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Abstract: As mobile devices have become a central part of our daily lives, they are also becoming
increasingly important in research. In the medical context, for example, smartphones are used to
collect ecologically valid and longitudinal data using Ecological Momentary Assessment (EMA),
which is mostly implemented through questionnaires delivered via smart notifications. This type of
data collection is intended to capture a patient’s condition on a moment-to-moment and longer-term
basis. To collect more objective and contextual data and to understand patients even better, researchers
can not only use patients’ input via EMA, but also use sensors as part of the Mobile Crowdsensing
(MCS) approach. In this paper, we examine how researchers have embraced the topic of MCS in the
context of EMA through a systematic literature review. This PRISMA-guided review is based on the
databases PubMed, Web of Science, and EBSCOhost. It is shown through the results that both EMA
research in general and the use of sensors in EMA research are steadily increasing. In addition, most
of the studies reviewed used mobile apps to deliver EMA to participants, used a fixed-time prompting
strategy, and used signal-contingent or interval-contingent self-assessment as sampling/assessment
strategies. The most commonly used sensors in EMA studies are the accelerometer and GPS. In most
studies, these sensors are used for simple data collection, but sensor data are also commonly used
to verify study participant responses and, less commonly, to trigger EMA prompts. Security and
privacy aspects are addressed in only a subset of mHealth EMA publications. Moreover, we found
that EMA adherence was negatively correlated with the total number of prompts and was higher in
studies using a microinteraction-based EMA (µEMA) approach as well as in studies utilizing sensors.
Overall, we envision that the potential of the technological capabilities of smartphones and sensors
could be better exploited in future, more automated approaches.

Keywords: ecological momentary assessment; mobile crowdsensing; health data acquisition; mobile
health; context awareness

1. Introduction

Studies in medicine and psychology are making increasing use of implementing the
Daily Life Research [1] paradigm. The idea is to collect data in everyday life, which often
reflects circumstances much more faithfully than when collected in environments that
are more artificial, such as the clinic or a controlled study environment. In detail, data
from everyday life have many advantages, such as that they are collected in real time and
participants do not have to think back and can collect data directly at the place where
the phenomenon occurred [1]. This mitigates many types of bias, such as recall bias,
but also increases others, as these measurements are obtained in uncontrolled environ-
ments. To bring Daily Life Research into practice, there are many possibilities from different
disciplines—unfortunately, these are so far without standards or broadly known and used
guidelines. However, two concepts are often brought into use, Ecological Momentary As-
sessment (EMA) and Mobile Crowdsensing (MCS). In the medical context, many published
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solutions use one of these two strategies, although they are often not explicitly categorized
as such. When used in combination, EMA and MCS can significantly increase the potential
for Daily Life Research by capturing both subjective and objective, ecologically valid, longi-
tudinal data, as well as the context in which these data are collected [2]. Unfortunately, this
combination is still exploited too rarely, and when it is, it is often used in an unstructured
and non-standardized way, particularly from a technological perspective. For this reason,
we reviewed the literature on EMA in the context of mHealth studies.

The main objective of this review was to investigate the use of MCS in mHealth
EMA studies. A particular focus was placed on EMA and MCS strategies, sensor usage,
and adherence rates in these studies. The criteria we applied to the publications included
can be roughly divided into four categories. First, criteria intended to provide a general
overview, such as clusters of topics for which EMA and MCS were used, the EMA/MCS use
over time, and general descriptive statistics on the publications analyzed. The second major
category relates to EMA and MCS strategies, such as assessment, sampling, prompting,
and transmission strategies. The third category of criteria addresses which sensors are used
in EMA-MCS studies and how these sensors are used. Fourth, we conducted a meta-analysis
to determine whether there are any study conditions and EMA characteristics that influence
EMA study adherence. In this context, adherence rates were hypothesized to be influenced
by the incorporation of feedback, guidance, monetary compensation, the use of user-owned
smartphones, the prompting strategy used, the number of prompts per day, the study
duration, the total number of prompts, the number of questions per prompt, and the total
number of questions. Our investigations of the literature follow the PRISMA guidelines [3]
and are based on the academic databases PubMed, Web of Science, and EBSCOhost.

In this paper, we present details of the search and analysis conducted and discuss
major aspects of the results found. This article is structured as follows: Section 2 discusses
relevant background information on EMA and MCS, whereas Section 3 discusses related
work in this context. Section 4 presents the materials and methods used for the review
and analysis. In Section 5, we present the results, while in Section 6 these results and their
implications are discussed. Section 7 summarizes the article and provides an outlook on
topics that should be investigated further.

2. Background

EMA is an approach, originating in behavioral medicine, to assess the current behavior
and experiences of a patient or subject in the context in which it occurs. By applying
the methods of EMA, researchers and healthcare providers can gain insights through
more direct and timely information collected in the natural environment of the patient
or subject [4]. An EMA study design typically involves the subject completing reports
several times a day over a period of several days or weeks. According to Smyth and
Stone [4], the signal for the subject to begin filling out reports is (1) sent at a frequency
most appropriate for the study design and (2) typically sent via an electronic device (e.g.,
smartphone). The content of the report may focus on experiences that are imminent (e.g.,
what is the current status) or further in the past and require the subject’s recollection (e.g.,
the time since the last report). Questions may then address affective, cognitive, health,
or behavioral aspects of the subject’s experience [4]. In this way, EMA aims to minimize
recall bias, maximize ecological validity, and provide detailed insight into influences on
behavior in a natural setting. The combination of EMA and MCS offers advantages beyond
the realm of public health and psychology, and can be used not only to collect data that
originate from EMA participants, but also to provide (environmental) context through the
use of sensors in MCS devices [5–7]. While the EMA methods offer advantages in their
application, they also have their limitations. Moskowitz and Young [8] note that completing
reports as part of EMA may take more time from subjects than meeting with a healthcare
professional at regular intervals. In addition, the reports completed by subjects are difficult
to verify independently because the data were collected without supervision by a health
professional or external control [8].
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The term MCS refers to a sufficiently large population or crowd of people contributing
data to achieve a common goal, i.e., a phenomenon of common interest [9]. Note that, in the
context of mHealth, we consider the potential insights gained from both personal and
community sensing data as phenomena of common interest [2]. According to Guo et al. [6],
this goal is achieved by using mobile devices as a source for data collection and sharing
these data with other devices within the crowd. Mobile devices that can be used for MCS
are ubiquitous in our daily lives and include smartphones and wearable devices. These
devices are usually equipped with sensors (e.g., GPS, accelerometer) that can be used as
part of the MCS system [6]. MCS systems rely on active user participation for certain use
cases to make data available. The involvement is also one aspect that can be used for
classification [9]: in (1) participatory crowdsensing [10], the user is actively participating and
contributing to the data collection process, whereas in (2) opportunistic crowdsensing [11,12],
the data sensing, collection, and transmission are happening automatically without any
active user participation. Therefore, the user might not be aware of their involvement in
the crowdsensing process.

