address of the device,
the myTaskServerMBEcycle task moves the data and responds if necessary according to
the Modbus specifications for functions 1, 2, 3, 4, 5, 6, 7, 11, 15, 16, 22, 23, directly using
the information in the request with the function “void vModbusExecuteFunctions(void)”.
As the highest priority task, it will perform atomic read/write operations. Thus, the my-
TaskServerMBEProtocol task and application tasks will also need to implement atomic
access to this application memory area organized by Modbus data and addressing model,
involving a critical section.

The following is the pseudocode of the myTaskServerMBECycle task implemented by
the StartTaskServerMBECycle function. In the case of Algorithm 1, the execution time of a
message is shorter, and the processing is taken over by the StartTaskServerMBEProtocol
task. Thus, the StartTaskServerMBECycle task can switch to receive and accept a new
message without the previous one being processed. In this case, the response time of the
StartTaskServerMBEProtocol can be increased, but this solution may undesirably affect
more slots that could be executed faster. Also, one can synchronize the StartTaskServerMBE-
Protocol and StartTaskServerMBECycle tasks using a flag or an event, or work alternatively
with two receive buffers. Thus, it will also be necessary to implement a buffer at the level
of the StartTaskServerMBEProtocol task in order to release the receive buffers urgently. In
the case of implementing other algorithms, it can move directly into and out of the register
file, register entries, coils, and discrete entries.

Algorithm 1, proposed and implemented for the StartTaskServerMBECycle task, al-
though having more lines of pseudocode than other implementations, is shorter in execution
time because it passes the proper tasks of reading/writing slot data, executing ModbusE
messages, and parsing the slot configuration using function 100 to the StartTaskServerMBE-
Protocol task. As for the proposed algorithm, if the length of the received message is equal
to the length in the associated slotIndex structure and the message is a request to this
server, then a request message has been received to which the server must respond, and
the following steps are performed:

• Move the message from the current receive buffer to the read buffer of the my-
TaskServerMBEProtocolHandle task;

• Signals the MBE application task (myTaskServerMBEProtocolHandle) of this situation
(RTOS function osThreadFlagsSet, event FLAG_SLOT_REPLAY_TO_SEND);

• Wait (RTOS function osThreadFlagsWait) for a limited time (OSWAIT_CYCLE_RECV)
for the FLAG_APP_RESPONSE event which signals that the MBE application task
(myTaskServerMBEProtocolHandle) has prepared the response in the transmit buffer,
and it shall be sent over RS485;

• If the function returns an error (TEST_FLAGS_ERRORS), then it flags the error, incre-
ments the error counters, and returns to the infinite loop of the StartTaskServerMBE-
Cycle task.
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If the function returns the FLAG_APP_RESPONSE event, then it initializes the al-
ready prepared response transmit state (vUsart1SendData function) and waits (osThread-
FlagsWait RTOS function) for a limited time (OSWAIT_CYCLE_SEND) for the
FLAG_UART_END_SEND_MESS event which signals that the message has been sent,
this event being generated by the TC flag USART1 interrupt routine. If the wait function
returns an error (TEST_FLAGS_ERRORS), then it signals an error, increments the error
counters, and returns to the infinite loop of the StartTaskServerMBECycle task. If the wait
function receives the FLAG_APP_RESPONSE event, then it increments the sent message
counter and increments the receive buffer index, keeping the rest of the division at two
(only two receive buffers).

Algorithm 1. StartTaskServerMBECycle task implementation logic for serverMBE stations

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.
38.

39.
40.

41.
42.
43.
44.
45.

StartTaskServerMBECycle
Initialization
Infinite loop task:

Switch the RS485 driver to receive (PA5 = 0)
Loop initializations (index and clear the CRC)
Initialize reception status (vUsart1RecvData function)
Waits (RTOS function osThreadFlagsWait) for a limited time (OSWAIT_CYCLE_RECV) for the FLAG_TIMER3_END_RECV_MESS event
that signals the end of the reception of a message (set by timer interrupt 3)
If the FLAG_TIMER3_END_RECV_MESS event has arrived Then

Get the number of characters received in the current buffer
If the number of characters received is greater than 256 Then

Signals error, initializes receive buffer index
GO TO Infinite loop task

Increases the number of messages received (debugging, performance, etc.)
Get slot number
Calculate the received message CRC
If the CRC is incorrect Then

Increases the number of messages received in error (debugging, performance, etc)
Initialize receive buffer index
GO TO Infinite loop task

Increases the number of messages received with good CRC (debugging, performance, etc.)
If slot = 0 Then

Signal the MBE application task (myTaskServerMBEProtocolHandle) of this situation (RTOS function osThreadFlagsSet,
event FLAG_SLOT0_RECEIVED)
Loop initializations (index, CRC reset and slot = 0xFF)
GO TO Infinite loop task

If slot = 1 Then
Signal the MBE application task (myTaskServerMBEProtocolHandle) of this situation (RTOS function osThreadFlagsSet,
event FLAG_SLOT1_RECEIVED)
Loop initializations (index, CRC reset and slot = 0xFF)
GO TO Infinite loop task

