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Abstract: Surface-enhanced Raman spectroscopy (SERS) has been introduced to detect pesticides at
low concentrations and in complex matrices to help developing countries monitor pesticides to keep
their concentrations at safe levels in food and the environment. SERS is a surface-sensitive technique
that enhances the Raman signal of molecules absorbed on metal nanostructure surfaces and provides
vibrational information for sample identification and quantitation. In this work, we report the use of
silver nanostars (AgNs) as SERS-active elements to detect four neonicotinoid pesticides (thiacloprid,
imidacloprid, thiamethoxam and nitenpyram). The SERS substrates were prepared with multiple
depositions of the nanostars using a self-assembly approach to give a dense coverage of the AgNs on
a glass surface, which ultimately increased the availability of the spikes needed for SERS activity. The
SERS substrates developed in this work show very high sensitivity and excellent reproducibility. Our
research opens an avenue for the development of portable, field-based pesticide sensors, which will
be critical for the effective monitoring of these important but potentially dangerous chemicals.
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1. Introduction

Neonicotinoid pesticides, such as clothianidin, imidacloprid and thiamethoxam, have
been restricted in the European Union but remain in use worldwide in the agricultural
sector to meet the demands of population growth, urbanisation and market integration.
Other neonicotinoid types commonly used to control pests are thiacloprid, dinotefuran,
acetamiprid and sulfoxaflor. The demand for neonicotinoid pesticides for crop protection
represents almost one-third of the global insecticide market due to their high insecticidal
efficiency [1]. To control pests and reduce disease pressure on crops, the use of these
pesticides as seed coatings in flowering crops is a widespread practice that can reduce
overspray and spray drift. However, the pesticides used to treat the seeds can potentially
be absorbed and spread through the tissue and reach pollen and nectars [2]. Then, insect
pollinators such as honeybees and wild bees are exposed to the pesticides and bring them
to their colonies [3]. The European Union announced a ban on the use of these chemicals
after assessment studies from the European Food Safety Authority (EFSA) showed the
negative effects of neonicotinoids on insect pollinators, including multiple responses on
learning, memory performance and the feeding activity of bee species [4].

Neonicotinoid pesticides have similar chemical structures to nicotine and permanently
bind with high infinity to nicotinic acetylcholine receptors in the insect central nervous
system [5]. The active substances are neurotoxic and can overstimulate and disrupt the
learning and memory behaviour of insect pollinators, resulting in brain damage. These
negative impacts on the insect pollinators means they do not interact with crops as expected,
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affecting the yield and quality of the agricultural products, nutrient content and shelf life.
Consequently, the decreasing value of pollinators’ services to agricultural systems leads to
big effects on ecosystems and the world economy. Human and environmental exposure
to the pesticides through release into the air, diffusion into water and relocation from
seed to root, plant and nectar can mean that the pesticides linger for decades in the food
chain, animals, humans and the environment. The impact of neonicotinoid pesticides on
human health was investigated by Zhang’s group who reported neonicotinoid pesticide
residue can be absorbed by the human body through surface water [6]. This can lead
to memory loss, finger tremors, headaches, coughs, general fatigue and abdominal pain,
as reported by Taira et al., who studied the neonicotinoid exposure in urine samples [7].
Hence, neonicotinoids are compounds of great concern because the active ingredients are
systemic, persistent and have high solubility. Therefore, consistent monitoring and rigorous
testing of pesticide residue are critical in all countries, especially developing countries.