However, the combination of both concepts can be challenging, not only in their
technical implementation, but also in their legal implications [2]. Several aspects need to be
considered when designing the architecture of an EMA-MCS system. These range from
decisions about data collection to the processing of the collected data in a central entity
(e.g., a cloud environment). We will not address these aspects within the scope of this
work. For a detailed overview, please refer to Capponi et al. [7]. Relevant for the context
of this work is the combination of specific strategies as presented by Reuschenbach and
Funke [13]. The authors propose a scheme that can be used to classify different studies
based on the used assessment and sampling strategies. These sampling strategies include
the following. (1) Interval-contingent: the measurement takes place at specific intervals (e.g.,
every hour or every day at the same time). (2) Signal-contingent: the measurement starts
with a signal that is sent (e.g., an app notification). (3) Event-contingent: the starting point
for recording a measurement is dependent on the occurrence of an event (e.g., an asthma
attack). (4) Context-sensitive: the measurement is triggered by a specific external context
(e.g., at a specific location). (5) Continuous: the measurement takes place continuously.
Assessment strategies, in turn, include the following. (A) Self-assessment: this participatory
assessment strategy refers to the participants performing the measurement themselves.
(B) Surveillance: an external party (e.g., healthcare provider) conducts the assessment and
collects the measurement. (C) Automated: a technical device (e.g., a smartphone) is used to
automatically collect the measurement.

3. Related Work

Related work that also uses the PRISMA guidelines includes the following: De
Vries et al. [14] conducted a systematic literature review on well-being. The authors
note that the use of smartphones is feasible in the context of an EMA study. The paper also
notes that finding relevant literature is a problem because the topic area is relatively new.
Dao et al. [15] investigated the use of EMA in the context of health and well-being. The au-
thors conclude that the use of EMA can help promote behavior change. They suggest the
use of sensors to optimize data collection while minimizing participant burden. The review
of Zapata-Lamana et al. [16] focused on physical activity. The review process also focused
on the use of sensors in combination with EMA and their use in the context of physical
activity. There are other reviews with similar structures for various other research areas.

There are also recent PRISMA-based reviews in the literature that focus on EMA as a
general research method across application areas and also specifically on the study of adher-
ence. Vachon et al. [17] examined studies investigating severe mental disorders. The authors
included 79 studies and extracted their adherence and retention rates, as well as a set of
study characteristics, to examine the relationship between these variables. The results
suggest that adherence and retention rates are lower for studies with a higher proportion
of male participants and for participants diagnosed with a psychotic disorder. Conversely,
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adherence rates were found to be positively related to the use of a fixed sampling strategy,
higher incentives, greater time intervals between consecutive assessments, and fewer assess-
ments per day. Similar to the work at hand, a meta-analysis by Wrzus et al. [18] analyzed
477 EMA publications in various fields of psychology and related disciplines to examine
how study designs and samples predict study adherence and dropout. The authors re-
ported descriptive statistics on study and sample characteristics across the studies reviewed,
including sampling strategies and various incentives. In addition, they found that adher-
ence was significantly higher in studies that offered financial incentives, whereas study
design or sample characteristics otherwise had little effect on adherence or dropout rates.

In general, we found that EMA research papers tend to cover specific diseases or topics
and review the literature for that specific area. In addition, while the reviews by Vachon et al.
and Wrzus et al. are structured similarly as the present work, they only include literature
from quite narrow research fields (i.e., severe mental disorders) or academic databases
(i.e., EBSCOhost). Moreover, the use of sensors in EMA studies is less well researched.
Overall, we are not aware of any work that conducts a comprehensive, cross-disciplinary
literature review, as this work does, that also focuses specifically on the use of sensors in
EMA studies.

Previous works by the authors [2,19], but not in the context of a literature review, have
investigated how EMA and MCS can be combined from the conceptual and architectural
side. Another work that should be considered is the WHO’s mERA checklist [20], which
provides specifications so that mHealth applications become more standardized. However,
it does not directly address survey strategies such as EMA or MCS. On a more general note,
there is unfortunately still too little interdisciplinary research into how the individual data
collection strategies and concepts such as EMA or MCS can be combined to produce even
better study results. Therefore, this work shall make further contribution in this context.

4. Materials and Methods

To produce results that are transparent, traceable, and reproducible by other re-
searchers, we established a review protocol guided by the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement. PRISMA is a collection of items
designed to promote a systematic approach for systematic reviews and meta-analyses [3].
We used the PRISMA-P extension, which is intended to be used for developing and creating
protocols for systematic reviews [21].

4.1. Eligibility Criteria

The eligibility criteria that were used to select the literature to address these objectives
are outlined in the following. First, the inclusion criteria (IC) were as follows:

IC1 The study uses an EMA approach.
IC2 The study utilizes MCS in combination with an EMA approach.
IC3 The type of the specific publication is primary research.

On the other hand, the exclusion criteria (EC) were as follows:

EC1 The study presents no clear EMA approach.
EC2 The quality of the paper is insufficient (e.g., unclear specification of population, treat-

ment, or treatment effect).
EC3 The language of the publication is not English.
EC4 The type of publication is a review, systematic review, meta-analysis, meeting abstract,

note, or is not peer-reviewed.

4.2. Information Sources

The primary information sources we used were databases containing research literature
in the field of healthcare. For this purpose, we focused our search on the following three
databases: PubMed, Web of Science, and PsycINFO via EBSCOhost Research Databases.
These databases provided sufficient coverage in our research area [22]. Google Scholar was
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not added because the focus was on the medical study context and not on the technical
operationalization of EMA and MCS.

4.3. Search Strategy

For the search strategy, we took into account that each database uses its own language
for search queries. Based on the primary search terms, we also included related terms
used in that research area. For example, one of our primary search terms was “Ecological
Momentary Assessment” and a related term we used was “Electronic Diary”. Based on this
approach, we issued search queries on 13 July 2022 that were adapted to the requirements of
the three databases PubMed (see Listing 1), Web of Science (see Listing 2), and EBSCOhost
(see Listing 3).

Listing 1. Search query for the PubMed database.

( (Ecological Momentary Assessment[Title/Abstract ]) OR (
Ecological momentary intervention[Title/Abstract ]) OR (
experience sampling method[Title/Abstract ]) OR (diary
assessment[Title/Abstract ]) OR (electronic diary[Title/
Abstract ]) OR (Ambulatory Assessment[Title/Abstract ]) OR
(Electronic Interview[Title/Abstract ]) OR (Real Time
Assessment[Title/Abstract ]) )

AND
( smartphone[Title/Abstract] OR mobile[Title/Abstract] OR

crowdsensing[Title/Abstract] OR MCS[Title/Abstract] OR
sensor[Title/Abstract] OR sensing[Title/Abstract] )

Listing 2. Search query for the Web of Science database.

