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Abstract: The aim of this work is to create a new type of gravimeter that can function effectively in
the challenging conditions of space, specifically on the surfaces of planets and moons. The proposed
device, called a diamagnetically stabilized magnetically levitated gravimeter (DSMLG), uses magnetic
forces to balance a test mass against the force of gravity, allowing for accurate measurements. A
diamagnetically stabilized levitation structure comprises a floating magnet, diamagnetic material,
and a lifting magnet. The floating magnet levitates between two diamagnetic plates without the need
for external energy input due to the interaction between the magnetic forces of the floating magnet
and the stabilizing force of the diamagnetic material. This structure allows for stable levitation of
the floating magnet without requiring additional energy. The goal is to design a gravimeter that is
lightweight, requires minimal power, can withstand extreme temperatures and shocks, and has a
low data rate. The authors envision this gravimeter being used on various robotic spacecraft, such
as landers and rovers, to study the interiors of rocky and icy celestial bodies. This paper reports
on the results of a finite element model analysis of the DSMLG and the strength of the resulting
diamagnetic spring. The findings contribute to the understanding of the levitation characteristics of
diamagnetically stabilized structures and provide valuable insights for their practical applications,
including in the development of the proposed DSMLG.

Keywords: diamagnetic stabilized levitation; pyrolytic graphite; magnetic susceptibility; buoyancy;
spring constant; gravimeter

1. Introduction

Gravity is a valuable means of determining the distribution of mass inside a planet.
Currently, gravity information for celestial bodies other than Earth is mainly obtained
from orbiting satellites via Doppler ranging and satellite-to-satellite tracking. A gravimeter
situated on the surface would provide measurement abilities that cannot be achieved
from orbit.

Satellites can measure gravity on a global scale but not at finer length scales. The
Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon [1] collected
the highest-resolution gravity data to date but still had limitations in spatial resolution
due to attenuation [2]. Thus, surface gravimetry will be necessary to determine gravity
anomalies at scales less than several kilometers. Typically, spacecraft measure the gravity
potential field outside a celestial body, using the Brillouin sphere as a reference point. The
Brillouin sphere is the smallest sphere centered at the body’s barycenter that covers all its
topography [3]. Any Doppler ranging or satellite-to-satellite tracking beyond this sphere
cannot be used to confidently estimate gravitational potential at altitudes below it. The
shape and gravitational field of a celestial body deforms in response to tidal forces [4], and
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these tidal responses produce signals that are measurable by a gravimeter [5]. While Love
numbers have been estimated from orbit and from ground displacement measurements [6],
a gravimeter would provide an independent coupled estimate of the k and h Love numbers.

It is difficult to measure gravity inside the Brillouin sphere from orbit due to external
potential divergence [7–9], and surface gravity measurements have large uncertainties.
Measuring absolute gravity would require calibration on Earth and precise measurements
during launch. However, a relative gravimeter on a rover could still provide useful data by
taking multiple measurements over longer distances.

As a result, the gravitational Love numbers of different bodies are not well-constrained
for spherical harmonic degrees greater than 2 [10,11]. A gravimeter that remains stationary
on the surface of a body could more accurately detect the changes in gravitational accelera-
tion caused by tidal deformation. Having such a system deployed could also help make
other measurements, like detecting lava tubes on the moon, estimating the local terrain of a
planet, and generally help understand the planetary internal structure.

Lava tubes, void spaces resulting from volcanic activity, create a characteristic gravity
deficit [12]. The width of these tubes can be inferred from the shape of the observed gravity
anomaly, although this gets complicated with non-cylindrical tube shapes. Lava tubes are
larger on bodies with weaker gravity, such as the Moon, where they could reach widths
of a few kilometers [13]. The radiation shielding provided by the ceiling of a lava tube
makes these structures a suitable base for human exploration and settlement [14]. While
lava tubes on the Moon are difficult to identify from orbit, a gravimeter mounted on a
rover would be an effective means of detecting them [15,16]. Surface-based gravimetry
could plausibly detect lunar lava tubes by measuring relative gravity with an error of less
than 20 mGal [17], where 1 Gal, sometimes called a galileo after Galileo Galilei, is a unit
of acceleration commonly used in precision gravimetry and is defined as 1 cm per second
squared (1 cm/s2) [18].

