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Abstract: Automatic extraction of building contours from high-resolution images is of great signif-
icance in the fields of urban planning, demographics, and disaster assessment. Network models
based on convolutional neural network (CNN) and transformer technology have been widely used
for semantic segmentation of buildings from high resolution remote sensing images (HRSI). However,
the fixed geometric structure and the local receptive field of the convolutional kernel are not good at
global feature extraction, and the transformer technique with self-attention mechanism introduces
computational redundancies and extracts local feature details poorly in the process of modeling the
global contextual information. In this paper, a dual-branch fused reconstructive transformer network,
DFRTNet, is proposed for efficient and accurate building extraction. In the encoder, the traditional
transformer is reconfigured by designing the local and global feature extraction module (LGFE); the
branch of global feature extraction (GFE) performs dynamic range attention (DRA) based on the idea
of top-k attention for extracting global features; furthermore, the branch of local feature extraction
(LFE) is used to obtain fine-grained features. The multilayer perceptron (MLP) is employed to effi-
ciently fuse the local and global features. In the decoder, a simple channel attention module (CAM) is
used in the up-sampling part to enhance channel dimension features. Our network achieved the best
segmentation accuracy on both the WHU and Massachusetts building datasets when compared to
other mainstream and state-of-the-art methods.

Keywords: building extraction; convolutional neural network; deep learning; high resolution remote
sensing imagery; dual-branch fusion; self-attention

1. Introduction

The extraction of building footprints is of great significance in the fields of urban
development change monitoring, population spatial distribution statistics, and natural
disaster risk assessment [1–3]. With the progress of high resolution remote sensing technol-
ogy, it easier to obtain high resolution remote sensing image data with rich information [4].
With the rapid development of deep learning, especially the powerful feature extraction
and expression abilities of deep learning models, there is great potential and application
prospects in remote sensing building recognition [5,6].

Semantic image segmentation involves categorizing individual pixels within an image
into predefined classes. The task becomes particularly challenging when dealing with high
resolution images that contain intricate detail [7–9]. In an effort to enhance the precision of
semantic segmentation for buildings, researchers have used robust linear fitting capabilities
of convolutional neural networks (CNNs) for building extraction. Nevertheless, the fixed
properties of convolution kernels and local receptive fields limit their effectiveness in cap-
turing global features [10]. Based on this foundation, numerous CNN-based approaches
aim to enhance their capacity to model global contextual information [11,12]; the common
strategies involve constructing multi-scale features through feature pyramids, or construct-
ing larger convolutional kernels to obtain larger receptive fields [13]. Recently, the advent of
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transformer technology [14] has catalyzed the rapid advancement of deep learning. Unlike
convolution, transformer technology leverages the self-attention mechanism for feature
extraction, excelling in modeling global contextual information. Its feature extraction and
global contextual modeling capabilities surpass those of CNNs, making transformer-based
networks instrumental in many tasks. Transformer-based networks have also achieved
better results than CNNs in many computer vision tasks [15]. For example, Swin [16]
obtained rich global contextual information through multi-scale self-attention. However,
the transformer technique still has some problems in semantic segmentation tasks. On
the one hand, due to the rich details of buildings obtained from high resolution remote
sensing images whose complex contextual information can also be captured, the standard
self-attention mechanism introduces redundant information [17]. On the other hand, it
relies on a large amount of data for training in order for the model to reach convergence [18].
Due to the fact that the transformer maps image chunks into feature vectors, it is ineffective
for extracting local detail information [19]. Therefore, it is necessary to design a reason-
able network structure that can reduce the computational redundancy of the model while
combining global and local information.

To mitigate computational redundancies within the transformer model and effectively
integrate local and global features, a dual-branch fused reconstructive transformer network,
DFRTNet, is proposed. The network adopts a four-scale encoding and decoding structure
as a whole. Within the first three encoder scales, the traditional transformer network
was refactored, and a local and global feature extraction (LGFE) module was designed for
efficient extraction and fusion of local and global features. In the final encoder layer, a global
self-attention module was employed to extract global features. Additionally, the decoder
uses a simple channel attention module (CAM) for channel dimension enhancement after
up-sampling splicing. More specifically, our LGFE module utilizes two branches, the global
feature extraction (GFE) module and the local feature extraction (LFE) module. These
components are refactored to reconfigure the traditional transformer encoder. Additionally,
a basic multi-layer perceptron (MLP) module is utilized to facilitate feature fusion. GFE is
based on the idea of top-k attention. It computes the relevance matrix via queries and keys
on the global space, obtaining the first k most relevant regions in each row of the matrix,
so that queries perform token-to-token self-attention computation only with key–value
pairs of the first k most relevant regions, effectively mitigating computational redundancies.
The LFE branch utilizes parallel multi-scale depth-separable convolution and max-pooling
operations to acquire finely detailed local features. Furthermore, the local window self-
attention was employed to reinforce these fine-grained local features at different scales.
In conclusion, our proposed network approach was evaluated against mainstream and
state-of-the-art methods using the WHU building dataset and the Massachusetts building
dataset. The results demonstrate that our network exhibits an advantage over competing
networks, while keeping the number of network parameters constant.

Overall, this article makes three main contributions:

1. A dual-branch fused reconstructive transformer network is proposed, which utilizes
a dual-branch for fusing CNN and transformer approaches. This novel network
adapts the conventional transformer model by integrating the local and global feature
extraction (LGFE) module within the intermediate and shallower layers, facilitating
the efficient extraction and effective fusion of both global context and local features.