Effective methods to detect the presence of pesticide residue in food and drinking
water has been introduced owing to the increasing public awareness and government
concern regarding pesticides’ impact on food security and human health. Tremendous tech-
niques have been established for pesticide monitoring, such as liquid chromatography-mass
spectroscopy (LC-MS), gas chromatography–mass spectroscopy (GC-MS), enzyme-linked
immunoabsorbent assays and capillary electrophoresis. The Rawat group detected imida-
cloprid, clothianidin, acetamprid and thiamethoxam in vegetables with a limit of the detec-
tion (LOD) at 0.5 µg/mL using high-performance liquid chromatography (HPLC) fitted
with a UV-Vis detector [8]. The detection of thiacloprid with an LOD as low as 0.003 ng/mL
using a time-resolved fluorescent microsphereimmunochromatographic test strip was re-
ported by the Xu group by using recombinant antibodies [9]. Capillary electrophoresis
methods with tandem mass spectroscopy were studied by Carbonell-Rozas’ group for the
detection of nine neonicotinoid pesticides with an LOD as low as 1.25 × 10−5 g/mL [10].
Generally, these techniques have high sensitivity and are established as a major tool for
pesticide identification and qualification. But these analytical techniques are laborious and
time consuming, costly, require sophisticated instruments and experienced staff. Many
developing countries cannot afford the expensive instruments or do not own sufficient
instruments for the monitoring of pesticide residue in food or the environment. In contrast,
surface-enhanced Raman spectroscopy (SERS) offers faster analysis time, simpler protocols,
low-cost operations and a field-deployable methodology for the identification and qual-
ification of pesticide contamination. Several handheld Raman instruments are available
from companies, such as Agilent Technologies, Bruker, Metrohm and Thermo Scientific,
for the detection of low concentrations of materials typically in forensic situations. The
production of commercial SERS substrates as ultrasensitive detectors as a sensing platform
was developed by Nanova Inc. (Columbia, MO, USA), Hamamatsu Photonics (Hamamatsu
city, Japan) and Renishaw Diagnostics (Glasgow, UK). However, this work seeks to establish
an ultrasensitive detector that will allow the cheap, efficient, reliable mass production of
sensing platforms, which would find applications in the detection of a wide range of toxins
and other harmful chemicals. The outcomes will be precursors to significant steps towards
the production of commercial sensors, which would help developing countries monitor a
variety of environmentally harmful chemical species.

The discovery of Raman signal enhancement has opened the door for the first monitor-
ing of single molecules in bioanalytics [11] and pesticides using surface-enhanced Raman
spectroscopy (SERS) by simply adsorbing organophosphorus pesticides on a silver surface
as a SERS-active substrate [12]. Many publications have shown that the SERS effect is a
powerful tool for the identification and qualification of pesticide contamination on the basis
of their unique vibrational characteristics [13–15]. SERS is a highly sensitive technique
that enhances the Raman intensities of molecules more than after adsorption on plasmonic
nanostructured surfaces [16,17]. Subsequently, SERS has been continuously used to identify
pesticide contaminations in aqueous systems [18] and in seawater [19].
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In previous work, we synthesized star-shaped silver nanostructures and fabricated
SERS substrates to use SERS enhancement of the Raman signal to detect the neonicotinoid
imidacloprid. We studied the best distribution of silver nanostars (AgNs) on glass surfaces
by varying the number of layers of AgNs thin films. These SERS substrates are promising
for use in the field because detection without complex sample preparation is critical for
real-world use in analytical facilities or more importantly in the field. Critically, it is
important that such a sensor is sensitive to many different pesticides. The residue of the
four pesticides tested in this work has become a global issue as their residues have been
found in a variety of food products and environmental samples. Many countries have
detected the residue of these pesticides in soil [20], water [6] and food products [21]. In
the current work, we studied the four neonicotinoid pesticides on AgNs thin films. The
pesticides were deposited on the AgNs surface by a drop-casting technique to observe the
sensitivity and reproducibility of SERS substrates towards the neonicotinoid pesticides.
This AgNs substrate was found to be a good SERS-active substrate for all the molecules,
giving large SERS enhancements and excellent reproducibility with a low relative standard
derivation of SERS intensity.