Gravity anomalies can be used to estimate the bulk density of a planetary body’s
local terrain, which can be determined using the Nettleton–Parasnis method [19–22]. Mea-
suring bulk density at different scales and locations can reveal vertical profiles and three-
dimensional variations [23,24]. Bulk density can be used to investigate mineralogy, the
presence of dense igneous bodies [25], the presence of ice [26], and porosity, which is
dependent on impact history and regolith formation processes [27–29]. Sedimentary rock
density on a planet like Mars can provide insights into deposition methods and depth of
burial [30,31]. Gravity signals associated with many of these phenomena exceed 1 mGal.

Tidal deformation is a powerful tool for understanding a planetary body’s internal
structure and can reveal information such as the size of a liquid metal core [6] or the presence
of subsurface oceans [32–34]. It can also indicate tidal dissipation [35] and geophysical
phenomena, such as volcanism [36], geysers [37], ocean [38], and energetic conditions that
could be suitable for microbial life [39]. Tidal tomography [40], which maps the deep
interior of a planetary body, is a promising technique that could reveal heterogeneities
caused by magma ocean overturn and thermochemical convection [41–44]. Hemispheric
dichotomies in surficial geology are a topic of interest in planetary science, and tidal
deformation may offer insights into their origins. By measuring gravity at a single location,
surface-based gravimetry can measure a tidal gravity perturbation (<200 µGal for a full
tidal cycle). Ultra-high-precision measurements could potentially resolve deep mantle
heterogeneities (<0.3 µGal for a full tidal cycle) [45] or detect earthquakes instantaneously
(<1 µGal) [46].

The acceleration of gravity can be measured using various instruments, including the
free-fall of a test mass in a vacuum and superconducting levitation of a test mass [47,48],
but they are too massive for field geophysics or spacecraft missions. The most common
type of gravimeter used in terrestrial geophysics is the spring-based gravimeter, which
measures changes in gravitational acceleration in time and space [49]. However, these
instruments have limitations for scientific investigations beyond Earth. An example of a
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commercially available instrument is the Scintrex CG-6 Autograv gravimeter, which uses a
fused quartz spring [50].

A history of the development of gravimetry and applications to geodesy ranging from
Harrison’s and Borda’s Pendulum systems in the 18th Century to Cavendish’s Free Fall
Experiments in the 19th Century, to the development of Spring Gravimeters by researchers
like Jeffreys and Harris, culminating in the more recent Superconducting Gravimeters
(~1970s) like the GWR iGrav and the Scintrex systems can be found in [51–54]

Clearly, a variety of gravimeter designs have been built, and an even greater diversity
of designs have been proposed. Global gravity fields can be recovered by orbiting spacecraft
with a variety of detection techniques (e.g., GOCE, GRACE, and GRAIL), but these datasets
are practically limited in their horizontal resolution by their altitude. For Earth, the finest
resolution of orbitally measured static gravity fields is a few hundred kilometers [55].
Consequently, ground-based gravimeters are needed to map shorter-wavelength anomalies.
Whereas “absolute” gravimeters directly measure the amplitude of gravity acceleration
(e.g., through free fall), relative gravimeters like the DSMLG measure relative changes in
acceleration; relative gravimetry is more practical for field deployment and is the focus of
our paper.

In a spring-based instrument, changes in temperature can significantly affect the
restoring force of the mechanical spring. To mitigate this, some modern gravimeters use
fused quartz springs with low thermal expansion coefficients. However, temperature
fluctuations can still lead to large changes in apparent gravity readings.

To overcome the temperature sensitivity, these gravimeters are typically heated to
maintain a constant temperature, causing them to require significant energy and power
resources to accomplish this. For example, the Scintrex CG-6 gravimeter weighs 5.2 kg
without an autonomous leveling system, with the weight due in part to the instrument’s
thermal regulation components. These requirements would be even higher to maintain a
constant temperature on the moon.