2. The GFE module is designed to perform token-to-token computation based on the
idea of top-k attention on the most relevant regions of the markers. This approach
minimizes interference from irrelevant areas, while efficiently extracting global con-
textual features and reducing computational overhead. Concurrently, the LFE module
was designed to compensate for the potential loss of local semantic information in
the GFE module. The LFE module employs parallel convolution to generate multiple
finely detailed local features, and utilizes local self-attention to facilitate semantic
interactions among pixels at the same location.
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3. Comparative evaluations of our network were conducted against mainstream and
state-of-the-art methods using two public datasets: the WHU building dataset and
the Massachusetts building dataset. The results demonstrate that our network outper-
forms other networks, while maintaining a consistent number of network parameters.

In this paper, the related research is discussed in Section 2. Our methodology is
presented in Section 3. Experimental details and analyses are provided in Section 4, which
includes information about the dataset and the results of our experiments comparing
our network with others. In Section 5, we discuss the impact of different modules in the
network on performance. Finally, we summarize the key findings of our study as well as
our vision for future research in Section 6.

2. Related Research

The semantic segmentation of buildings holds significant importance in remote sens-
ing. While convolutional neural networks (CNNs) are the primary technique used for this
task, transformer-based approaches have gained prominence as a research focus [20], lead-
ing to the development of numerous transformer variants [21–23], as well as the combined
structure of transformer and CNN [24–26]. In this section, the recent advancements in
building semantic segmentation are delved into, encompassing CNN-based approaches,
transformer-based approaches, and the fusion of CNN and transformer techniques.

2.1. CNN-Based Semantic Segmentation of Buildings

CNNs have emerged as the dominant technique for semantic segmentation in re-
mote sensing. FCN [27] is notable for pioneering the use of full convolution for pixel-
level prediction, which significantly advances the development of semantic segmentation
models. However, the inherent constraint of FCN on the input image size results in stacked
convolutional layers with limited receptive fields, thereby hindering the effective capture
of global contextual information. To effectively capture and recover features, researchers
have focused on both coding and decoding structure design and improving the ability to
capture contextual global information.

In the design of encoding and decoding architecture, Unet [28] performs multi-scale
feature extraction through a pyramidal encoder and a symmetric decoder, and utilizes
the encoder-to-decoder hopping connection to semantically interact with the shallow
and deep networks. SegNet [29] employs the VGG16 [30] as the encoder network, and
uses pooling indexes computed in the encoder for up-sampling decoding as a way to
capture multi-scale feature representations. This suggests that the integration of multi-scale
features plays a crucial role in building semantic segmentation. In terms of obtaining global
contextual semantic information, HRNet [31] establishes a parallel structured backbone
network that maintains high resolution features throughout the process, and achieves strong
semantic information and precise location information through information interaction
between different branches. Deeplab [32,33] series utilizes atlas spatial pyramid pooling
(ASPP) to collect contextual cues. ASPP includes parallel atlas convolution with different
expansion rates [34] to obtain larger contextual information without increasing the number
of parameters, and Deeplabv3+ [35] utilizes ASPP for contextual information acquisition at
multiple scales through coding and decoding structures. The above methods acquire global
contextual information at multiple scales by combining different coding and decoding
structures, as well as parallel convolution. However, due to the inherent limitations of
the convolutional kernel [10,36], the model receives limitations in its ability to capture
contextual dependencies, resulting in suboptimal semantic segmentation results.

2.2. Transformer-Based Semantic Segmentation of Buildings

In the past few years, there has been significant progress in transformer technology
for semantic segmentation [15]. VIT [14] first applies transformer to a computer vision
task, which achieves good results in the image classification task by constructing a pure
transformer with a sequence of image chunks as input. Meanwhile, the transformer-based
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semantic segmentation method has achieved good results in the GF3 images building extrac-
tion task [37]. However, the transformer-based architecture has two main problems: high
computational load [38] and poor local information extraction [39]. Swin transformer [16]
introduces the feature pyramid structure for the low output resolution of transformer
models, and achieves good performance in semantic segmentation tasks while reducing the
computational load. Previous studies [40] have confirmed that the swin transformer-based
backbone network achieves better segmentation performance than MAP-Net [12]. Some
experiments have also attempted to artificially design other attention windows, including
spatially reduced attention [41], localized window attention [42], etc., to reduce the high
computational and storage costs of transformer, and to improve its local feature extraction
capabilities. Sparse token transformer (STT) [18] represents buildings as “sparse” feature
vectors, enabling accurate building extraction with reduced computational effort by learn-
ing long-term token dependencies. PoolFormer [26] refactors the transformer structure by
replacing the attention module with a simple spatial pooling operator (i.e., pooling), and
performs the global feature extraction via a channel MLP. Currently, there are fewer pure
transformer-based building extraction methods.

2.3. Semantic Segmentation of Buildings Based on CNN and Transformer

The inductive bias in the CNN architecture makes it lack a global long-range depen-
dency representation in the image, and the transformer-based structure is ineffective for
local feature extraction; thus, combining the CNN and transformer architecture may be an
effective way to improve the performance of semantic segmentation [41,43]. TransUnet [25]
connects transformer and Unet in tandem to become a powerful encoder for extracting
image features, and transformer converts the labeled image blocks in the CNN feature map
into an input sequence for global context extraction. Similarly, Swin transformer [16] can be
used as an encoder in tandem with a CNN network decoder for building semantic segmen-
tation tasks; finer segmentation results are obtained by applying boundary constraints to
the segmentation results using auxiliary boundary detection branches [44]. sTransFuse [41]
and TransFuse [45] adaptively fuse the decoder network through a feature aggregation
module CNN branch and the feature mapping of the transformer branch. To address the
issue of high computation for the transformers, the LiteST-Net [43] simplifies the matrices
of keys, queries, and values into only one matrix of values. The LiteST-Net is summed with
the features extracted from the CNN, and fully obtains the local features of buildings with
global features. However, efficiently integrating the localization of convolution and the
global correlation of transformer in the encoder is still the focus of current research.