AB = ( "Ecological Momentary Assessment" OR "Ecological
momentary intervention" OR "Experience sampling method"
OR "Diary Assessment" OR "electronic diary" OR "
Ambulatory Assessment" OR "Electronic Interview" OR "Real
Time Assessment")

AND
AB = ( smartphone OR mobile OR crowdsensing OR MCS OR sensor

OR sensing )

Listing 3. Search query for the EBSCOhost research database.

( (AB Ecological Momentary Assessment) OR (AB Ecological
momentary intervention) OR (AB experience sampling method
) OR (AB diary assessment) OR (AB electronic diary) OR (
AB Ambulatory Assessment) OR (AB Electronic Interview) OR
(AB Real Time Assessment) )

AND
( AB smartphone OR AB mobile OR AB crowdsensing OR AB MCS OR

AB sensor OR AB sensing )

4.4. Study Records

In terms of data management, we used the Rayyan (2022) platform (https://www.
rayyan.ai/, accessed on 31 January 2023) for duplicate filtering and assisting the review
process. Rayyan records which publications were excluded from the further review process,
along with a reason for the exclusion of any single publication. After we removed duplicates
from our literature list, we conducted the screening of the remaining literature. For the
selection process, in the first round of screening, we decided whether to include or exclude

https://www.rayyan.ai/
https://www.rayyan.ai/
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the records for further processing based on the title, abstract, and research area of each
publication. Second, we sought to retrieve the remaining records and excluded records that
could not be retrieved. Third, in the second round of screening, the titles and abstracts of
the remaining publications were screened in more detail, and publications were included
or excluded based on the eligibility criteria defined. In the cases where we excluded an
entry, we provided a short reasoning (e.g., wrong research field, no EMA was conducted).
To make this process transparent, we used a flowchart based on the template provided by
PRISMA for visualization (see Figure 1). For the data collection process, we extracted the
information from the full texts of the included papers into a spreadsheet.

Identification of studies via databases and registers

Records screened
(n = 1944)

Records excluded
(n = 445)

Records removed before
screening:

Duplicate records removed (n = 1527)

Reports sought for retrieval
(n = 1499)

Records excluded:
(n = 564)

Study design (n = 347)
Publication type (n = 215)
Language of Publication (n = 2)

Studies included in review
(n = 796)

Sc
re

en
in

g
In

cl
ud

ed

Records identified
from Databases (n = 3471):

PubMed (n = 1126)
Web of Science (n = 1621)
PsycInfo (n = 724)Id

en
tif

ic
at

io
n

Records assessed for eligibility
(n = 1360)

Reports not retrieved
(n = 139)

Figure 1. PRISMA 2020 [3] flow diagram of the publication selection and screening process.

To minimize errors and reduce introduction of potential biases by data extractors [23],
two independent reviewers from complementary disciplines (i.e., computer science and
psychology) extracted the data from the eligible reports. In this process, the first reviewer
collected all data, and the second reviewer confirmed and potentially corrected the infor-
mation through random sampling of the reports in the spreadsheet (i.e., every 25th record
in a list ordered by the authors). Any discrepancies were resolved through discussion with
the authors, who then reviewed the corresponding reports in order to decide on the further
action to be taken and any necessary adjustments to the extraction process. In addition,
suspicious values and outliers detected during the analysis were double-checked and
systematically corrected by a third reviewer from the authors. The data extraction form
was structured as outlined in the following subsections.
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4.4.1. General Characteristics

We assigned each publication analyzed to an overarching research topic and grouped
the publications based on these topics. Furthermore, we extracted title, keywords, and the
year of publication. In addition, the number of participants, their gender, and their age
were recorded.

4.4.2. Quality

Although we did not directly assess the quality of the literature reviewed, we examined
the literature with respect to statements about a risk of bias. In the analysis, we assessed
the proportion of studies that take into account such a risk of bias. Also of interest was
what type of bias was taken into account by the authors. A publication was considered to
take into account a specific risk of bias if that risk was mentioned at least once in the report.

Similar to the review of risk of bias, we also assessed whether the authors of the
reviewed literature take into account safety and privacy issues for the EMA study design.
Given the use of sensors for data collection, this may impact participant trust. A publication
was considered to take into account security or privacy if it was mentioned at least once in
the report.

4.4.3. EMA Characteristics

One major aspect that can be influenced by a suitable EMA study is the adherence
of individual participants to follow the study design. We therefore collected the relative
number of prompts answered by participants for each publication. As one aspect expected
to affect adherence [18], it was recorded whether feedback was provided to participants.
The feedback can thereby be provided either manually (e.g., by a healthcare provider) or
automatically by the system. In the same context, it was recorded whether participants re-
ceived guidance by a healthcare provider during data collection. Another aspect associated
with higher adherence rates in the literature is the provision of monetary compensation to
participants [17,18]. Thus, we recorded whether or not such compensation was provided.
In addition, it was recorded whether participants were provided with a smartphone by
the investigators to complete the EMA prompts or were instructed to use their own (i.e.,
user-owned) smartphone. Adherence was assumed to increase when participants were
allowed to use their own smartphone and therefore only had to carry a single device.

In Section 2, we defined archetypes based on the sampling strategy (e.g., event-
contingent) and the concrete assessment procedure (e.g., self-assessment). Based on this
information, we extracted the primary EMA/MCS strategies. With respect to the prompting
strategy and EMA transmission, EMA surveys can be communicated to participants in a
variety of ways. We extracted information about whether a fixed-time, random, or semi-
random prompting strategy was used and whether a smartphone application, text message,
or website was used as communication channel. In addition, information on EMA study
design characteristics was extracted, such as the number of EMA prompts per day, the num-
ber of total days of study duration, and the number of questions per EMA prompt. In this
process, we explicitly labeled studies that used only a single question per prompt, which
are referred to as microinteraction-based Ecological Momentary Assessments (micro-EMAs or
µEMAs) [24].

4.4.4. Sensor Usage

In reviewing the literature, we distinguished between publications that use EMA only
and publications that additionally use sensors. In addition, we obtained information on
which sensors were used in the EMA study. Here, we extracted which sensors are used in
these EMA studies. Because we analyzed which sensors were used in the EMA studies,
we were also interested in the use of these sensors. In this process, we extracted whether
the sensors were reported in the study report, were used as triggers for an EMA survey,
or were used to verify the responses of the EMA study participants.
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4.5. Data Analysis

All data were analyzed using Python 3.9.12, with libraries pandas 1.4.2, NumPy 1.21.5,
SciPy 1.7.3, statsmodels 0.13.2, and pingouin 0.5.2. The libraries Matplotlib 3.5.1 and seaborn
0.11.2 were used for data visualizations.