Finally, during launch, separation, entry, descent, and landing, springs in gravimeters
can experience an elastic change in length, known as “tares.” In addition, delicate springs
can be damaged if the gravimeter is inverted while the test mass is unlocked. Locking
and unlocking the test mass can also introduce tares in the spring [56]. The most common
relative gravimeter design balances the force of gravity against known elastic stresses, in-
cluding a zero-length spring or a vibrating string [49,57]. Micro-electromechanical systems
(MEMS) similarly balance the strength of gravity against elasticity, and gravimeters based
on these principles have made great strides in recent years [58].

All elasticity-based gravimeter sensors suffer from similar limitations, including tem-
perature sensitivity, ambient noise, and instrument drift. Sensors based on electromagnetic
forces could plausibly exhibit improved performance regarding these limitations and may,
therefore, be desirable for some applications. A gravimeter that uses electrostatic forces has
been proposed [59], but this design still incorporates an elastic spring. Superconducting
gravimeters do not rely on elasticity, but they are bulky and impractical for mobile de-
ployment. Compared to existing alternatives, a gravimeter that incorporates diamagnetic
levitation would potentially have the benefit of improved stability, reduced noise, improved
sensitivity, and operation at room temperature [60].

To address these issues, we have started the theoretical development of a diamag-
netically stabilized magnetically levitated gravimeter (DSMLG), which uses a magnetic
spring, shown diagrammatically in Figure 1, resulting from the interaction of the mag-
netic fields of permanent magnets and diamagnetic materials. This system should be less
sensitive to drift in response to stresses than a mechanical spring [61], have much lower
temperature sensitivity, and consequently much lower energy and power requirements
to take similarly reliable gravity measurements, which in turn simplify deployment and
prolong operational lifetime. While the practical design of such an instrument is beyond
the scope of this paper, the sensor casing could inductively dampen the motion of the test
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mass through eddy current braking, which would mitigate ambient noise experienced by
elasticity-based sensors.
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Figure 1. The diamagnetic plates expel the magnetic field (dashed red lines) from its bulk, deforming
the magnetic field and creating a repulsive magnetic force (green arrows) between the magnet and the
diamagnetic plates (left). This is equivalent to the presence of magnetic springs with force constants
k and k’, whose force constant is dependent on the spacing between the face of the magnet and the
diamagnetic plates (right).

The DSMLG is based on the stable levitation properties of a structure developed [62]
through the investigation of the levitation properties of the floating magnet within a dia-
magnetically stabilized levitation system. The floating magnet in the diamagnetically
stabilized levitation structure exhibits three distinct levitation states—symmetric monos-
table levitation, bistable levitation, and asymmetric monostable levitation—with our main
focus on the symmetric monostable levitation mode [63]. This study presents the results
of simulations to explore the levitation characteristics of the structure, and in particular,
the effect of adjusting the gap between diamagnets and magnets on the resulting magnetic
spring Hooke’s Law constant.

2. Methodology
2.1. Proposed Gravimeter Device

The diamagnetically stabilized magnetically levitated gravimeter (DSMLG) is a levi-
tation gravimeter that utilizes the attraction between two permanent magnets to oppose
the average gravitational force experienced by the test mass at the deployment location.
The test mass, a permanent magnet, is levitated by the magnetic field of a fixed magnet,
and the only significant force acting on the test mass will be diamagnetic repulsion from
diamagnetic plates.

A diagram of the device under examination, shown in Figure 2, depicts the levitated
permanent magnet (i.e., the test mass), the fixed permanent magnet that opposes the
gravitational force on the test mass, and the two diamagnetic plates that repel the levitated
permanent magnet. When at equilibrium, the sum of the forces acting on the test mass,
viz. the gravitational force (Fg), magnetic force (Fm), and the two diamagnetic repelling
forces (Fd1 and Fd2), sum to zero. When the test mass is displaced from the equilibrium
point, it experiences a restoring force equal to the sum of the two diamagnetic repelling
forces. The test mass cannot move more than the distance between the diamagnetic plate
and the levitated magnet (ldm) due to physical limitations. The separation between the two
diamagnetic plates (ldd) controls the depth of the potential well in the diamagnetic repulsion
field, allowing for a softer or harder “diamagnetic spring” by adjusting this distance.