Search an array of slot based structures for a (slotIndex = 0xFF with which to further identify the associated structure for the slot
If slotIndex = 0xFF Then no slot was found used by this serverMBE

Loop initializations (index and slot = 0xFF)
GO TO Infinite loop task

If the length of the received message is equal to the length in the associated slotIndex structure, and the message is a reply
from another server, Then a reply message has been received to which the server has subscribed
Move the message from the current receive buffer to the read buffer of the myTaskServerMBEProtocolHandle task
Signal the MBE application task (myTaskServerMBEProtocolHandle) of this situation (RTOS function osThreadFlagsSet,
event FLAG_SLOT_REPLAY_RECEIVED)

Loop initializations (index, CRC reset and slot = 0xFF)
GO TO Infinite loop task

If the length of the received message is equal to the length in the associated slotIndex structure, and the message is a request to
another server Then a request message has been received to which the server has subscribed
Move the message from the current receive buffer to the read buffer of the myTaskServerMBEProtocolHandle task
Signal the MBE application task (myTaskServerMBEProtocolHandle) of this situation (RTOS function osThreadFlagsSet, event
FLAG_SLOT_REQUEST_RECEIVED)
Loop initializations (index, CRC reset, and slot = 0xFF)
GO TO Infinite loop task

End If
End Infinite loop task
End StartTaskServerMBECycle function
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Otherwise, the slot, although it exists, has none of the tested states (subscribe, reply,
or request, or must reply to client request) performing loop initializations, such as index
initialization, CRC, cancel, and slot = 0xFF, and returns to the infinite loop of the Start-
TaskServerMBECycle task. If an error was returned for the receive message event, then an
error must be flagged and the error counter incremented, respectively. The disadvantage
of the proposed algorithm for implementing the StartTaskServerMBECycle task is that it
relatively has many lines of pseudocode and it transfers the actual tasks of reading/writing
data, executing Modbus messages and configuration to the StartTaskServerMBEProtocol
task. Thus, the algorithm can be improved to allow a better evaluation of the message
processing time relative to the total execution time of the microcontroller [38].

4.3. Experimental Results

The important slot-level timings for ModbusE implementation are shown in Figure 11
and Table 2. These results were obtained using the STM32F4 development kit, with the
Cortex-M4 CPU running at 168 MHz, 1 MB flash per chip, 196 KB SRAM, Cortex debug,
and ETM Trace. For compatibility, the 15′ position has been additionally introduced. For the
same reason, the additional numbers 25 to 27 for the server were inserted after the number
24, although temporarily they are before 24. Table 2 shows the measured acquisition cycle
slot times for the ModbusE implementation, considering tintDMArx equal to 0 in slot 0 and
for slots 1 to 29 tintDMArx being 0.338 µs. Also, tintT4i is in the range 1.992 ÷ 2.142 µs. As
an observation, slots 0, 1, 2, and 3 also include the DMAtx + USART interrupt in tthd, the
notation “+int” indicating that the thread is interrupted by the dmatx and usart interrupts,
with “−int” indicating that the thread is not interrupted. The structure of the acquisition
cycle is shown in Figure 12, the period measured in the oscilloscope capture is 5.496 ms. The
time period tmCRC is the CRC processing time for the message received in the previous
slot. The time period for slot i denoted by tSi measures the software processing time at the
server. Added to this is the hardware delay time at the server, noted by thwSi, the times
tcommSi, tcommMi, and tcommi are required to issue server and client characters via the
response and request message, and tmswitchi is the time required to switch the highest
priority task in the mbeThreadCycleRTU system.
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The time period labeled tmpsnsli defines the time to prepare to issue the command
for the new slot i, and tmfosli is the time to complete the operations related to the old slot
corresponding to the client.

As part of the research activity for the implementation of the Modbus RTU Virtual-
Comm gateway server with USB connection and ModbusE client with half-duplex, RS485
serial connection, the application project was realized using the STM32 IDE CUBE de-
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velopment environment and the STM32F429I-DISCO development kit. As a derivative
contribution, the StartTaskCycle task was implemented, which incorporates the ModbusE
concept on the gateway MBE client side. An example for a 30-slot acquisition cycle is
also made by implementing a primary test by measuring the oscilloscope queries for slots
0 to 29. This software module is useful for testing the MBE server, including the RTU
server. In this paper, a summary of the most important information to be considered for
the implementation of the ModbusE server stations connected to the BIoT gateway was
summarized, adapted for the STM32F429I-DISCO kit, and tested on the myTaskUsbServer
task for ModbusRTU protocol as a server for a client placed on a PC using VirtualComm
implemented on USB. So, for compatibility with a possible Modbus TCP-IP server, the
myTaskMbeGate task was ported, adapted, and tested. Then, the myTaskDispatcheS task,
the gateway dispatcher that provides the link between the MosbusE server and the Modbus
RTU client, was ported, adapted for the STM32F4 kit, and tested, followed by brief tests
using the ModbusPoll utility.