2. Materials and Methods
2.1. Materials

The four neonicotinoid pesticides used for the SERS measurements were imidacloprid-
pestanal, (Analytical standard, Sigma-Aldrich (Sydney, Australia)), thiamethoxam-pestanal,
(Analytical standard, Sigma-Aldrich (Sydney, Australia)), thiacloprid-pestanal (Analyti-
cal standard, Sigma-Aldrich (Sydney, Australia)) and nitenpyram-pestanal, (Analytical
standard, Sigma-Aldrich (Sydney, Australia)). The solvent for preparing the pesticide
solutions was methanol (Analytical Reagent Grade, Chem-Supply Pty Ltd (Adelaide,
Australia)) and deionized water. The chemicals for the preparation of silver nanostars
(AgNs) are silver nitrate (≥99.0%, Sigma Aldrich (Sydney, Australia)), sodium hydroxide
(≥98.0%, Chem-Supply Pty Ltd (Adelaide, Australia)), hydroxylamine 50 wt. % in water
(Sigma Aldrich, Sydney, Australia) and trisodium citrate dehydrate (≥99.0%, Sigma Aldrich
(Sydney, Australia)). Toluene, (Analytical Reagent Grade, Chem-Supply Pty Ltd, (Adelaide,
Australia)) and n,n-dimethylformamide (≥99.8%, Sigma Aldrich (Sydney, Australia)) were
used for the fabrication of monolayer AgNs films. These chemicals were used as received
without any further purification.

2.2. Methodology

The synthesis of the colloidal silver nanostars (AgNs) and the fabrication of the silver
nanostars film were described in our previous article [22]. Colloidal AgNs was prepared
by a chemical reduction technique by mixing 2.0 mL of 6.0 × 10−2 M hydroxylamine into
2.0 mL of 5 × 10−2 M sodium hydroxide. This mixture was stirred, and the solution colour
changed to dark grey after adding 9.0 mL of 1 × 10−3 M silver nitrate and 0.1 mL of 1% w/v
trisodium citrate dehydrate into the solution. The colloidal suspension was centrifuged at
6000 rpm for 15 min. The pellet was collected and further used for the fabrication of SERS
substrates. AgNs SERS substrates were prepared on glass surfaces using a self-assembly
technique. The monolayer AgNs film was prepared by mixing 12.0 mL colloidal AgNs
and 6.0 mL toluene to obtain the water–oil interface. The monolayer AgNs films were
transferred onto the solid substrate by placing the silicon or glass substrate surface under
the formed monolayer solution and the substrate was further dried at 60 ◦C for 1 h in an
oven. This process was repeated multiple times to prepare 10 layers of AgNs films on the
substrate surfaces.

Neonicotinoid pesticide solutions were prepared at 1 mg/mL concentration by dissolv-
ing 1 mg of the pesticides in 0.5 mL of methanol. The mixture was placed in an ultrasonic
bath to dissolve the solid. After that, the pesticide solution was added to 0.5 mL of deion-
ized water. This 1 mg/mL pesticide solution was used as the stock solution to prepare
seven concentrations, namely 1 × 100, 1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5 and



Sensors 2024, 24, 373 4 of 14

1 × 10−6 mg/mL. These various concentrations were prepared by diluting 1 mg/mL of pes-
ticide solutions with the appropriate amount of deionized water. For SERS measurements,
the pesticide was dropped and dried on the AgNs surface and bare-glass surface.

The SERS measurements were performed using a Renishaw model InVia micro Raman
spectrometer with 785 nm wavelength diode laser. The Raman spectra of the pesticide
powders on glass slides were recorded using a 50× objective at 100% of the 167 mW power
laser with 5-second integration time for reference spectra. The SERS spectra of the pesticides
on the silver nanostars surface were collected using a 50x objective at 1% of the 167 mW
power laser with 5-second integration time. SERS sensor properties such as sensitivity and
reproducibility towards the pesticide detection were observed in this work. The reusability
and stability of the SERS substrate were reported in a previous article [22].