We also plan to experimentally validate the model, with results to be shared in an
upcoming paper. To verify the results, we will change the summation of forces at the test
mass. To accomplish this, rather than attempting to modify the force of gravity (which is
generally not possible), we can change the density of the surrounding medium, thereby
changing buoyancy forces on the test mass (Fb). This was deemed a better approach to
examine the reliability of the model rather than attempting to modify the strength of the
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fixed permanent magnet, whether by adding permanent magnet fragments or by adding
an electromagnet to the system.
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Note that in order to enable measuring the position of the levitated permanent magnet
using a white light interferometer, we also need to introduce a small bore in the lower fixed
diamagnetic plate, the effect of which also must be studied.

2.2. Basic Principles of Diamagnetically Stabilized Magnetic Levitation

The history of magnetism can be traced back to ancient Greece, where the philosopher
Thales of Miletus observed that lodestone (a naturally occurring magnet) could attract
iron [64]. In the 16th century, William Gilbert, an English physician, conducted extensive
experiments and published a treatise on magnetism, which laid the foundation for the
modern understanding of magnets. Diamagnetism, on the other hand, was first observed
and studied by Michael Faraday in the early 19th century, who noticed that certain materials
weakly repelled a magnetic field [65]. This discovery paved the way for the understanding
of the fundamental properties of materials and their interaction with magnetic fields.

The magnetic energy of an object of volume V and magnetic susceptibility χ in a field

of magnetic flux density
→
B is given by:

Emag = − 1
2µ

χVB2 (1)

and since
→
F =

→
∇E, the magnetic force (in N) experienced by a magnetic system is:

→
F mag =

χ

µ
V

(→
B ·

→
V
) →

B (2)

and depends on the magnetic susceptibility of the material, χ (nondimensional), its volume,

V (m3), the magnetic flux density of the applied field,
→
B (T), the gradient of the magnetic

field,
→
B ·

→
V (T/m), and the permeability of free space, µ0 = 4π× 10−7 H/m.

If an object is either ferromagnetic or paramagnetic (χ > 0), it will show a positive

result with a positive value of magnetic force (
→
F mag), indicating that it is attracted to the

magnetic field. On the other hand, if the material is diamagnetic (χ < 0), it will display a

negative result with a negative magnetic force (
→
F mag), indicating that it is being repelled by

the magnetic field. Essentially, materials that have a greater magnetic susceptibility than
their surroundings are pulled toward high magnetic field areas, and conversely, materials
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with a magnetic susceptibility smaller than their surroundings are expelled from high
magnetic field areas, which is a phenomenon that is not often observed directly.

It has been observed that magnetic objects can be trapped in stable locations, but only
in areas where there is a maximum magnetic field. This means that materials with greater
magnetic susceptibility than their surroundings can only be stably trapped at the source of
the magnetic field. However, magnetic field minima can be created outside of a magnetic
field source, which allows for the levitation and confinement of diamagnetic materials
like biological materials. In contrast, ferromagnetic materials can be trapped between two
diamagnetic plates at the minimum energy location created by the magnetic field.

The proposed device relies on trapping a strong permanent magnet in the energy min-
imum between two diamagnetic plates (the location where Emag is a minimum according to
Equation (1)), where the restoring forces are determined by the magnetic force as described
by the equation. This means that any deviation of the object from the minimum energy

location will result in a magnetic force (
→
F mag) that acts to restore it to that location.

2.3. Mathematical Foundations

The resultant force Fr for the system shown in Figure 3 is given as

Fr = Fm + Fl − Fu − G (3)

where Fm is the force exerted on the floating magnet by the lifting magnet, Fl and Fu are
the lower and upper opposite repulsive forces exerted on the floating magnet by two
highly oriented pyrolytic graphite (HOPG) sheets, and G is the gravitational force on the
floating magnet.
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(∆) refers to the displacement from the equilibrium position indicated by the thin dashed line.

A study is proposed to investigate the effect of buoyancy on the resultant force in
the case that the chamber pressure is above vacuum such that the new resultant force F∗

r
includes the buoyancy force, i.e.,

F∗
r = Fm + Fl − Fu − G∗ (4)

G∗ = G − FB (5)
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FB is the buoyancy force.