With respect to descriptive statistics, for categorical variables, counts and propor-
tions in relation to the total sample size (i.e., percentages) were determined. For contin-
uous variables, means, standard deviations (SDs), medians, minimums, and maximums
were calculated.

To analyze the distribution of different combinations of EMA and MCS strategies,
contingency tables of counts and percentages were created for both the entire dataset and
separately for publications without sensor usage (EMA only) and publications with sensor
usage (EMA and MCS). Multiple χ2 tests were used to examine differences between “EMA
only” and “EMA and MCS” studies with respect to the distributions of assessment types,
sampling strategies, prompting strategies, and EMA transmission.

Regarding sensor usage, the number of publications in which each sensor was used and
the distribution of this usage were calculated. In addition, the distribution of publications
using sensor values as data points (i.e., reported the sensor data), for verification, and as a
trigger was determined.

In terms of adherence to the study design, we analyzed the publications in two
parts. First, we examined the dataset using hypotheses based on the EMA literature
and general assumptions about EMA studies. Second, we conducted an exploratory
analysis to determine whether there are other study conditions that influence adherence.
Regarding the latter, we investigated the influence of the sampling strategy used, the EMA
transmission channel, the use of sensors in the study design, and the use of a µEMA
approach. The hypotheses for the hypotheses-based part are described in the following:

Hypothesis 1 (H1). Studies that incorporate feedback achieve higher adherence than studies that
do not.

Hypothesis 2 (H2). Studies that incorporate guidance by a healthcare provider achieve higher
adherence than studies that do not.

Hypothesis 3 (H3). Studies that provide a monetary compensation achieve higher adherence than
studies that do not [17,18].

Hypothesis 4 (H4). Studies that let participants use their own smartphone (i.e., user-owned)
to contribute data achieve higher adherence than studies in which a provided smartphone has to
be used.

Hypothesis 5 (H5). Studies that incorporate a fixed prompting strategy achieve higher adherence
than studies that use a random or semi-random sampling strategy [17].

Hypothesis 6 (H6). The adherence rate decreases with an increasing number of EMA prompts per
day [17,18].

Hypothesis 7 (H7). The adherence rate decreases with an increasing study duration.

Hypothesis 8 (H8). Combining H6 and H7, the adherence rate decreases with an increasing total
number of prompts (prompts per day × study duration).

Hypothesis 9 (H9). The adherence rate decreases with an increasing number of questions per
EMA prompt.

Hypothesis 10 (H10). Combining H8 and H9, the adherence rate decreases with an increasing
total number of questions (total number of prompts × number of questions per EMA prompt).
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In this process, for categorical variables, a one-way ANOVA was performed, using
Tukey’s HSD test as a post hoc test. For continuous variables, a Pearson correlation coefficient
was computed. Due to the exploratory nature of this analysis, both raw p-values and
corrected p-values according to the method of Benjamini and Hochberg [25] are reported.

5. Results

The publication selection and screening process is illustrated in Figure 1. The database
search returned a total of 3471 publications. After removing all duplicate results (n = 1527),
1944 records remained. The titles and abstracts of these publications were then initially
screened, excluding 445 papers from research areas that did not meet our inclusion criteria
(e.g., physics). Of the remaining 1499 records, 139 additional records had to be excluded
that could not be retrieved (e.g., because they were locked behind a paywall or not yet
published). In the second round of screening, the titles and abstracts of the remaining
1360 records were then assessed for eligibility and 564 records were excluded based on the
defined inclusion and exclusion criteria. In this process, 347 publications were excluded
due to study design (e.g., no EMA approach), 215 due to publication type (e.g., review),
and 2 based on the publication language. This process resulted in 796 publication full texts
included for the analysis at hand. The complete list of references included can be found in
the Supplementary Materials.

5.1. Research Topics and EMA Use over Time

The predominant research topics among the 796 publications analyzed are shown in
Figure 2. Other more frequently investigated research topics include emotions, anxiety,
cognition, and HIV. Furthermore, COVID-19 emerged as a topic in EMA mHealth research
from 2020. In addition to examining the research topics, we also examined the distribution
of EMA use over time (see Figure 3). With the exception of 2019, an overall upward trend
in the number of EMA studies can be observed. The number of EMA studies that include
EMA only is generally higher than the number of studies that use both EMA and MCS.
However, our results show that over time, an increasing number of studies tend to include
sensor data in EMA research.
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Figure 2. Top 10 research topics in the EMA publications analyzed (n = 796).
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Figure 3. Number of EMA publications utilizing mobile (crowd) sensing published per year between
2005 and 2022. Year 2022 is displayed grayed out, as it was not yet completed. The dark green
bar represents the number of EMA studies that relied solely on EMA without any sensor usage.
The orange bar represents the number of EMA studies that additionally collected sensor readings as
data from MCS devices (n = 796).

5.2. Descriptive Statistics

In the following, more detailed results are presented alongside the aspects presented
in Section 4 (see Table 1). The total number of participants combined across all included
studies is 2,911,429, with an average of 6221 participants (SD = 131,400.1) per study (61.0%
female, 38.7% male). The median number of participants is 61, with a lower quartile (Q1) of
29 participants and an upper quartile (Q3) of 121.25 participants per study. Note that one of
the studies reported a particularly large number of 2,842,732 participants [26], which skews
the mean and SD because this number is so far from the median. The mean age across all
studies was 35.7 years (SD = 16.4).

We further examined to what extent any risk of bias was considered by the authors.
Of all studies reviewed, more than half, 55.8%, considered any form of risk of bias in the
course of the individual EMA study and mentioned these risks in the report. Recall bias
was mentioned most frequently, in 45.1% of the cases. Selection bias was considered in
13.9% of the literature reviewed and reporting bias was mentioned in 5.0% of the cases. In
the literature, we found that only 17.3% of all studies considered security aspects in their
study design. Slightly fewer studies considered privacy aspects (16.8%). Because MCS
sensors can have privacy implications and EMA participants may disclose intrusive private
information, it may be important to ensure that this information remains secure and private,
as it is possibly a critical factor in motivating potential participants to participate in a study.