Table 2. Measured times for acquisition cycle slots based on ModbusE implementation (in µs).

Slot tmCRC tmintDMAtx + tmintUSART tmcommi tmswitchi tmpsnsli tmfosli tthd + dmatx + usart tSi tCYA

0 (3/0) 0 0.451 + 0.846 3.721 2.998 2.847 2.565 8.936 41.04 +int

1 (4/0) 0 0.451 + 0.846 4.792 3.101 2.678 2.058 8.908 42 +int

2 (16/4) 0 0.507 + 1.748 17.37 3.101 2.65 1.41 6.953 64.05 −int

3 (32/8) 1.24 0.451 + 1.748 34.05 3.101 2.65 3.326 9.021 91 −int

4 (64/16) 2.03 0.451 + 1.691 67.54 3.157 2.706 4.059 9.585 144.0 −int

5 (64/32) 3.383 0.451 + 1.804 67.66 3.157 2.819 5.525 11.16 160.9 −int

6 (256/256) 5.788 0.507 + 1.734 267.4 3.165 2.781 8.156 13.53 661.2 −int

7 (64/64) 43.09 0.532 + 1.766 67.66 3.061 2.802 43.35 50.87 193.9 −int

8–28 (64/64) 11.57 0.426 + 1.777 67.60 3.142 2.702 13.33 19.06 193.9 −int

29 (slot 1
indirection) 2.555 4.879 3.177 2.741 14.88

+int
20.65
+int 194 +int

Total 5.673 µs
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The contributions of the research carried out in this paper are as follows:
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• Requirements and specifications for serverMBE stations have been proposed;
• The basic architecture of the serverMBE_i application has been defined;
• Implementation issues and solutions have been addressed, such as the management

of the Driver Enable signal for the RS485 line driver, the FIFO buffers, and the DMA,
the implementation of the timeout to detect the period of 3.5 characters without
transmission representing the end of a message, and the signaling of the beginning of
the reception of a message;

• The functions vUsart1RecvData, vUsart1SendData, and u16MODBUS_CRC16_table16
have been implemented;

• The pseudocode for the StartServerMBECycle task has been presented and the corre-
sponding code has been written;

• The function 100 (Modbus function parser) extension of ModbusE that allows slots to
be defined using Modbus function parameters stored in a structure that allows them
not to be sent over the network, has been proposed and implemented, resulting in a
major optimization of data channel throughput. Requirements of serverMBE stations
have been outlined.

5. Conclusions

BIoT provides Internet connection and the remote management of mobile devices
through various sensors and actuators that measure building conditions. In this way, the
operation of SB appliances can also be monitored. Cloud computing provides comput-
ing power and storage space to develop, maintain, and run services at home anywhere,
anytime. Based on the requirements of serverMBE stations in a ModbusE-based BIoT com-
munications architecture, it is possible to clearly specify the aspects of request–response
messages that are transmitted on the physical ModbusMBE layer. Thus, the request is
always initiated by a client device, and only one client is active on a ModbusMBE bus at a
time. However, a command can be provided to allow a token to move between multiple
clients. From the device’s point of view, the request is always a request to which the device
has subscribed, so it can include slot addresses 2 . . . 128 but also classic Modbus addresses
such as 128 . . . 247. The response, if any, excluding slot 0 and optionally address 1, is
issued by a server station that owns that slot or Modbus address. Another station may
subscribe to this response if its response slot configuration includes that station’s respective
response slot.

The results obtained by the authors in accordance with the ModbusE protocol refer to
the fact that only data and checksum are transmitted in a slot, thus increasing the bandwidth
utilization of the communication channel, since headers are no longer transmitted. The
data meaning is defined either by configuration or by classical Modbus commands in
system initialization. Based on ModbusE, data acquisition systems can be developed as
modules for digital inputs/outputs and analog inputs such as voltage, current, and analog
outputs. These modules are supervised by BSG, which has a defined acquisition cycle.
Thus, a time stamp can be added corresponding to the acquisition time of the modules or
the time when the data are read from the BSG. These modules, together with the BSG, can
be used in any industry sector or BIoT where monitoring of data from different sensors
is required. Connection of the BSG to a PC or other industrial computer is made by the
Modbus TCP/IP protocol.

As future research directions, an improved algorithm for the myTaskServerMBECycle
task will be developed. For this algorithm, the synchronization between these two tasks
may entail the use of mutexes that can lead to task switching and priority inversions that
extend the execution time of operations on the transmit/receive buffers. As a result, per
total receive/transmit communication operations and processing of received or transmit
information, the algorithm is likely to become shorter and more reliable. So, in what follows,
a comparison of the advantages and disadvantages of each algorithm will be made.
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6. Patents

The smart switch embedded system device including the Modbus Extension server
is based on the patent application (OSIM CBI A/00224, 2023) filed by the authors for
BIoT systems.
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