2.3. Computional Model

Partial Least Squares (PLS) regression was used to perform multivariate analysis
on spectroscopic data. Python codes using the libraries numpy, scikit-learn and scipy
were used for SG filtering and PLS regression. The SG filtering was implemented using
the savgol_filter function from the scipy.signal module. PLS regression was carried out
using the PLSRegression class from the sklearn.cross decomposition module while cross-
validation predictions were made using the cross_val_predict function from sklearn.model
selection.

A Savitzky–Golay filter was applied to smooth the spectra and calculate the first
derivative of the spectra, which is used in the analysis. The optimal number of PLS
components and the relevant wavelengths are determined by optimising the R2 and mean
square error of cross-validated data. To improve the performance of the model, the values
of the concentrations were transformed using the logarithm function, which helps to
linearize the relationship between the predictor variables (spectra), and the response
variable (concentration) reduces the effect of outliers and spreads the values out more
evenly across the range of possible values. This improves the stabilization of the response
variable and makes the model more sensitive to small changes at low concentrations. The
regression graphs were plotted using Microsoft Excel 2010.

3. Results

In this report, we used a AgNs substrate prepared through 10 subsequential layer
depositions of silver nanostars (AgNs) on a glass surface as the SERS substrate, as de-
scribed in our previous article [22]. To comprehensively study the SERS performance for
various neonicotinoid pesticides on the SERS substrates, we collected the Raman spectra
of neonicotinoid pesticide powders for the reference of neonicotinoid characteristic peaks.
Figure 1A–D show the Raman spectra of four neonicotinoid pesticide powders, namely
thiacloprid, imidacloprid, thiamethoxam and nitenpyram. The characteristic Raman peaks
for each pesticide were obvious. The chemical structures of these pesticides are attached in
the SI, Figure S1.

The sensitivity of the SERS substrate was studied by observing the Raman spectrum
of the pesticides on a glass surface and on the AgNs surface using the same solution con-
centration for the drop casting and same laser configuration but 100-times less power for
the experiments on the SERS substrates. Figure 2A–D display the Raman spectra of the pes-
ticides on the glass surface and on the AgNs surface at a concentration of 1 mg/mL. Based
on the SERS spectra, the characteristic peaks of the pesticides on the AgNs surface match
those observed for the pesticides on the glass surface. The observed characteristic peaks
of the absorbed pesticides on silver nanostars are in good agreement with the observed
characteristic peaks of pesticide powders. The details of the characteristic peaks for the
pesticide powder, on glass surface and on AgNs, are discussed in the SI, Tables S1–S4. The
intensity of the characteristic peaks of these pesticides at 1 mg/mL was clearly enhanced
after the absorption of the pesticides on the silver surface compared to the low Raman
intensity of the pesticides on bare glass surfaces at 1 mg/mL. To calculate the Enhance-
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ment Factor (EF) of SERS performance, some of the highest peaks at 2174 cm−1, 295 cm−1,
759 cm−1 and 1102 cm−1 were chosen for thiacloprid, imidacloprid, thiamethoxam and
nitenpyram, respectively. The calculated EFs for thiacloprid, imidacloprid, thiamethoxam
and nitenpyram detection were 3.61 × 105, 2.86 × 104, 9.53 × 104 and 2.40 × 105, respec-
tively. There are a few EF formulae for EF calculations and, here, we chose the Analytical
Enhancement Factor approach, as described by Ru et al.’s group [23]. These EF values were
calculated using Formula (1).

EF =
ISERS/NSERS

IRaman/NRaman
(1)

where IRaman: intensity of non-SERS; ISERS: intensity of SERS; NRaman: average number of
molecule for non-SERS that contributed the signal; and NSERS: average number of molecule
for SERS that contributed the signal.
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Figure 1. Raman spectrum of the neonicotinoid pesticide powders on bare glass substrates using
100% power laser: (A) thiacloprid; (B) imidacloprid; (C) thiamethoxam; (D) nitenpyram.