3. Materials and Methods

To fully utilize the advantages of CNN and transformer while reducing the computa-
tional effort of the model, an efficient transformer network based on the dual-branch fusion
of CNN and transformer is proposed, DFRTNet. Figure 1 demonstrates the overall architec-
ture of the proposed network, which employs the encoder–decoder structure. The encoder
network mainly consists of a convolutional module, a three-level LGFE module that in-
cludes a global feature extraction (GFE) branch, a local feature extraction (LFE) branch,
and an MLP branch, along with a transformer block. The decoder consists of a pyramid
pooling module (PPM) and three channel augmentation modules (CAM). Specifically, the
encoder first performs feature extraction on the remote sensing images, and reduces their
resolution to alleviate the computational load on subsequent network inputs. Subsequently,
a bottom-up pyramid structure is adopted so that the local features are extracted through
four different scale stages, (H/4,W/4), (H/8,W/8), (H/16,W/16), and (H/32,W/32). In the
first three stages, the GFE branches within the LGFE block perform feature embedding of
the image blocks. The DRA module was designed to calculate the attentional relevance
matrix by globally averaging the queries and keys within the coarse-grained regions, and
preserves the indices of the top k most relevant locations in each row. This procedure yields
the most pertinent key–value pairs within each region. Consequently, these key–value pairs,
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along with queries, undergo token-to-token self-attention computation to acquire global
contextual information. The LFE branch firstly obtains local features with halved resolution
at different scales through local maximum pooling and three depth-separated convolutions
with three different convolution kernel sizes. Secondly, LFE rearranges the image elements
with the same position according to the pixel positions, arranges the image elements with
the same position sequentially in a 2 × 2 window, and obtains refined local features at
the original resolution. Finally, the LFE utilizes the local self-attention to interact with the
local semantic information of the image elements obtained at different scales within the
local window. Subsequently, the features of the two branches are dimensionally spliced
and transported to the MLP module so that the output features have global contextual
information as well as local reinforcement information. The output of each stage is used
as the input of the next stage through patch merging. In the last stage, the traditional
transformer module is used to interact with the global contextual information. In the
decoder part, after the high-level features output from the transformer are input to the
PPM [46,47] module to obtain the multi-scale context information, they are up-sampled to
be fused with the features of the previous stage and augmented in the channel dimension.
Enhanced features are up-sampled to the first level of feature map size, and finally the
segmentation map is obtained after performing sigmoid function computation through the
output of the convolution module.
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Figure 1. Overall architecture of the DFRTNet.

In the following, Sections 3.1 and 3.2 detail the structure and workflow of the GFE and
LFE branches in the first three stages of the encoder, and Section 3.3 details the workflow of
the decoder.

3.1. The Structure of GFE

In the self-attention computation of traditional transformer networks, sequencing
image blocks generates keys, queries, and values via linear transformation. Queries deter-
mine the correlation between image blocks by computing the key–value pairs for the entire
graph. The computational complexity quadratically scales with the number of image blocks.
However, there is variability in the correlation of queries in different semantic regions for
the key–value pairs across the entire graph. As a result, having each query compute tokens
for the entire graph introduces computational redundancies. To address this issue, a DRA
was designed. Unlike the traditional self-attention, the DRA module firstly computes the
relevance weight matrix of queries and keys on a global scale. Secondly, the top k most
relevant key–value pairs corresponding to each query from matrix are filtered. Finally, the
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query in each region calculates against its corresponding top k most relevant key–value
pairs to reduce computational redundancies. The DRA was incorporated into the GFE
module to establish global context dependency, as illustrated in Figure 2.
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Figure 2. GFE branching structure.

Taking the nth stage as an example, the feature Fn ∈ RH×W×C is divided without

overlapping the sequence of image blocks Pn ∈ RS2× HW
S2 ×C; the size of each image block

is HW
S2 , and the number of image blocks S2 is 8 × 8. Then, the region level query, key, and

value, Q, K, V ∈ RS2× HW
S2 ×C, respectively, are obtained via linear projection as follows:

Q = PnWq (1)

K = PnWk (2)

V = PnWv (3)

where Wq, Wk, and Wv in Equations (1)–(3), respectively, denote the three linear matrices of
size C × C. Then, Q and K are input to the DRA module, as shown in Figure 3.
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In the DRA module, Q and K perform a global average pooling (GAP) operation in
the C dimension to obtain Qgap and Kgap ∈ RS2×C, respectively. Qgap and Kgap characterize
the overall features and the spatial distribution of Q and K within the region [48]. Then,
Qgap and transposed Kgap are multiplied to obtain the adjacency matrix Mgap ∈ RS2×S2

,
which is used to represent the region-to-region relevance [15]. Qgap, Kgap, and Mgap can be
calculated as shown in Equations (4)–(6), respectively:

Qgap = GAP(Q) (4)

Kgap = GAP(K) (5)

Mgap = Qgap
(
Kgap

)T (6)
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Subsequently, a neighbor matrix Mindex ∈ RS2×K is used to represent the top k relevant
region locations in each region. The ith row of Mindex denotes the index of the k most
relevant positions corresponding to the ith query of Q. K and V gather the first k key–value

pairs according to the region location index of Mindex, and obtain Kg and Vg ∈ RS2× KHW
S2 ×C,

respectively. The Gather process is shown in the right panel of Figure 3, and Mindex, Kg,
and Vg can be calculated, as shown in Equations (7)–(9), respectively:

Mindex = Topk
(

Mgap
)

(7)

Kg = Gather(Q, Mindex) (8)

Vg = Gather(V, Mindex) (9)

where Topk(·) denotes the index at which the first k largest values are recorded on each
row of the matrix Mgap, and Gather(·) denotes the extraction of values from Q, K according
to the index position matrix to obtain the most relevant key–value pairs Kg, Vg.