G = mg = ρVg, FB = ρ∗Vg, G∗ = (ρ − ρ∗)Vg (6)

ρ∗ is the density of the medium,

G∗ = ρVg∗ (7)

where g∗ is the effective local gravitational acceleration

g∗ =
(

ρ − ρ∗

ρ

)
g (8)

The radial, Br, and axial, Bz, magnetic field components described in an axisymmetric
cylindrical coordinate system, therefore, defined only by a radial, r, and height, z, coordinate
for a magnet with magnetic dipole moment, Md, immersed in a medium with the magnetic
permeability of vacuum, µ0, is given analytically by

Br(r, z) =
µ0Md

4π

[
3

rz
a5

]
, Bz(r, z) =

µ0Md
4π

1
a3

[
3

z2

a2 − 1
]

, and a(r, z) =
√

r2 + z2 (9)

We compute the minimum L1 from the balance of forces, i.e.,

B′∣∣
r=0,z =

mg
Md

f ind z−−−→ L1 (10)

where,

B′ =
∂Bz

∂z
= 3

µ0Md
4π

1
a7

(
3r2z − 2z3

)
(11)

L∗
1 =

4

√
3µ0

2π

M2
d

mg
(12)

For vertical and horizontal levitation stability,

L2 <

{
12µ0Md|χ|

πB′′

} 1
5
<

{
24µ0B0Md

3|χ|
π(mg)2

} 1
5

(13)

where Md and m are the magnetic dipole moment and mass of the floating magnet.

Mdd = MV, Md = |M|V (14)

→
M is the magnetization of the magnet, V is the volume,

|M| = Br/µ0, V =
1
4

πd2h (15)

B0 =
µ0

π
|M| = Br

π
(16)

B′′ =
∂2Bz

∂z2 = 3
µ0Md

4π

1
a9

(
3r4 − 24r2z2 + 8z4

)
(17)

µ0 = 4π × 10−7NA−2 (18)

The relative susceptibility is µr = 1 + χ.
Based on a crude estimate of the force on the magnet using the image method it can

be obtained from
Fd = 3

µ0χz

4π
Md

2 1
a4 (19)
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To obtain the tangent stiffness at the equilibrium point, a hyperbolic sine function fit
was used to approximate each F − ∆ curve, where ∆ represents the displacement of the
levitated magnet from the equilibrium point, as shown in Figure 3. The stiffness is obtained
by computing the first-order derivative of the hyperbolic function at the zero-crossing
(∆ = 0). We define the hyperbolic function relating the force, F, to the displacement, ∆,
using parameters a0, a1, and a2, and the resulting value of the gradient of the force vs.
displacement, as shown in Equation (20)

Fi = a0 + a1sinh(a2∆i + a3) ⇒ ∂F
∂∆

∣∣∣∣
i
= F

′
i = a1a2 cosh(a2∆i + a3) (20)

K = F
′
i

∣∣∣
∆=0

= a1a2 cosh(a3) (21)

The universal gravitational constant G̃ can likewise be obtained from the force–
displacement relationship based on Newton’s law of universal gravitation, given as

F(∆) = G̃
m·m̃(

L∗
1 + ∆

)2 = m·g, g =
F(∆)

m
=

G̃m̃(
L∗

1 + ∆
)2 (22)

where m̃ is the mass of the lifting magnet, and G̃ is the gravitational constant.

2.4. Model Implementation

The study employed finite element analysis (FEA) simulation using COMSOL Multi-
physics 6.0 to determine the resultant force. The geometric model used was an axisymmetric
model for 2D analysis. The simulation used the structure parameters listed in Table 1 and
calculated the magnetic force between magnets and the diamagnetic force between the
magnet and the diamagnet to obtain the movement space. The impact of structural param-
eters on the movement space of the floating magnet was analyzed, and the experimental
results confirmed the accuracy of the simulation.

Table 1. Structure parameters of the diamagnetically stabilized magnetically levitated gravimeter.