SERS enhancement happens through two mechanisms, namely an electromagnetic
(EM) mechanism and a chemical (CM) mechanism [16,24,25]. The EM mechanism is
generally observed on substrates rich in free electrons that can generate localized surface
plasmon resonance (LSPR) upon excitation [26]. The CM mechanism can have three
possible origins in a metal–molecule system, namely interfacial ground-state charge transfer,
photoinduced charge transfer resonance and the electronic excitation resonance within the
molecule itself [27]. In our experiments, the laser wavelength is 1.58 eV, while the pesticides
examined have energy gaps ranging from 2.084 to 7.94 eV; thus, resonance Raman of the
molecule itself is not possible [28]. The Fermi level of silver nanoparticles is generally
about −4.26 eV [29], meaning that in all cases, the energy of the LUMO is higher than
the Fermi level of AgNs, while the energy level of the HOMO is below the Fermi level.
As shown in Table 1, the gaps between the levels for each molecule and the Ag Fermi
level vary dramatically but, in all cases, significant SERS enhancement is observed. The
large gaps between the LUMOs and the Fermi level mean that a photoinduced charge



Sensors 2024, 24, 373 6 of 14

transfer resonance mechanism is unlikely [29]. Thus, this means that the most likely
SERS enhancement mechanism is a combination of electromagnetic enhancement due to
surface plasmon excitation in the metal nanoparticles [30] and interfacial ground-state
charge transfer. These ground state interactions change the polarizability of the metal–
molecule complex, leading to higher Raman cross-sections. Importantly, despite a range of
HOMO energy levels of over 2.5 eV, the SERS substrate gives high enhancements for all the
pesticides, highlighting the wide applicability of this approach to detect many species of
environmental concern.
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Figure 2. SERS spectra of neonicotinoid pesticides on AgNs surface using 1% power laser. The spec-
trum on glass surface is provided for reference using 1% power laser. (A) thiacloprid; (B) imidacloprid;
(C) thiamethoxam; (D) nitenpyram.

Table 1. Energy levels for the pesticides detected using our SERS substrate. The range reported for
imidacloprid is due to different conformers of the molecule [31].

Pesticides LUMO (eV) HOMO (eV) ∆E (eV) EF SERS Ref.

Imidacloprid −0.83 to −0.96 −8.55 to −8.77 7.63 to 7.94 2.86 × 104 [31]
Thiacloprid −1.21 −6.68 5.47 3.61 × 105 [32]
Nitenpyram −3.051 −5.136 2.084 2.40 × 105 [33]

Thiamethoxam −1.9398 −7.1478 5.208 9.53 × 104 [34]

The detection reproducibility of the SERS substrate for the four pesticides was tested
by collecting the SERS spectra of pesticides at 20 different spots on the same sample surface.
Five spectra of five different spots for each of the four pesticides are plotted in Figure 3A–D.
However, the full SERS spectra of 20 different spots for four pesticides on AgNs surfaces
are provided in the SI, Figure S2. The three highest-intensity characteristic peaks for each
pesticide were chosen to calculate the relative standard derivation (RSD) and observe the
uniformity field enhancement of the SERS substrate.
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Figure 3. SERS measurement of four pesticides (1 mg/mL) for 5 different spots on the 10 layer AgNs
substrate (a complete set of spectra from 20 spots is provided in the SI, Figure S2A). (A) thiacloprid;
(B) imidacloprid; (C) thiamethoxam; (D) nitenpyram.