Finally, Q, Kg, and Vg perform token-to-token multi-head self-attention computation to

obtain features On ∈ RS2× HW
S2 ×C with global contextual information interaction, as shown

in Equations (10) and (11):

SA
(
Q, Kg, Vg

)
= so f tmax

(
Q
(
Kg
)T

√
d

)
Vg (10)

On = concate
[
SA
(

Q1, K1
g, V1

g

)
, . . . , SA

(
Qm, Km

g , Vm
g

)]
Wo (11)

On is reshaped to the input feature size Tn ∈ RH×W×C. The computational com-
plexity of traditional self-attention is Ω(2(HW)2C). Among the computational complex-
ity of GFE, the computational complexity of DRA is Ω(2(S2)2C). The calculation com-
plexity of multi-head attention is Ω(2HWk HW

S2 C). The total computational complexity

is Ω(2(S2)2C + 2HWk HW
S2 C), which is lower than that of traditional self-attention. By

computing the DRA module, the complexity of the traditional transformer self-attention
computation can be reduced, while the global long-range dependency of the image is
effectively established.

3.2. The Structure of LFE

To strengthen the network’s representation of the local feature information, the LFE
branch was designed parallel to the GFE. Considering the effectiveness of depthwise
separable convolution in extracting local features and the sensitivity of max pooling to
the most significant feature information, LFE obtains local features of four different scale
receptive fields through three depth-separable convolutions and max pooling. Then, LFE
reorganizes the four local features to obtain the refined local features. Finally, LFE applies
local window self-attention to the reorganized region to strengthen it. The LFE is shown in
Figure 4.

Taking the nth stage as an example, four parallel efficient convolutional branches for
the feature map Fn ∈ RH×W×C are used to extract the local feature information of different
receptive fields, which are Maxpool(·) operation and three depth-separable convolutions
DWC(·) with convolution kernel sizes of 3 × 3, 5 × 5, and 7 × 7 [49]. Through four
convolutional branches, the local features f 1

n , f 2
n , f 3

n , and f 4
n ∈ R

H×W×C
4 of the four branches

are obtained, the resolution of the features is reduced to half. They can be calculated as
shown in Equations (12)–(15), respectively:

f 1
n = Maxpool2×2(Fn) (12)

f 2
n = DWC3×3(Fn) (13)
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f 3
n = DWC5×5(Fn) (14)

f 4
n = DWC7×7(Fn) (15)
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Subsequently, pixel position rearrangement rearrange(·) is performed on the four local
features [50] to obtain a feature map fn ∈ RH×W×C. To strengthen the local information
interaction between the reorganized pixels, the local self-attention [51] LSA(·) with a
window size of 2 × 2 is applied to fn to obtain fine-grained local features Ln ∈ RH×W×C.
Pixel rearrangement and local information interaction can be expressed by the following
Equations (16) and (17), respectively:

fn = conv3×3(rearrange( f 1
n , f 2

n , f 3
n , f 4

n)) (16)

Ln = LSA2×2( fn) (17)

Finally, the features Tn and Ln of the two branches are spliced in channel dimension.
After layer normal (LN), they are input to the MLP module for global and local feature
enhancement, and reduced to the original feature map channel size Fn. MLP includes an
FC1 layer to reduce the channel dimensions, a depth-separable convolution, and an FC2
layer with the same channel. The computational process of the MLP module is shown in
Equation (18):

On = concate[SA(Q1, K1
g, V1

g ), . . . , SA(Qm, Km
g , Vm

g )]Wo (18)

3.3. Decoder Network Structure

In the decoder network, the feature F4 output from the last layer of the encoder passes
through the PPM [44,47]. PPM utilizes the average pooled features of different subregions
for multi-scale global contextual information. Subsequently, the module performs a depth-
separable convolution (DWC) for dimensionality reduction to obtain P4, which is shown in
Equation (19):

P4 = DWC(PPM(F4)) (19)

The features Fn(n ∈ {1, 2, 3}) output from the first three stages in the encoder are
obtained, and Pn−1 is up-sampled and spliced with Fn. Considering the difference in
semantic information between channels after feature fusion from the different stages, the
spliced features are input to the CAM [52] module. The global max-pooling GMP(·)
and a SoftMax operations are performed to obtain the weight Un of the features in the
channel dimension. Then, Un is dot-multiplied with the spliced features to obtain the
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channel-enhanced features. The computation process of the first three stages is shown in
Equations (20) and (21):

Un = so f tmax(GMP(concate[Up(Pn−1), Fn])) (20)

Pn = conv(concate[Up(Pn−1), Fn]× (1 + Un)) (21)

Finally, the features {P1, P2, P3, P4} are up-sampled to the output feature size and
dimensionally spliced. The final segmentation map is obtained after convolution and
sigmoid(·) computations.