Parameter Lifting Magnet Floating Magnet Diamagnetic Sheet

Materials NdFeB-52 NdFeB-52 HOPG

Size Φ15 × 6.35
[mm]

Φ12 × 4
[mm]

Φ25 × 5
[mm]

Residual Flux Density (Br) 1.45
[T]

1.45
[T]

-

Recoil permeability 1.05 1.05 -

Electrical conductivity 1/1.4
[µohm·m]

1/1.4
[µohm·m]

3 × 103

[S/m]

Desity 7.5 × 103[
kg/m3] -

Relative permeability - - 0.95
Relative permittivity - - 1

The magnetic and diamagnetic forces were calculated using a stationary study in
COMSOL Multiphysics. The free-meshing algorithm using triangular elements was applied
to all domains except the infinite domain region, which was mapped with a mesh of
10 elements. The maximum element size of the magnets and pyrolytic graphite sheets
was set at 1.5 mm, and the meshing scale of the air domain was set to “Extremely fine”
with a 2.45 mm element size. The simulation model had approximately 11,510 triangular
elements in the two meshed magnets, and the elements of air surrounding the two magnets
were refined to match those of the magnets. The solution time of the model on an Intel(R)
Xeon(R) Gold 6136 CPU 3 GHz and 256 GB RAM computer was 53 s to complete the
simulation for each L2 distance. The simulation model is depicted in Figure 4.
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(a) (b) 

 

  
Figure 4. Finite element analysis (FEA) model of the diamagnetically stabilized levitation gravimeter
(DSMLG). The top fixed levitating magnet, the fixed diamagnetic plates, and the movable levitated
magnet are embedded in a general non-magnetic medium of density ρ∗. The central, linear region,
is surrounded by an “infinity shell” to minimize termination errors. The relative magnitude of the
magnetic flux density is indicated by the blue color in the figure on the left side, and the finer meshing
used in the space close to the magnetic materials (magnets and diamagnetic plates) is shown on
the right.

3. Results and Discussion
3.1. Initial Sensitivity Analysis

For calibration purposes, an initial sensitivity analysis was carried out for various
relative permeability values of the HOPG (µr) ranging from 0.90 to 0.99 in step size of
0.1 using a magnetic spacing (L1) of 70 mm and a diamagnetic spacing (L2) of 6.2 mm.
The results of the sensitivity analysis are shown in Figure 5a, showing that higher relative
permeability leads to a flatter resultant force–displacement (F − ∆) curve with smaller
diamagnetic end repulsive forces and vice versa. The spring stiffnesses of each (F − ∆)
curve (excluding the end repulsive forces) are obtained from linear regression analysis, and
the results presented in Figure 5b show a linear dependence of the resulting spring stiffness
on the relative permeability. For prototyping purposes, we require a diamagnet with high
relative permeability close to unity since we expect to operate with magnetic forces in the
order of 0.1 N.
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Figure 5. (a) Resultant force vs. displacement curves for different relative permeability (L1 = 70 mm
and L2 = 6.2 mm). (b) Spring constant with respect to the corresponding relative permeability µr.

A further sensitivity analysis was conducted to study the effect of varying the diamag-
netic spacing (L2) on the characteristic (F − ∆) curve. In this study, we assume a relative
permeability µr of 0.95, and a magnetic spacing L1 of 70 mm. A range of L2 distances from
5.4 mm to 7.0 mm with a step size of 0.4 mm was used for this parametric study. The results
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of the analysis (cf. Figure 6a,b) show that reducing the diamagnetic spacing (L2) increases
the spring stiffness and the accompanying diamagnetic end repulsive forces.
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Figure 6. (a) Resultant force with respect to various displacements for different gaps L2 (L1 = 70 mm
and µ = 0.95). (b) Spring constant with respect to the corresponding L2 displacement.