Figure 4A–D show the SERS intensity versus Raman shift for the three highest-intensity
characteristic peaks of the pesticides on the AgNs surface at 1 mg/mL concentration. Based
on the RSD results, the AgNs created good local field enhancements for the SERS detection
of these pesticides by showing major uniform enhancement. The absorption of pesticides
on the uniform surface coverage of the silver nanostars clusters with their many spikes
yields good SERS reproducibility. The calculated RSD for the four pesticides is as low as
7.26%, and the highest is 27.16%. The SERS substrate showed good reproducibility for
thiacloprid detection and the low reproducibility for the nitenpyram detection.

We further studied the limit of detection of the SERS substrate for these pesticides.
Figure 5A–D plot the SERS spectra for different concentrations, ranging from 1 ng/mL to
1 mg/mL of the four pesticides on the AgNs surface. We found that, as expected, a decreas-
ing pesticide concentration gave decreasing SERS intensities. The characteristic peaks of
these pesticides at lowest concentration on the AgNs surface are still observable. Using a
signal-to-noise ratio of 2 to 1, the limits of detection (LOD) for thiacloprid, imidacloprid,
thiamethoxam and nitenpyram were determined and found to be 1.72 × 10−6 mg/mL,
9.4 × 10−8 mg/mL, 4.83 × 10−6 mg/mL and 7.65 × 10−7 mg/mL, respectively, on the
AgNs surface. The results from the Partial Least Squares (PLS) regression show excellent
agreement for all pesticides tested, as shown in Figure 6A–D. These good correlations for
these four pesticides show that the SERS substrates could be used to estimate pesticide
residue in the environment and food products at very low concentrations, as required by
the current limits set by regulatory agencies.
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Figure 4. RSD for three peaks of 1 mg/mL four neonicotinoid pesticides on the 10-layer AgNs
substrate from the 20 different spots. (A) thiacloprid; (B) imidacloprid; (C) thiamethoxam; (D) niten-
pyram.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 5. SERS measurement for different concentrations of neonicotinoids on the AgNs surface. 

(A) thiacloprid; (B) imidacloprid; (C) thiamethoxam; (D) nitenpyram. 

 

Figure 6. Plots of predicted concentrations vs. actual concentrations in the calibration sets for all 

four pesticides produced using the PLS regression. (A) thiacloprid; (B) imidacloprid; (C) thiameth-

oxam; (D) nitenpyram. 

4. Discussion 

The use of silver nanostars has not previously been observed for the detection of thi-

acloprid, thiamethoxam and nitenpyram pesticides. However, the detection of imidaclo-

prid has been reported using a silver nanoflower [35] and gold-coated silver nanoflower 

500 1000 1500 2000
0

5k

10k

15k
2174

1437

 

 

In
te

n
si

ty
 (

a.
u

)

A:1mg/ml

A

G
F

D
E

C

B

G:1ng/ml

Thiacloprid

815

500 1000 1500
0

5k

10k
Imidacloprid

1274
997 G: 1ng/ml

G
F

E
D

C

B  

 

A

A:1mg/ml

295

500 1000 1500
0

10k

20k

Thiamethoxam

759692

 

 

In
te

n
si

ty
 (

a.
u

)

Raman shift (cm
−1

)

A:1mg/ml

A

G
F

D
E

C

B

G:1ng/ml

963

500 1000 1500
0

13k

25k

15881102 G:1ng/ml

F
G

E

C

D

B  

 

Raman shift (cm
−1

)

A

A:1mg/ml

818

Nitenpyram

A

DC

B

Figure 5. SERS measurement for different concentrations of neonicotinoids on the AgNs surface.
(A) thiacloprid; (B) imidacloprid; (C) thiamethoxam; (D) nitenpyram.
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Figure 6. Plots of predicted concentrations vs. actual concentrations in the calibration sets for all four
pesticides produced using the PLS regression. (A) thiacloprid; (B) imidacloprid; (C) thiamethoxam;
(D) nitenpyram.