3.4. Loss Function

In this paper, the cross-entropy loss and the dice loss functions [53] are selected to
combine the function of Ltotal to optimize the predicted value in the training process. The
network model is solved in the training process of obtaining the loss value when the value
of the weight parameter ω is known. The function is shown in Equation (22), and the
weight of each loss function is set to 0.5:

argmin(Ltotal |ω) = argmin(0.5×Lce + 0.5 × LD|ω) (22)

where Lce is the cross-entropy loss function and LD is the dice loss function.
The cross-entropy loss function Lce is defined as shown in Equation (23):

Lce =
1
N ∑

i
Li =

1
N ∑

i
− 1

N

C

∑
c=1

yilg(pi) (23)

where C denotes the number of categories, yi indicates whether it belongs to the positive
class—if it belongs, yi is 1; otherwise, yi is 0. The pi denotes the probability value that
the sample i belongs to category C. In this research, the category number C is 1. Lce is
used to evaluate the loss incurred when categorizing pixel points during segmentation of
an image. Lce can measure the degree of 0 difference between two different probability
distributions of the same random variable; a smaller value of the function indicates that
the two probability distributions are more similar, thus the better the prediction effect of
the model.

The dice loss function LD is defined as shown in Equation (24):

LD = 1 − 2|x
⋂

y|
|x|+ |y| (24)

where |x
⋂

y| denotes the intersection of true and predicted samples, and |x|+ |y| denotes
the concatenation of true and predicted samples, respectively; |x| and |y| denote the
numbers of true and predicted elements of the sample, respectively. LD is a metric loss
used to evaluate the similarity of the set between the predicted image and the real image.

4. Experimental Results and Analyses
4.1. Datasets

To evaluate the performance of the proposed network, extensive experiments on two
representative datasets were conducted.

4.1.1. WHU Building Dataset

The WHU dataset [54] is a large building dataset composed of remote sensing images
from multiple sources, mainly including aerial and satellite images. Among them, there are
8819 aerial images (spatial resolution down-sampled to 0.3 m; each image is 512 × 512 pixels
in size) covering a ground area of about 450 km2, and there are 17,388 satellite images with a
spatial resolution of approximately 2.7 m, covering a ground area of about 550 km2. The
whole sample labels of the building dataset are divided into two categories: building and
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background. In this research, 65% of the images in the dataset were randomly selected as the
training set, 5% of the images as the validation set, and the remaining 30% of the images as
the test set; these were used to train and test the network’s building extraction capabilities.

4.1.2. Massachusetts Building Dataset

The Massachusetts buildings dataset [55] covers approximately 20,080 buildings of
different scales and sizes in urban and suburban areas of the Boston region of the United
States. The dataset consists of 151 high resolution remote sensing images, each with a size
of 1500 × 1500 pixels and a resolution of 1.0 m, covering a ground area of about 340 km2

After overlap cropping (overlap of 128 pixels), an image dataset with an image size of
512 × 512 pixels was obtained. Among them, 3000, 200, and 1200 images were randomly
selected to join the training, evaluation, and test sets, respectively.

4.2. Evaluation Indicators

In this study, four metrics were chosen, accuracy (Acc), recall (R), precision (P), F1
score (F1), and intersection over union (IoU), in order to evaluate the performance of our
method and other SOTA methods. Their definitions are shown in Equations (25)–(29),
as follows:

Acc =
TP + FN

(TP + TN + FP + FN)
(25)

R =
TP

TP + FN
(26)

P =
TP

TP + FP
(27)

IoU =
TP

TP + FP + FN
(28)

F1 = 2 × Precision × Recall
Precision + Recall

(29)

where TP denotes the number of labeled building image elements predicted as building
image elements; FN denotes the number of labeled background image elements and
predicted as background image elements; FP denotes the number of labeled background
image elements predicted as building image elements; and TN denotes the number of
labeled building image elements predicted as background image elements.

4.3. Experimental Setup

The proposed model was implemented based on the PyTorch framework, and all
of the experiments were conducted on a single NVIDIA A30 Tensor Core GPU for 160 k
iterations. We implemented an early stopping strategy, structured in 200 iteration cycles.
During network training, if the loss in a subsequent cycle did not decrease compared to the
preceding cycle, the training was halted. For the training of the two datasets, the WHU
dataset and Massachusetts dataset, we used the Adamw optimizer [56] with a momentum
of 0.9 and a weight value decay of 0.0001. The initial learning rate was set to 0.0001, which
decayed in powers of 0.9 by the poly learning rate strategy. The batch size was set to 2,
and the weight decay was set to 0.0001. In addition, certain data enhancement strategies
are adopted for the training of the model: (1) random flipping; (2) random zoom-in and
zoom-out cropping of the image at a ratio range of (0.5, 2); and (3) normalization of each
channel of the image by calculating the mean and variance of the dataset.

4.4. Results of the Experiment

To evaluate the effectiveness of the network models proposed in this paper, the
comparative experiments were conducted on several classical semantic segmentation
methods using the WHU building dataset and the Massachusetts dataset, including the
following CNN-based semantic segmentation models: Segnet [29], DeepLabv3+ [35], and



Sensors 2024, 24, 365 11 of 23

HRNet [31], as well as the following transformer semantic segmentation models: Tran-
sUnet [25], Swin-T [16], and PoolFormer [26]. All of the network models were tested under
the same experimental conditions.

4.4.1. WHU Building Dataset

To support the authenticity of model performance, we used a five-fold cross-validation
method to verify each network. We divided the training set and validation set into five non-
overlapping and equal-numbered parts. For each experiment, one piece of five datasets was
selected as the validation set, and the remaining four pieces were used as the training set.
Different networks used the same datasets in the same fold of experiments. We performed
statistical analysis on the accuracy of five-fold cross-validation, as shown in Figure 5. The
labels in the box plots represent the average accuracy values of five experiments.
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As can be seen from Figure 5, the average accuracy achieved by DFRTNet in the
five-fold cross-validation experiment is higher than those of the other networks. At the
same time, the standard deviation (SE) of the accuracy obtained by DFRTNet is also smaller
than those of the other networks, which proves that the dispersion degree of the accuracies
obtained by DFRTNet at different folds is lower than those of the other networks.