With respect to EMA characteristics, sensors were used in a in total of 23.2% of the
publications analyzed. Sensor usage is examined in more detail in Section 5.4. The mean
adherence rate across all studies examined is 72.0% (SD = 17.0%). Adherence in relation to
various EMA characteristics is examined in more detail in Section 5.5. A total of 123 (15.5%)
studies provided feedback to their participants as part of the EMA approach. Thereby,
automated feedback was used considerably more frequently (12.4%), in contrast to manual
feedback (3.0%). Most of the studies analyzed (84.0%) were unguided, with only 122
(15.3%) of the studies providing guidance by a healthcare provided during data collection
for participants. Monetary compensation was provided to participants in 54.5% of the
studies in the publications analyzed. In 69.5% of the studies, participants were instructed
to use their own (i.e., user-owned) smartphone, whereas in 28.6% of the studies, participants
were provided with a smartphone by the investigators to complete the EMA prompts.
The mean number of EMA prompts presented to participants across all studies was 5.0
(SD = 4.8), with a mean study duration of 27.3 (SD = 50.6) days and a mean number of
9.8 (SD = 8.7) questions per prompt. In 12 (1.5%) studies of the publications analyzed,
a micro-EMA (µEMA) approach with only a single question was used.
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Table 1. Descriptive statistics of publications analyzed (n = 796).

Category Characteristic Value

General

Number of participants
Total 2,911,429 (100%)

Mean (SD) 6221.0 (131,400.1)
Median [Min, Max] 61.0 [2, 2,842,732]

Gender
Female 1,775,054 (61.0%)
Male 1,127,585 (38.7%)

(Missing) 8790 (0.3%)

Age Mean age (SD) 35.7 (16.4)

Quality

Risk of bias considered

Total 444 (55.8%)
Recall bias 359 (45.1%)

Selection bias 111 (13.9%)
Reporting bias 40 (5.0%)

Security and Privacy Security considered 138 (17.3%)
Privacy considered 134 (16.8%)

EMA characteristics

Sensor usage No sensors used 611 (76.8%)
Sensors used 185 (23.2%)

Adherence Mean adherence rate (SD) 72.0 (17.0%)

Feedback
Total 123 (15.5%)

Automated 99 (12.4%)
Manual 24 (3.0%)

Guidance
Guided 122 (15.3%)

Unguided 669 (84.0%)
(Missing) 5 (0.6%)

Monetary compensation Provided 434 (54.5%)

Smartphone
User-owned 553 (69.5%)

Provided 228 (28.6%)
(Missing/No smartphone) 15 (1.9%)

Prompts per day Mean (SD) 5.0 (4.8)
Median [Min; Max] 4.0 [0.1; 72.0]

Days of study duration Mean (SD) 27.3 (50.6)
Median [Min; Max] 14.0 [0.5; 435.0]

Number of questions per prompt
Mean (SD) 9.8 (8.7)

Median [Min; Max] 7.0 [1.0; 56.0]
Micro-EMA (µEMA) 12 (1.5%)

5.3. EMA and MCS Strategies

Regarding the different strategies used for assessment, sampling, and prompting
in EMA and MCS studies, we found the results shown in Tables 2–5. We first focus on
the participatory assessment strategy in self-assessments, which are used in 81.4% of the
studies, as shown in Table 2. In this category, we observed this assessment strategy most
frequently combined with the signal-contingent sampling strategy in 47.1%. This is fol-
lowed by the combination with the interval-contingent sampling strategy in 25.6% of the
reviewed cases. The event-contingent sampling strategy is used only in 8.7%. The remain-
ing sampling strategies were not used in combination with participatory self-assessment.
For the surveillance assessment strategy, there are two options for creating an EMA design.
In the literature evaluated, where the surveillance strategy was selected, four studies (0.5%)
combined it with event-contingent sampling. The signal, interval, and continuous sampling
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strategies were combined with the surveillance strategy each in one (0.1%) of all cases
examined. The context-sensitive sampling strategy was not used in combination with the
surveillance strategy. Finally, we examined combinations with the automated opportunistic
assessment strategy, which was used in 17.7% of the cases. In the entire group of litera-
ture reviewed, the signal-contingent sampling strategy was used in 8.5% of automated
assessments. This is followed by the interval-contingent sampling strategy in 7.8% of the
cases. The event-contingent sampling strategy was used in 1.3% of all cases studied and
the context-sensitive sampling strategy in 0.1%. The continuous sampling strategy was not
used in combination with the automatic opportunistic assessment strategy.

Table 2. Combinations of primary assessment types and sampling strategies for all analyzed publica-
tions (n = 796).

Assessment Self-Assessment Surveillance Automated All

Sampling

Interval 204 (25.6%) 1 (0.1%) 62 (7.8%) 267 (33.5%)
Signal 375 (47.1%) 1 (0.1%) 68 (8.5%) 444 (55.8%)
Event 69 (8.7%) 4 (0.5%) 10 (1.3%) 83 (10.4%)

Context 0 0 1 (0.1%) 1 (0.1%)
Continuous 0 1 (0.1%) 0 1 (0.1%)

All 648 (81.4%) 7 (0.9%) 141 (17.7%) 796 (100%)

When only considering the EMA publications utilizing MCS (see Table 3), it can
be seen that the automated assessment type is the most frequently used primary type
with 138 (74.6%) publications. Interestingly, these 138 publications constitute 97.9% of the
141 publications with the automated assessment type in the overall dataset. Conversely,
self-assessment is used in only 22.2% and surveillance assessment in only 3.2% of the
studies analyzed. When comparing EMA publications with sensor usage with publications
without sensor usage (see Table 4), a χ2 test confirmed that the distribution of assessment
types is significantly different (χ2 = 559.5, p < 0.001). With respect to sampling strategies,
generally the distribution is similar to that in the overall dataset. However, the interval-
contingent sampling strategy is used about 5% more and the signal-contingent strategy
about as much less than in the overall dataset. When comparing EMA publications with
sensor usage with publications without sensor usage (see Table 4), a χ2 test confirmed that
the distribution of sampling strategies is significantly different (χ2 = 10.4, p = 0.035).

Table 3. Combinations of primary assessment types and sampling strategies for EMA publications
utilizing MCS (n = 185).

Assessment Self-Assessment Surveillance Automated All

Sampling

Interval 10 (5.4%) 1 (0.5%) 60 (32.4%) 71 (38.4%)
Signal 24 (13.0%) 0 67 (36.2%) 91 (49.2%)
Event 7 (3.8%) 4 (2.2%) 10 (5.4%) 21 (11.4%)

Context 0 0 1 (0.5%) 1 (0.5%)
Continuous 0 1 (0.5%) 0 1 (0.5%)

All 41 (22.2%) 6 (3.2%) 138 (74.6%) 185 (100%)
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Table 4. Primary assessment types and sampling strategies in a comparison between EMA publica-
tions without (EMA only) and publications with (EMA and MCS) sensor usage (n = 796).