As shown in Figure 6, the variation of the spring stiffness K, with the diamagnetic
spacing L2 is not linear. To obtain a better understanding of the general relationship
between the spring stiffness K and the L2 distance between the two diamagnetic plates,
an additional parametric study involving a wide range of L2 distances (5.4 mm to 25 mm)
was carried out. The study implemented a systematic approach, employing a step size of
0.4 mm within the range of 5.4 mm to 13 mm. Subsequently, a larger step size of 1 mm was
adopted from 13 mm to 25 mm. Figure 7a shows that for higher L2 distances, the nature of
characteristic (F − ∆) curves are non-linear. The spring stiffness for each (F − ∆) curve is
determined by obtaining the tangent stiffnesses at the neutral axis of the hyperbolic sine
function regression fit approximations of actual (F − ∆) curves (excluding the end repulsive
forces) based on the methodology presented in the preceding section. The resulting profile
of the calculated spring stiffness for each diamagnetic spacing L2 is shown in Figure 7b.
A power-law fit to the calculated spring-stiffness K, and diamagnetic spacing L2, yields
Equation (23) below.

K = 0.0097 − 143.57L2
−3.067 (23)

We observe from the trend that as L2 approaches 0, the spring stiffness, K, approaches
infinity, and vice versa, i.e.,

K|L2→0 = −∞, K|L2→∞ = 0 (24)

The results in Figure 7b show that we can tune the magnetic spring constant to an
arbitrarily low value with which to construct a high-precision gravimeter by changing
the diamagnetic spacing (L2). This also enables us to carry out some initial gravimeter
design activity. Say we desire to measure a gravitational change of 1 mGal that results
in a displacement of the test mass by 1 micron, corresponding to a spring stiffness of
1 mGal × mt = K × 1µm ⇔ 10

[
mm2

s

]
× mt = K × 10−3 [mm] where mt is the mass of the

floating magnet, which, in our case, is m = 3.4 × 10−3 kg. From the derived stiffness–
diamagnetic spacing relationship (cf. Equation (23)), we require a gravimeter with a
diamagnetic spacing of 14.03 mm.
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Figure 7. (a) Resultant force with respect to various displacements for wide range of L2 distances
from 5.4 mm to 25 mm (L1 = 70 mm and µ = 0.95). (b) Spring constant gradient with respect to the
spacing between the two diamagnetic plates L2 (for the same L1 = 70 mm and µ = 0.95 case). Red
crosses mark points at which the model was run, and the dashed green line shows the power curve
for the equation shown in the figure. The black dashed lines show the hypothetical case where a
change in gravitational acceleration of 1mGal results in a displacement of 1 micron for a test mass of
3.4 g.

3.2. Multidimensional Force–Displacement Parametric Study

Here, we study the effect of a multidimensional parametric variation of the magnetic
spacing L1 and diamagnetic spacing L2 on the resultant force–displacement response to
obtain the general characteristics of the stiffness behavior for a wide range of levitation
configurations. We assume a relative permeability of 0.95 for the HOPG diamagnets in this
study. Figure 8a shows the results of different force–displacement–diamagnetic spacing
(F − ∆ − L2) response surfaces for various magnetic spacings L1 ranging from 30 mm to
100 mm. A sideview (cf. Figure 8b) of the 3D surfaces gives a better representation of the
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(F − ∆) response variation with the L1 distance. The results show that we attain stable
equilibrium with a magnetic spacing of L∗

1 of 47 mm, beyond which stability conditions of
magnetic levitation remain unaffected. From Equation (12) above, the minimum L1 distance
for stable levitation was obtained as L∗

1 = 47.3 mm, which corroborates our findings. As
L1 drops below L∗

1 , the (F − ∆) curves drift farther away from the equilibrium position. In
Figure 9, we show different 3D slices of the force–displacement (F-∆) response surfaces
along the L2-axis to show that the optimum magnetic spacing for stable levitation L∗

1 is
unaffected by the L2 distance.
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rameter dependence using the same tangent stiffness algorithm of the hyperbolic sine 
function regression fit approximations for the different (𝐹𝐹 − Δ) responses of the various 
𝐿𝐿1 and 𝐿𝐿2 combinations. A sideview (cf. Figure 9b) of the 3D stiffness response surface 
shows that the spring constant is nearly independent of the magnetic spacing 𝐿𝐿1 but var-
ies non-linearly with distance 𝐿𝐿2 between the two HOPG diamagnets. As such, the spring 
stiffness–diamagnetic spacing correlation equation derived previously (cf. Equation (23)) 
is sufficient in describing the 3D response behavior without considering the 𝐿𝐿1 parameter 
in its definition. 