Under the same experimental conditions, the evaluation indexes for the WHU dataset
were obtained as shown in Table 1. It can be seen that all of the models in the table
achieve good results, with our network having an advantage over the CNN-based models.
Compared with SOTA method HRNet, our network obtained 4.93%, 5.07%, and 3.01%
improvements in IoU, R, and F1, respectively, as well as 5.16%, 4.83%, and 3.16% improve-
ments compared to DeepLabv3+, respectively. In the transformer-based model, relative
to the standard Swin-T, our network improves the IoU, R, and F1 by 5.72%, 4.72%, and
3.52%, respectively. Compared to the TransUnet-S and PoolFormer-m48 with larger param-
eter counts, our network improves the IoU accuracies by 2.64% and 3.52%, respectively.
From the quantitative results, our network has a clear advantage on the WHU dataset.
Meanwhile, we found that the three metrics of the transformer-based networks were low
compared to the CNN-based networks; the reason for this result may be that the small batch
size makes it impossible for transformer’s network to converge with the same number
of iterations, whereas our network has a faster convergence due to the addition of the
convolutional module.

A visual comparison of the prediction results for different models on the WHU dataset
from a qualitative point of view is shown in Figure 6. The first two columns of the subfigures
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represent the input images and real samples. The latter seven columns of the subfigures
represent the prediction results of CNN-based Segnet and HRNet; transformer-based
Swin, TransUnet, and PoolFormer; and our network, respectively. The even subfigure rows
represent localized enlargements of the previous subfigure rows. We overlaid the prediction
results of different networks with the real labels, and set the missed building pixels to red,
the pixels incorrectly identified as buildings to blue, and the correctly identified buildings
pixels to white. It can be seen that our method has better performance than the other
methods. For example, compared with the other methods, our network is able to extract
more complete and clearly bounded complex buildings, has more accurate localization
for small buildings, and also achieves better recognition results than the other networks
for buildings obscured by trees or shadows. These results indicate that the effective
combination of the LFE module and the GFE module enables the network to extract richer
details and global features.
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Table 1. Performance metrics for different networks in the WHU dataset.

Method IoU P R F1

Segnet 81.88 93.71 74.82 83.71
DeepLabv3+ 85.97 94.12 90.23 92.06

HRNet 86.20 94.75 89.99 92.21
TransUnet-S (ResNet-50) 88.49 93.75 87.21 90.36

Swin-T (UperNet) 85.41 93.19 90.34 91.70
PoolFormer-m48 (FPNNet) 87.61 93.75 92.48 93.10

Ours 91.13 95.37 95.06 95.22

4.4.2. Massachusetts Building Dataset

We performed the five-fold cross-validation experiment on the Massachusetts dataset
and carried out statistical analysis on the accuracy metrics. As shown in Figure 7, the labels
in the box plots represent the average accuracy values of five experiments. The average
accuracy achieved by DFRTNet in the five-fold cross-validation experiment is higher than
that of the other networks.
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The evaluation results from each network in the Massachusetts buildings dataset are
shown in Table 2, with bold text denoting the best-performing evaluation metrics on the
corresponding dataset. Compared to the other methods, our proposed network also shows
significant superiority on the Massachusetts buildings dataset. Relative to CNN-based
DeepLabv3+, our network obtained 4.19%, 4.02%, and 2.46% improvements in IoU, R,
and F1, respectively, and achieved 3.82%, 2.83%, and 2.17% improvements relative to
transformer-based Swin-T.

Through qualitative analysis, we can see from Figure 8 that for dense buildings, the
prediction results of our network are more complete compared to the other networks, and
the buildings that are covered by the shadows of high-rise buildings can also be recognized
effectively. Meanwhile, we found that the difference between Swin-T based on transformer
and Deeplabv3+ based on CNN is not large in terms of prediction results and accuracy
metrics. We believe this was due to the fact that the transformer model did not reach
effective convergence due to the number of iterations and the small batch size in this
experiment. It further illustrates the robustness of our network’s framework design in
extracting complex buildings.
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Table 2. Performance metrics for different networks on the Massachusetts buildings dataset.

Method IoU P R F1

Segnet 74.37 82.28 69.31 75.24
DeepLabv3+ 77.61 88.77 84.30 86.35
HRNet-R48 79.61 88.40 86.40 87.38
TransUnet-S
(ResNet-50) 79.76 84.71 78.52 81.50

Swin-T
(UperNet) 77.98 87.91 85.49 86.64

PoolFormer-
m48 (FPNNet) 77.84 88.96 84.46 86.53

Ours 81.80 89.32 88.32 88.81
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4.5. Analysis of Complexity

To verify the relationship between the performance and complexity of the network,
two metrics were used, the number of model parameters (Params) and the average time
per iteration, for network complexity assessment with the other SOTA methods. The IoU
metrics were used for the comparison of network performance. As shown in Table 3,
although Segnet has the smallest number of parameters, the IoU is much lower than that of
our model. In the transformer-based model, the complexity of our model in terms of the
number of parameters is comparable to that of Swin-T, but the average time per iteration
and the performance are significantly better than that of Swin-T. These results reaffirm that
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the performance advantage of our network is determined by the advantages of the network
model architecture as a whole.

Table 3. Model parameters and average time per iteration.