Characteristic All (n = 796) EMA Only
(n = 611)

EMA and
MCS

(n = 185)

Test Statistic
(DoF) p-Value

Assessment
types χ2 = 559.5(2) <0.001

Self-
assessment 648 (81.4%) 607 (99.3%) 41 (22.2%)

Surveillance 7 (0.9%) 1 (0.2%) 6 (3.2%)
Automated 141 (17.7%) 3 (0.5%) 138 (74.6%)

Sampling
strategy χ2 = 10.4(4) 0.035

Interval 267 (33.5%) 196 (32.1%) 71 (38.4%)
Signal 444 (55.8%) 353 (57.8%) 91 (49.2%)
Event 83 (10.4%) 62 (10.1%) 21 (11.4%)

Context 1 (0.1%) 0 (0.0%) 1 (0.5%)
Continuous 1 (0.1%) 0 (0.0%) 1 (0.5%)

Regarding the prompting strategy, as shown in Table 5, most prompts were delivered
using fixed-time notifications (39.9%), followed by random (30.5%) and semi-random noti-
fications (27.1%). When comparing EMA publications with sensor usage with publications
without sensor usage, no significant differences in prompting strategies can be observed.
With respect to the transmission of EMA surveys to study participants, a smartphone appli-
cation was used in 88.1%, followed by short message service (SMS) as a communication
channel in 9.7% of the publications studied. The remaining studies used a website (0.9%) or
phone call (0.1%) to communicate with participants. Once again, no significant differences
in terms of the communication channel used to transmit EMA can be observed when
comparing EMA publications with sensor usage with publications without sensor usage.

Table 5. Prompting strategies and EMA transmission in a comparison between EMA publications
without (EMA only) and publications with (EMA and MCS) sensor usage (n = 796).

Characteristic All (n = 796) EMA Only
(n = 611)

EMA and
MCS

(n = 185)

Test Statistic
(DoF) p-Value

Prompting
strategy χ2 = 5.5(2) 0.063

Fixed 318 (39.9%) 234 (39.5%) 84 (45.4%)
Random 243 (30.5%) 181 (30.6%) 62 (33.5%)

Semi-random 216 (27.1%) 177 (29.9%) 39 (21.1%)
(Missing) 19 (2.4%) 19 (3.1%) 0

EMA
transmission χ2 = 2.6(4) 0.620

App 701 (88.1%) 538 (88.1%) 163 (88.1%)
SMS 77 (9.7%) 62 (10.1%) 15 (8.1%)

Website 7 (0.9%) 4 (0.7%) 3 (1.6%)
Phone call 1 (0.1%) 1 (0.2%) 0
(Missing) 11 (1.4%) 7 (1.1%) 4 (2.2%)

Note that in one study, both app and SMS were used to transmit EMAs.

5.4. Sensor Usage

Overall, 185 (23.2%) of the publications analyzed used EMA with sensor readings (see
Table 1). For these EMA-MCS studies, we analyzed the distribution of sensors and the
use of these sensor data. First, the distribution of sensors predominantly used is shown in
Figure 4. The most commonly used sensor is the accelerometer in 108 (58.4%) individual
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studies. Next, the GPS sensor is used in 56 (30.3%) studies. This is followed in descending
number of articles of reviewed literature by the heart rate monitor and microphone, which
were used in 35 (18.9%) and 27 (14.6%) studies, respectively.
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Figure 4. Sensors used in EMA-MCS publications analyzed. Only the usage of each individual sensor
is displayed, regardless of whether it has been combined with another sensor (n = 185).

To better understand the role of sensors, we divided our analysis of sensor use in EMA
studies into three categories: The first category of EMA studies presents sensor data in
their study report and uses the data as data points alongside the EMA data. The next two
categories are (1) the sensor data are used as triggers (e.g., to transmit an EMA survey)
or (2) the sensor data are used to verify the answers participants provided in their EMA
surveys. Details about the distribution of categories are shown in Figure 5. We found that
170 (91.9%) of all EMA studies that incorporated a sensor into their study design reported
how the recorded sensor data were used. The remaining 15 (8.1%) of EMA-MCS studies
used sensor data as part of the study, but did not report any numbers in the study report or
indicate how the sensor data were further used. Of the EMA studies that provided details
on the use of sensor values, only 28 (15.1%) used sensor data as triggers. In contrast, 151
(81.6%) reported the recorded sensor data in the publication and 126 (68.1%) of studies that
utilized sensors, used these sensor readings to verify study participant responses.
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Figure 5. Use of sensors in EMA-MCS publications analyzed (n = 185).

5.5. Adherence

The adherence rate was available for 558 (70.1%) of the publications analyzed. The dis-
tribution of the adherence rates is shown in Figure 6. It can be seen that most studies
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reported an adherence rate between 64.0% (Q1) and 83.7% (Q3), with a median adherence
rate (Q2) of 75.0%. Only 61 (10.9%) of the publications reported adherence rates below 50%.

0 20 40 60 80 100
Adherence (%)

Figure 6. Violin plot of the distribution of adherence rates in the publications analyzed (n = 558).

Significant differences with respect to the total number of prompts (H8), studies with
sensor usage, and studies using a micro-EMA (µEMA) approach were found in the analysis
of adherence rates comparing the different study conditions. As shown in Table 6, in the
hypotheses-based part, neither feedback (H1), guidance (H2), monetary compensation (H3),
smartphone owned/provided (H4), prompting strategy (H5), prompts per day (H6), study
duration (H7), number of questions per prompt (H9), or total number of questions (H10)
had a significant effect on the adherence rate. However, the adherence rate was significantly
negatively correlated with the total number of prompts (r = −0.115, p = 0.009), confirming
our hypothesis H8.

In the exploratory part, the EMA transmission channel had no significant effect on
the adherence rate. The sampling strategy initially showed a small significant effect on
the adherence rate (F = 2.733, η2 = 0.01, p = 0.043). However, no significant pairwise
differences were found using Tukey’s HSD test. Importantly, significantly higher adherence
rates were observed for studies with sensor usage compared to EMA studies without
any sensors used (F = 4.046, η2 = 0.01, p = 0.045) and studies using a µEMA approach
(F = 4.019, η2 = 0.01, p = 0.045). The corresponding different distributions of adherence
rates are shown in Figure 7. Note that, when correcting for multiple comparisons using the
Benjamini–Hochberg method, none of the differences between study conditions remained
significant. For this reason, the results should be interpreted with appropriate caution.
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Figure 7. Adherence rate distributes compared between (a) publications without and with sensor
usage and (b) publications with a conventional EMA approach and a micro-EMA approach.
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Table 6. Mean adherence rate compared between different study conditions (n = 558).