4. Discussion

The use of silver nanostars has not previously been observed for the detection of thia-
cloprid, thiamethoxam and nitenpyram pesticides. However, the detection of imidacloprid
has been reported using a silver nanoflower [35] and gold-coated silver nanoflower SERS
substrate [14]. The sensitivity observed using AgNs is similar to that observed with silver
nanoflowers in terms of the limits of detection for imidacloprid using SERS substrates.
However, the addition of gold to silver nanoflowers has been shown to improve the sensitiv-
ity by a factor of approximately 100. Other recent reports have used roughened silver [13]
and palladium nanoparticles on meso-porous silicon [36] as SERS substrates, and they
have exhibited very similar limits of detection for imidacloprid. This finding is beneficial
for estimating the imidacloprid residue in food products, since the result is significantly
lower than the current allowable limit of residue in fruit by the Chinese government, set at
1.91–3.91 mol/L (4.89 × 10−4 mg/mL to 10.0 × 10−4 mg/mL), and by the European Union
at 0.5 mg/kg (5 × 10−4 mg/mL) [15].

A combination of silver and gold nanoparticles has been reported to detect thi-
acloprid with a limit of detection of 9.6 × 10−2 mg/mL [37], 2.3 × 10−5 mg/mL in
milk [38], 1.0 × 10−5 mg/mL in peach [39] and 4.0 × 10−4 mg/mL using silver and gold
hydrosols [40]. Interestingly, the thiacloprid detected using AgNs is significantly lower than
reported by other researchers, and the current allowable limit of residue in honey by the Eu-
ropean Union is 200 µg/kg (2 × 10−4 mg/mL) [40]. Thiamethoxam has been detected using
silver nanoparticle films at a limit of 3.7 × 10−1 mg/mL [41], 3.0 × 10−4 mg/mL [42] and
3.0 × 10−6 mg/mL in fruit by silver nanoparticles decorated with cellulose and DNA [21].
Meanwhile, a gold-embedded chitosan SERS substrate had a similar LOD to this project
at 1.0 × 10−6 mg/mL on fruit peels [43]. This value is significantly lower than the current
allowable limit of thiacloprid residue in fruit by the United States Environmental Protection
Agency of 2.0 × 10−5 mg/mL to 6.0 × 10−3 mg/mL [43]. One article reporting the use of a
silver dendrite with a fern structure as the SERS substrate to detect nitenpyram in apple
surfaces had an LOD of 1.2 × 10−3 mg/mL [44]. The AgNs used in this project provided a
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more sensitive surface for low concentrations of nitenpyram. We also provide, in Table 2,
the wider range of previous works toward the detection of pesticides, chemical traces and
biomaterials in complex samples.

Table 2. The development of the SERS substrate for the determination of the pesticides and chemicals
trace in complex samples.

Plasmonic Nanostructure Sensor Configuration Analytical
Sensitivity LOD Analyte Ref.

Metal nanoparticles (Au
and Ag)

Bifuntional
molecule@Ag/Au 10−4–10−8 M 10−8 M

Organochlorine
pesticides [45]

AuNPs AuNPs on mesoporous
silica 1–100 ng/mL 10−12 M Pesticides [46]

AgNPs AgNPs on glass fiber 10−1–10−10 M 10−10 M Doxorubicin drug [47]

Ag nanoplates and AuNPs Ag nanoplates/AuNPs
on aluminium foil 0.05–1000 ppm 34–63 ppb Melamine and R6G [48]

AgNPs TiO2@AgNPs 10−1–10−5 M 10−5 M
Acrylamide and

crystal violet [49]

Au nanostars coated silver Au nanostars@Ag 0.01–5.0 ppm 0.22 ppm Thiram [50]

AgNPs and Au NPs Ag:Au:poly(amidoamine)
dendrimer 10−4–10−7 M 10−7 M Thiram and ziram [51]

Au@Ag nanocubes and
Au@Ag nanocuboids Au@Ag core-shell 10−6–10−11 M 10−11 M Thiram [52]