Method Params Average Time per
Iteration

IoU

WHU Massachusetts

Segnet 29.4 M 0.398 s 81.88 74.37
DeepLabv3+ 59.0 M 0.749 s 85.97 77.61

HRNet 46.8 M 0.672 s 86.20 79.61

TransUnet 93.3 M 1.206 s 88.49 79.76
Swin-T 60.0 M 0.893 s 85.41 77.98

PoolFormer-M48 73.4 M 0.943 s 87.61 77.84
Ours 59.8 M 0.769 s 91.13 81.80

Additionally, we visualized the training loss curves of our network alongside those
of transformer-based networks, as illustrated in Figure 9. This visualization demonstrates
that our network’s loss on both the WHU and Massachusetts datasets decreases more
rapidly compared to the other network models. In the WHU dataset, DFRTNet reached
convergence at iteration 120608, and the other networks also reached convergence. In
the Massachusetts dataset, due to the small size of the dataset, TransUnet and Swin did
not show early stopping at the specified iterations. DFRTNet reached convergence at
iteration 150206, which also shows that the performance of DFRTNet is better than that of
the transformer-based networks. Moreover, the magnitude of oscillations in our network’s
loss is notably smaller than those observed in the other networks. This evidence further
substantiates the effectiveness of our network model.
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4.6. Analysis of Feature Visualization

To obtain a more intuitive understanding of the representative feature information
obtained by the two modules in the network, the features of the network were visualized.
First, we visualized the output features of the LFE, GFE, and transformer modules of the
model encoder at each stage. We zoomed in on the lower spatial resolution deeper features
with linear interpolation. In the visualizations (Figure 10), the highlighted colors indicate
the regions that the model pays more attention to, and the darker colors indicate the regions
that the model pays less attention to. From the visualization in Figure 10, we can clearly see
the output features of the input image after extraction by the two modules LFE and GFE,
MLP-enhanced expression and output by the global self-attention module, respectively. In
the two branches of the encoder, the model effectively extracts the local and global feature
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information of the input image, respectively. LFE pays more attention to the local detail
information of the features, while GFE pays more attention to the overall distribution of
the features. After MLP enhancement, the fused features provide enhanced expression of
the global and local features. The network was able to pay attention to the information
related to the two features, and suppressed the unimportant information. As the network
deepens, the global information obtained by the LFE module and the GFE module in
deeper layers (e.g., the third stage) is richer. At this time, features pass through the global
self-attention module and interact with the global contextual information through the
global self-attention. This proves the effectiveness of our proposed model.
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features of the image with large buildings. (b) The output features of the image with intensive buildings.

We also visualized the attention map of the GFE module. Unlike the direct output of
the correlation matrix obtained from the computation of queries and keys, we took one
image block containing the building in the attention map as the query; then, we visualized
the relevance of the query to the whole image. We reshaped the ith row of the relevance
matrix to the image block region size, which represents the relevance weight of the query
of the ith image block to the keys of the whole image block. Subsequently, we used linear
interpolation on the input image size, i.e., we obtained the attention heat map with the
ith image block as the query. We selected four images for visualization, as shown in
Figure 11a–d, where the odd columns represent the relevance weight maps and the even
columns represent the heat maps corresponding to the query image blocks. We selected the
image block containing the building as the query and indicated it with a red box. The red
color in the heat map represents high relevance, while the blue color represents irrelevance.
From Figure 11, we can see that under the DRA of the first stage, image block areas sparsely
associated with buildings show highlighted values. With the deepening of the stage, the
high correlation regions are more intense and accurate until they cover all of the relevant
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building regions in the whole map. This demonstrates that our GFE module is able to
effectively extract global contextual information through DRA for shallow features.
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5. Discussion

In order to explore the contributions of different modules as well as hyperparam-
eter settings to our network encoder and decoder, we conducted two sets of ablation
experiments on the WHU building dataset.

5.1. Impact of Different Modules

First, to explore the contributions and impact of different modules on the network
encoder and decoder, we conducted ablation experiments on the WHU building dataset
with different combinations of modules. Specifically, our network encoder mainly consists
of the LFE and GFE in LGFE and the transformer module in the last stage, while the decoder
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mainly consists of the CAM module. The ablation experiments in the decoder part involve
the CAM module. We performed four ablation experiments. LFE means that in the encoder
part, the features only go through the LFE module and MLP. GFE means that in the encoder
part, the features only go through the GFE module and MLP. GFE + LFE means that we did
not use the CAM module on the basis of our network, and GFE + CAM and LFE + CAM
mean that in the decoder part, the features go through the MLP output on the basis of
the first and second sets of experiments, respectively. The accuracy metrics between the
modules are shown in Table 4.

Table 4. Accuracy indicators for different modules. The label ‘
√

’ indicates that the network has the module.

Method LFE GFE CAM IoU P R F1

LFE
√

89.92 94.53 94.01 94.26
GFE

√
90.55 95.21 94.55 94.87

LFE + GFE
√ √

91.09 95.31 95.10 95.20
LFE + CAM

√ √
90.42 94.95 94.64 94.80

GFE + CAM
√ √

90.98 95.11 95.14 95.13
GFE + LFE + CAM (Ours)

√ √ √
91.13 95.37 95.06 95.22

From the results of Table 4, it can be seen that the best scores of our model on each
metric indicate the advantages of different modules in terms of performance. In par-
ticular, the segmentation performance is slightly improved when we add GFE and LFE
(i.e., GFE + LFE). In addition, the last three experimental results in the table show that
adding the CAM module is effective.