Characteristic Mean Adherence Rate (SD) Test Statistic (DF) p padjusted

Hypothesis-based part

Feedback F = 0.107 (1) 0.743 0.813
Yes 71.4% (17.9%)
No 72.1% (16.9%)

Guidance F = 0.274 (1) 0.601 0.813
Guided 71.1% (18.0%)

Unguided 72.1% (16.8%)

Monetary compensation F = 1.181 (1) 0.278 0.432
Yes 71.3% (17.8%)
No 72.9% (15.9%)

Smartphone F = 1.429 (1) 0.233 0.407
User-owned 71.4% (17.2%)

Provided 73.2% (16.8%)

Prompting strategy F = 0.281 (2) 0.755 0.813
Fixed 72.6% (17.9%)

Random 71.3% (17.2%)
Semi-random 71.6% (15.9%)

Prompts per day r = −0.016 (518) 0.712 0.813
2.0 (Q1) or less 71.8% (18.0%)

6.0 (Q3) or more 71.7% (16.6%)

Study duration (days) r = −0.074 (542) * 0.085 0.238
7 (Q1) or less 72.7% (17.8%)

28 (Q3) or more 71.4% (17.3%)

Total number of prompts r = −0.115 (511) *** 0.009 0.129
28 (Q1) or less 72.8% (18.1%)

90 (Q3) or more 70.0% (16.8%)

Number of questions per prompt r = 0.015 (123) 0.864 0.864
4 (Q1) or less 77.0% (13.1%)

13 (Q3) or more 73.8% (13.9%)

Total number of questions r = −0.134 (112) 0.155 0.310
180 (Q1) or less 77.6% (10.8%)

840 (Q3) or more 70.3% (16.2%)

Exploratory part

Sampling strategy F = 2.733 (3) ** 0.043 0.159
Interval 74.0% (16.1%)
Signal 71.0% (17.1%)
Event 70.3% (20.0%)

EMA transmission F = 1.772 (3) 0.151 0.310
App 72.0% (16.9%)
SMS 71.9% (17.1%)

Website 56.9% (23.7%)

Sensors usage F = 4.046 (1) ** 0.045 0.159
No sensors used 71.2% (17.0%)

Sensors used 74.7% (16.5%)

EMA approach F = 4.019 (1) ** 0.045 0.159
conventional EMA 71.8% (17.0%)

micro-EMA (µEMA) 82.1% (10.5%)

SD: standard deviation, DF: degrees of freedom, * p < 0.1, ** p < 0.05, *** p < 0.01, padjusted: p-values corrected
for multiple comparisons using the Benjamini–Hochberg method [25].
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6. Discussion
6.1. Research Topics and EMA/MCS Use over Time

We have revealed in our analysis that mHealth EMA research has mainly focused on
areas that are universally applicable (e.g., diet, stress management, and physical activity).
However, we also saw research in more pressing areas such as using EMA and MCS to
examine substance use (e.g., alcohol or drug addiction), depression, and anxiety.

In general, our analysis showed that the amount of mHealth EMA research is contin-
uously growing, while it also becomes evident that the combination of EMA with MCS
provides substance for further research enabling a variety of study designs. In Figure 3,
the graph drops around 2019. While the number of studies using only EMA with prompts
declined that year, the number of studies that also used MCS kept growing. The reason for
this sudden decline could be linked to global causes (e.g., the COVID-19 pandemic), but fur-
ther investigation would be necessary in order to investigate the cause of the decrease.

6.2. EMA and MCS Strategies

Mobile apps have become the predominant (88.1%) communication channel for trans-
mitting EMA to participants, both for conventional EMA studies and studies combining
EMA and MCS. It is therefore not surprising that researchers are increasingly taking advan-
tage of the additional capabilities of smart mobile devices (e.g., smartphones), including
advanced processing capabilities and built-in as well as locally connected sensors [2]. With
respect to the prompting strategy, fixed-time prompts are the the most prominent strategy.
This might be the case because this prompting strategy is associated with less disruption
and therefore higher adherence rates [17], as well as better technical stability and reliabil-
ity [2]. However, a fixed prompting strategy allows participants to integrate answering the
questionnaire into their daily routine, which could reduce ecological validity and increase
bias [2,17,27].

It has been shown that the primary assessment strategy in mHealth EMA studies in
general (81.4%) and particularly in conventional EMA research (99.3%) is self-assessment.
In contrast, for EMA studies utilizing MCS, the main primary assessment strategy is
automated assessment (74.6%). These more recent studies appear to make extensive use
of the technical capabilities of smart mobile devices, which have already been widely
used to transmit EMA. However, for both conventional EMA studies and EMA-MCS
studies, the predominant sampling strategies are signal-contingent (57.8% and 49.2%)
and interval-contingent (32.1% and 38.4%) sampling. We argue that the technological
capabilities of smart mobile devices enable the use of even more automated, event-based
and context-aware sampling and assessment strategies that are still rather rarely used.

6.3. Sensors, Security, and Privacy

Overall, one in five analyzed publications (23.2%) used EMA with sensor readings in
its study design. As shown in Figure 3, this number has continued to increase over the past
decade, indicating a further increase in the coming years and highlighting the importance
of this combination for future EMA research. This percentage is also higher than the 12%
found in the review by Wrzus et al. [18] in 2020. This trend of increasing sensor usage could
also be linked to the emergence of other related advances such as the Artificial Intelligence
of Things (AIoT), which combines the Internet of Things (IoT) with advanced Artificial
Intelligence (AI) technologies [28]. In healthcare, AIoT is considered to drive the paradigm
shift towards Healthcare 5.0 by leveraging the capabilities of smart sensors [29,30].

The most commonly used sensors in the identified EMA-MCS studies are sensors that
are frequently used for general activity recognition (e.g., accelerometer) and localization
(e.g., GPS). However, more directly health-related sensors such as heart rate, alcohol,
glucose, and body temperature monitors can be increasingly found in the literature.

In the context of EMA studies that utilized sensors, we revealed that 68.1% of studies
that applied sensors also used the data for verification of the EMA responses. In contrast,
we saw that only 15.1% of studies used sensors as triggers to automate EMA prompts in
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a context-aware manner. Research has already shown that with the help of three sensors
(accelerometer, light sensor, and phone usage/locked state), it is fairly accurate to assess
whether the participant is sleeping [31]. Further research in the use of a more intelligent
prompting with the help of machine learning algorithms can have positive effects on
adherence and engagement of participants by prompting in convenient moments [32].
Today’s sensors, especially wearable sensors, show good classification results of behavior
features. With the help of these sensors, it is fairly accurate to identify, among others,
stressful situations and sleep state [33].

While the use of sensors can provide benefits in research, additional factors need to
be considered. These factors include the consideration of security and privacy aspects
in the implementation and deployment of EMA studies and MCS devices/applications.
As mHealth involves the collection and processing of potentially highly sensitive health-
related and personal data, the protection of these data is of the utmost importance. Legal
regulations such as the General Data Protection Regulation (GDPR) in the EU and the
Health Insurance Portability and Accountability Act (HIPAA) in the USA even require this
protection by law. However, as we saw in our analysis, these aspects are currently not
always considered, as only about 17% of the publications analyzed stated any consideration
of these aspects. The lack of this consideration may also have an impact on the adherence
and dropout rates in EMA-MCS studies, since more extensive use of MCS technology
requires corresponding acceptance and trust of study participants [34]. These concerns
are appropriate under the circumstance that the accelerometer is already sufficient to infer
intimate information on well-being [35]. Interestingly, this is also the most commonly used
sensor in the studies examined. Approaches such as privacy-preserving computing [36]
should be utilized to minimize privacy threats and maximize participant trust in the context
of mHealth and eHealth in general [37].