Au grating surface Au@metal organic
framework (MOF) 10−6–10−14 M 10−12 M

Organophosphorus
pesticides [53]

Branched AuNPs Snowflake-like AuNPs 10−5–10−9 mol/L 10−8 mol/L
Organophosphorus

pesticides [54]

AuNPs AuNPs 0.01–10 mg/L 0.01 mg/L Toxic insecticides [55]

Au nanostructures Au@polyoxometalate
nanostructures 10−6–10−7 M 10−7 M

Organophosphorus
pesticide [56]

Au nanorods (AuNRs) Rough AuNRs 0.0005–5 ppm 0.0005 ppm Thiram [57]

AgNPs Cellulose
nanofibers@AgNs 1–100 ppm 5 ppm Thiabendazole [58]

AuNPs Alkyne-labeled AuNPs 40 × 10−6–1 ×
10−9 M 10−8 M Heavy-metal ions [59]

AgNPs Flower-shaped AgNPs 10−4–10−10 M 10−10 M
Organophosphorus

pesticides [60]

AuNPs AuNPs 0.01–10 mg/L 10−5 g/L Chlorpyrifos [61]

AuNPs AuNPs/porous
zirconia layer 10−2–10−6 M 10−6 M

Organophosphates
pesticides [62]

Au nanowaxberry polydopamine@Au
nanowaxberry 100 nM—1 pM 10−12 M

Pesticides,
pollutants and

explosives
[63]

AuNPs AuNPs 10 ppb–100 ppm 0.3 ppb

Acephate,
carbendazim,

thiamethoxam and
tricyclazole

[64]

5. Conclusions

We detected four neonicotinoid pesticides on a silver nanostars (AgNs) surface using
surface-enhanced Raman scattering. The developed SERS substrates with a dense coverage
of the AgNs on a glass surface in this work show very high sensitivity and excellent
reproducibility towards four types of neonicotinoid pesticides (thiacloprid, imidacloprid,
thiamethoxam and nitenpyram) in a detection range from 1 ng/mL to 1 mg/mL. The
results revealed that the AgNs surface is sensitive to four types of pesticides, and the
calculated EFs for thiacloprid, imidacloprid, thiamethoxam and nitenpyram detection were
3.61 × 105, 2.86 × 104, 9.53 × 104 and 2.40 × 105, respectively. The range of electronic
properties of the four compounds tested suggests that this system will have wide-ranging
use for the detection of many molecules. The use of silver nanostars as a SERS-active
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element to detect these four neonicotinoid pesticides without complex sample preparation
is critical for real-world use in analytical facilities or, more importantly, in the field. The data
presented clearly detail the sensor sensitivity and reproducibility—all critical for analytical
use. Additionally, the very high sensitivity demonstrated means there is no doubt that the
sensor would still provide strong signals using a handheld Raman instrument, meaning
that use in the field by non-experts is without doubt feasible. Importantly, based on these
experiments, the sensor will have a long shelf life and still provide very high sensitivity to
a wide range of molecules, making it ideal for field use, where a range of molecular species
will be present.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24020373/s1, Figure S1: molecule structures for 4 types of
neonicotinoid pesticides; Figure S2: SERS measurement of 1 mg/mL of neonicotinoids pesticide
for 20 spots on the 10 layers AgNs substrate (A) thiacloprid, (B) imidacloprid, (C) thiamethoxam
and (D) nitenpyram; Table S1: the vibrational assignment for the characteristic peaks of thiacloprid
powder, SERS signal of thiacloprid and DFT calculation; Table S2: the vibrational assignment for the
characteristic peaks of imidacloprid powder, SERS signal of imidacloprid and DFT calculation; Table
S3: the vibrational assignment for the characteristic peaks of thiamethoxam powder, SERS signal of
thiamethoxam and DFT calculation; Table S4: the vibrational assignment for the characteristic peaks
of nitenpyram powder, SERS signal of nitenpyram and DFT calculation.
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