5.2. Impact of Hyperparameters

In the GFE module of the model’s encoder section, we performed ablation experiments
to verify the necessity of the parameter k selection. The values of k we chose in the first
three stages are {1, 4, 16}, with the purpose of keeping the number of image blocks involved
in the computation in each stage relatively stable. Specifically, the computations of the
image blocks in the first three stages were { 128×128

82 × K, 64×64
82 × K, 32×32

82 × K}, and the
corresponding numbers of image blocks involved in the computations of our scheme were
{256, 256, 256}, respectively. We verified the network’s performance when the number
of participating image blocks decreased by designing the combinations {1, 2, 4}, {2, 2, 4},
and {1, 4, 8}, and we also designed the combinations {1, 6, 36} and {1, 8, 64} to verify the
network’s performance when the number of participating image blocks increased. The
ablation experiments were performed on the WHU dataset. Likewise, we employed the
five-fold cross-validation experiment to validate the authenticity of the networks.

As shown in Figure 12, the token combination of {1, 4, 16} achieved a higher average
accuracy than those of the other networks, verifying the authenticity of the differences
between the different networks.

Subsequently, we utilized the IoU indicator to verify the prediction performance of the
test set. The numbers of participating image blocks with the corresponding performance
results are shown in Figure 13.

It can be seen in Figure 13 that our network scheme has better performance compared
to the other combinations. It is worth noting that the combinations {1, 6, 36} and {1, 8, 64}
with more image chunks involved are lower than our network in terms of IoU. It suggests
that the network’s performance is not improved by increasing the model participant
numbers alone, and also provides further evidence of the superior performance of our
combinations on this dataset.



Sensors 2024, 24, 365 20 of 23
Sensors 2024, 24, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 12. Accuracies of different token combination under five-fold cross-validation experiment on 

WHU building dataset. The label ‘♦’ represents the accuracy value of each experiment. 

Subsequently, we utilized the IoU indicator to verify the prediction performance of 

the test set. The numbers of participating image blocks with the corresponding perfor-

mance results are shown in Figure 13. 

 

Figure 13. Performance comparison between different image block number combinations. 

It can be seen in Figure 13 that our network scheme has be�er performance compared 

to the other combinations. It is worth noting that the combinations {1, 6, 36} and {1, 8, 64} 

with more image chunks involved are lower than our network in terms of IoU. It suggests 

that the network’s performance is not improved by increasing the model participant num-

bers alone, and also provides further evidence of the superior performance of our combi-

nations on this dataset. 

6. Conclusions 

In this study, an efficient transformer network based on dual-branch fusion of CNN 

and transformer networks was proposed for efficient and accurate extraction of semantic 

information of buildings. Traditional convolutional neural networks and transformer net-

works have some limitations in semantically segmenting buildings in high resolution re-

mote sensing images. The fixed geometric structure and local receptive fields of convolu-

tional neural networks cannot extract global features well; while transformer networks 

Figure 12. Accuracies of different token combination under five-fold cross-validation experiment on
WHU building dataset. The label ‘♦’ represents the accuracy value of each experiment.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 12. Accuracies of different token combination under five-fold cross-validation experiment on 

WHU building dataset. The label ‘♦’ represents the accuracy value of each experiment. 

Subsequently, we utilized the IoU indicator to verify the prediction performance of 

the test set. The numbers of participating image blocks with the corresponding perfor-

mance results are shown in Figure 13. 

 

Figure 13. Performance comparison between different image block number combinations. 

It can be seen in Figure 13 that our network scheme has be�er performance compared 

to the other combinations. It is worth noting that the combinations {1, 6, 36} and {1, 8, 64} 

with more image chunks involved are lower than our network in terms of IoU. It suggests 

that the network’s performance is not improved by increasing the model participant num-

bers alone, and also provides further evidence of the superior performance of our combi-

nations on this dataset. 

6. Conclusions 

In this study, an efficient transformer network based on dual-branch fusion of CNN 

and transformer networks was proposed for efficient and accurate extraction of semantic 

information of buildings. Traditional convolutional neural networks and transformer net-

works have some limitations in semantically segmenting buildings in high resolution re-

mote sensing images. The fixed geometric structure and local receptive fields of convolu-

tional neural networks cannot extract global features well; while transformer networks 

Figure 13. Performance comparison between different image block number combinations.

6. Conclusions

In this study, an efficient transformer network based on dual-branch fusion of CNN
and transformer networks was proposed for efficient and accurate extraction of seman-
tic information of buildings. Traditional convolutional neural networks and transformer
networks have some limitations in semantically segmenting buildings in high resolution
remote sensing images. The fixed geometric structure and local receptive fields of convo-
lutional neural networks cannot extract global features well; while transformer networks
can model global contextual information, they introduce computational redundancies and
extract local detail features poorly. To solve these problems, this study reconstructed the
transformer structure, and designed the local and global feature extraction transformer
module (LGFE). The LGFE was applied to the first three scales of the encoder. The LGFE
module consists of the GFE branch and the LFE branch. The GFE branch extracts global
features through a DRA module, while the LFE branch obtains fine-grained represen-
tations of features. Local and global features are efficiently fused through MLP. In the
decoder part, a simple CAM is used for channel dimension enhancement. The network
was compared with other mainstream as well as current SOTA methods on the WHU and
Massachusetts building datasets, and achieved the best segmentation accuracy. This shows
that the network has the ability to extract semantic information of buildings with high
efficiency and accuracy, which is of great theoretical and practical significance for the field
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of HRSI building semantic segmentation. Meanwhile, our proposed transformer module
reconfiguration fused GFE branches and LFE branches can be widely applied in more
computer vision tasks.

Our network still has limitations. In the ablation experiments, we demonstrated that
the values of network hyperparameters work well in the remotely sensed building datasets;
however, in the future, we hope that the hyperparameters will be adapted to a specific
dataset in order to obtain the best results in a specific task. Meanwhile, we will introduce
self-supervised learning and incremental learning in the future to achieve functionality on
downstream tasks with unlabeled samples.
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