Finally, 8.1% of the publications examined that utilized sensors did not provide any
information how these sensor data were further used. In general, the reporting on sensor
usage varied substantially across the publications analyzed. We propose that researchers
should follow and establish standardized protocols for reporting EMA-MCS studies, similar
to the WHO mERA checklist [20] or the CONSORT statement [38].

6.4. Adherence

The average adherence rate to the study protocol across all publications included in
this analysis was 72.0%. This number is comparable but slightly lower than that found
in the analyses by Vachon et al. (78.7% [17]) and Wrzus et al. (79.2% [18]). In addition,
the variation in the adherence rates observed was higher than in the review of Wrzus et al.
(SD: 17.0% vs. 13.6% [18]). It remains unclear whether this lower average value and higher
variation are due to the more recent literature, the larger number or broader scope of
publications included, the specific databases and search terms used, or other characteristics.

Contrary to our hypotheses H1–H7, H9, and H10, no significant differences in terms of
the adherence rate were observed for feedback, guidance, monetary compensation, smart-
phone owned/provided, prompting strategy, prompts per day, study duration, number of
questions per prompt, and total number of questions. This is partially in line with prior find-
ings of Wrzus et al. regarding feedback, guidance, and study duration [18], and with prior
findings of Vachon et al. regarding study duration and number of questions per prompt [17].
However, these analyses did observe effects for monetary compensation [17,18], prompting
strategy [17], and prompts per day [17,18] that could not be confirmed in the present study.
We were also unable to confirm the findings of van Berkel et al. [39], who found an effect
of the sampling strategy on adherence rates in a within-subjects study. In contrast, we
found a significant negative relationship between adherence rates and the total number of
scheduled prompts (H9). This is in contradiction to the results of Wrzus et al. [18]. Overall,
however, these studies agree that there appears to be some effect of the number of scheduled
prompts on adherence rates. The interaction between prompts per day and study duration
should be further investigated. In this context, special consideration should be given to an
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EMA approach coined by Intille et al., which is referred to as a microinteraction-based Eco-
logical Momentary Assessment (micro-EMA or µEMA) [24]. This approach reduces EMA to
quick, at-a-glance interactions with single questions that can be answered within seconds,
and can be implemented well with, for example, smartwatches [24]. The authors have
shown in comparative studies that significantly higher adherence rates can be achieved
with µEMA than with conventional EMA [24,40]. Although we observed only a relatively
small number of µEMA studies (1.5%), in our meta-analysis we found significantly higher
adherence rates in these studies compared to the remaining studies, confirming the findings
of Intille et al. Thus, even µEMA studies with up to 72 prompts per day [41] or 36 weeks
study duration [42] achieved high adherence rates of 74–97%. In consequence, µEMA may
be used to collect self-report measurements with high temporal density while reducing the
burden on participants [40].

Interestingly, we found significantly higher adherence rates for studies with sensor
usage compared to conventional EMA studies without any sensors used. Since this effect
is small, it may be purely a consequence of the predominantly more recent studies and
an overall more mature research field of EMA and its design (e.g., researchers have recog-
nized the importance of adherence, participant burden, and incentives) [43–45]. However,
the effect may also be explained by the participants’ preference for technologically more
advanced mHealth apps that use modern technologies such as sensors. Further research is
needed to investigate the underlying causes of this difference.

6.5. Limitations

The large number of studies included and the broad focus is both a strength and a
weakness of this systematic literature review. While we were able to gain a good overview
of the mHealth EMA research field and various aspects (e.g., sensors and adherence),
the sheer volume of publications leaves much room for error in the search and extraction
process. First, the selection of information sources and keywords in the search strategy has
a strong influence on the final dataset of included literature. Other databases and other
keywords could lead to a different set of publications, and consequently, different results.
Second, in the selection process, we included publications based on the titles and abstracts
of each record. Publications that did not include all information regarding our eligibility
criteria in their abstract may have been incorrectly excluded. Another limitation is that
some publications were not accessible and had to be excluded from further analysis. These
additional sources could have potentially provided further insights. Third, although we
have implemented procedures to minimize errors and reduce the introduction of potential
biases by data extractors (see Section 4.4), it still cannot be ruled out that some fields were
not correctly extracted from the publications. In addition, our review protocol allowed only
a single entry for some extracted fields, whereas a single study design, for example, may
use multiple sampling strategies (in these cases, we extracted only the primary strategy).

Moreover, we were still only be able to focus on very specific and narrow areas for
extraction and analysis. This type of review may provide useful insights, but may also
leave questions unanswered due to the broad focus (e.g., the specific usage of sensors in
each study or the interactions of specific study design characteristics on adherence). These
types of questions would require more detailed analyses and either an even larger body of
literature or a focus on a very specific subset of it.

7. Conclusions

In this work, we reviewed a large number of literature sources dealing with EMA,
MCS, and their combination in mHealth. Extracting relevant information from the re-
viewed publications gave us the opportunity to analyze the current status and trends in
this research area. Our analysis showed that both EMA research in general and the use
of sensors in EMA research are steadily increasing. We have shown that mobile apps
have become the predominant method of delivering EMA to mHealth study participants.
However, traditional signal-contingent or interval-contingent self-assessment remain the
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most common strategies in these EMA studies, although technological capabilities would
allow for more automated approaches. Furthermore, although more and more sensors are
being used in EMA studies, it appears that their potential is rarely exploited beyond mere
data collection. For example, very few studies have used sensors as triggers to automate
EMA prompts in a context-aware manner. Overall, reporting of sensor usage in EMA
studies lacks transparency and standardization. In addition, security and privacy aspects
are addressed in only a subset of mHealth EMA publications, although their importance is
increasing, especially as the use of sensors continues to grow. Moreover, we found factors
that impact the adherence rates of EMA studies. These characteristics include the total
number of prompts over the course of a study, which is influenced by the study duration
and the number of prompts per day. Novel approaches such as µEMA already take these
aspects into account and indicate results with higher adherence rates. We also found indi-
cations of higher adherence rates in EMA studies with sensor usage, which is an area that
needs further research. Given the ongoing research and further publications on this topic,
there is a need to update the data extracted in this work. We envision that this will provide
further insight into developments and serve as a basis for future EMA/MCS studies.
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