Figure 8. (a) A 3D surface plot of resultant force vs. displacement (x-axis) for different L2 (y-axis)
and L1 (z-axis) distances. (b) Plot of resultant force vs. displacement for L2 = 14 mm (correspond-
ing to 1 mGal). ∆̃ represents the normalized displacement and is given by ∆̃ = ∆/∆L2 , where
∆L2 =

1/2(L2 − h).
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We obtain a 3D spring stiffness response surface (cf. Figure 9a) with L1 and L2
parameter dependence using the same tangent stiffness algorithm of the hyperbolic sine
function regression fit approximations for the different (F − ∆) responses of the various
L1 and L2 combinations. A sideview (cf. Figure 9b) of the 3D stiffness response surface
shows that the spring constant is nearly independent of the magnetic spacing L1 but varies
non-linearly with distance L2 between the two HOPG diamagnets. As such, the spring
stiffness–diamagnetic spacing correlation equation derived previously (cf. Equation (23)) is



Sensors 2024, 24, 350 13 of 16

sufficient in describing the 3D response behavior without considering the L1 parameter in
its definition.

3.3. Effect of Diamagnetic Bore on the Characteristic (F − ∆) Curve

To enable measurement of the equilibrium position of the floating magnet, provisions
must be made for the laser beam of an interferometer to pass through. This beam is
approximately 0.5 mm in diameter. This is achieved by creating a small, centered bore
in the base HOPG diamagnet. The bore is expected to slightly alter the characteristic
(F − ∆) curve depending on the bore size. The sensitivity of the forces to the size of the
bore is modeled to ensure a practical instrument can still be developed and determine
an appropriate bore radius that would allow complete passage of the beam with slight
tolerance for disturbance without significantly altering the characteristic (F − ∆) curve.

In this study, a relative permeability µr of 0.95 was used for the HOPG diamagnets
with a diamagnetic spacing L2 of 6.2 mm and a magnetic spacing L1 of 70 mm. From
the result of the sensitivity analysis (cf. Figure 10), we see that with bore radius R, up to
2.0 mm, the characteristic (F − ∆) curve is not significantly affected. A further increase
in the bore size results in an asymmetric placement of the floating magnet to attain a
stable equilibrium.
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result of the sensitivity analysis (cf. Figure 10), we see that with bore radius 𝑅𝑅, up to 2.0 
mm, the characteristic (𝐹𝐹 − Δ) curve is not significantly affected. A further increase in the 
bore size results in an asymmetric placement of the floating magnet to attain a stable equi-
librium.  

 
Figure 10. Force–displacement (𝐹𝐹 − Δ) characteristic profiles for different bottom HOPG diamag-
netic bore radius 𝑅𝑅 (𝐿𝐿1 = 70 mm,  𝐿𝐿2 = 6.2 mm,  𝜇𝜇𝑟𝑟 = 0.95). 

  

Figure 10. Force–displacement (F − ∆) characteristic profiles for different bottom HOPG diamagnetic
bore radius R (L1 = 70 mm, L2 = 6.2 mm, µr = 0.95).

4. Conclusions

This paper presented a theoretical and computational investigation of the levitation
characteristic of a diamagnetically stabilized levitation structure. Decreasing the spacing
between the diamagnetic plates (L2 in the text) increases the spring constant and repul-
sive force, and conversely, increasing it will decrease the spring constant and can enable
deploying a gravimeter with a spring constant as weak as necessary.

Adding a bore in the lower diamagnetic sheet to enable the passage of the interferom-
eter beam was also examined, and it was found that for a bore of radius up to 2.0 mm, little
change in the magnet force constant was observed. However, an asymmetrical placement
of the floating magnet (i.e., the distance between the levitated permanent magnet to the
bottom diamagnetic plate is different than the distance to the top diamagnetic plate) is
necessary for stable equilibrium when the diameter of the bore increases beyond one-third
of the floating magnet’s diameter. These findings contribute to the understanding of the lev-
itation characteristics of diamagnetically stabilized structures and provide valuable insights
for their practical applications, such as the development of the proposed diamagnetically
stabilized magnetically levitated gravimeter.
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