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Abstract: This article proposes the use of a feedforward neural network (FNN) to select the starting
point for the first iteration in well-known iterative location estimation algorithms, with the research
objective of finding the minimum size of a neural network that allows iterative position estimation
algorithms to converge in an example positioning network. The selected algorithms for iterative
position estimation, the structure of the neural network and how the FNN is used in 2D and 3D
position estimation process are presented. The most important results of the work are the parameters
of various FNN network structures that resulted in a 100% probability of convergence of iterative
position estimation algorithms in the exemplary TDoA positioning network, as well as the average
and maximum number of iterations, which can give a general idea about the effectiveness of using
neural networks to support the position estimation process. In all simulated scenarios, simple
networks with a single hidden layer containing a dozen non-linear neurons turned out to be sufficient
to solve the convergence problem.

Keywords: radio localization; position estimation; iterative algorithms; feedforward neural network

1. Introduction

Positioning services in radio networks allow for estimating the position of a mobile
terminal (object) using radio waves. Most radio positioning systems are based on two
main properties of radio wave propagation. The first is propagation along straight lines
in a homogeneous environment, which is the operating principle of angular positioning
systems, while the second is the limited variability of radio wave propagation speed in
most environments. However, no matter what the basis of a given localization system is, the
implementation of measurements of radio signal parameters rarely provides directly useful
localization or navigation information, because users expect the data to be presented in a
form that is convenient for them. Therefore, the tasks performed by positioning systems
and devices can be divided into two phases. The first phase is the measurement of radio
signal parameters, such as angle of arrival, time of arrival, carrier phase, Doppler shift
frequency and even the channel impulse response. The choice of parameters to be measured
depends on variety of factors, including system structure, frequency band, signal shape and
modulation, antennas, the computational power of the equipment used and the expected
performance of the localization system. However, a discussion of measurement methods is
beyond the scope of this article.

The second phase is the conversion of the measurement results into useful positional or
navigational data. It may include the calculation of the coordinates of the mobile terminal
in a global Cartesian coordinate system, one of many geographic and geodetic coordinate
systems or some local reference system, but also the calculation of the speed, course,
bearing and path to a specific waypoint. In most systems and measurement methods,
the relationship between measurement results and mobile terminal coordinates is non-
linear, and, in some solutions, also ambiguous. For this reason, various methods and
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algorithms for calculating positions have been developed, some of which are based on
general algorithms for solving systems of non-linear equations or finding zeros of non-
linear continuous functions [1,2], while others have been developed strictly for use in
positioning systems [3–5]. In general, these algorithms can be divided into two groups:
closed-form algorithms, which allow the position of the mobile terminal to be calculated by
performing a specific mathematic operation (or sequence of operations) once, and iterative
algorithms, which involve repeated calculations, in many cases using an approximation of
non-linear equations with linear functions.

The algorithms from the first group always return results after a finite set of operations,
and these results are final estimates of the position and/or navigation data, which may be
equal to true data in the case of error-free measurements or estimates with errors in the case
of imperfect measurements. On the other hand, iterative algorithms return approximate
solutions that are generally improved with each iteration; but, in theory, as long as the
number of iterations is finite, the results of iterative algorithms are never an exact solution
to the positioning problem, no matter how accurate the measurements are. Of course, in
practical implementations, the number of iterations is finite and rarely exceeds a few tens of
calculation repetitions. Iterations are usually terminated when the error of the positioning
equations falls below a certain threshold or the maximum number of repetitions is reached.
Even with only a few iterations, the total number of mathematical operations performed by
iterative algorithms easily exceeds the computational complexity of closed-form algorithms
and it is often cited as one of major drawbacks of iterative position calculation. The second
major drawback is the convergence problem. Since all iterative algorithms increase the
quality of the estimated parameters (e.g., coordinates) at every iteration, there must be some
initial set of parameters for the first iteration of calculation. The selection of these initial
values, also referred to as the starting point, influences the number of iterations required to
reach a certain threshold of calculation error, with the general rule being that the closer the
starting point is to the true position of the estimated object, the fewer iterations are needed.
Unfortunately, it is not guaranteed that all iterative algorithms will always converge to the
correct solution, typically understood as the minimum error of the positioning equations
expressed by the global minimum of the error function. Convergence to some local minima
of error function is also possible, leading to incorrect position estimation results, and in
certain conditions algorithms may even diverge to infinity. It is commonly known that the
closer the starting point is to the real coordinates of the mobile terminal, the greater the
chance of a correct convergence of the position estimation results to the actual values, but it
is difficult to find a universal method for selecting the starting point. Various methods can
be used in practice, with a fixed starting point selected as an average value of coordinates
of reference nodes being the most obvious one. In the case of mobile terminal tracking,
a good starting point for iterative position estimation is usually a previously estimated
position obtained during earlier measurements, as the dynamics of motion are usually
limited. The problem increases when the position of the mobile terminal is estimated once,
without any support from earlier measurements or other sources of information. One can
imagine selecting several starting points for iterative position estimation and comparing
results from several instances of iterative algorithms running in parallel, or calculating the
initial coordinates using some closed-form algorithm. In such a case, the question arises:
why bother with iterative algorithms?

There are examples where iterative position calculation significantly outperforms
closed-form algorithms. An interesting discussion on closed-form algorithms and their
drawbacks can be found in [6], where the author lists the following problems with some of
the algorithms presented in the literature: calculations based on squared equations lead to
the minimization of positional equations’ errors raised to the fourth power, which yields
results different than in those in the case of the least squares method; auxiliary variables
being treated as independent variables, while they strictly depend on already existing
unknowns; and poor performance in the case of correlated errors. Of course, not all the
problems listed above are applicable to all examples of closed-form algorithms, but one
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assumption is common to most of them: the Gaussian distribution of measurement errors.
In the case of non-Gaussian error distribution, and especially when the measurement error
distribution is asymmetric, it is much easier to account for this in iterative algorithm than
in closed-form algorithms. For example, in [7], an iterative position estimation algorithm
for a distance-based positioning system was proposed that differentiates the weights of the
measurement results in each iteration and takes into account the uneven distribution of
round-trip time (RTT) errors in the case of non-line of sight (NLOS) propagation. However,
the advantages of iterative calculations are not limited to these. There are also cases where
the structure and coefficients of the positioning equations depends on the position of the
mobile terminal, which is to be estimated. An example of such a case may be a non-linear
relation between distance and radio signal propagation time in the case of propagation
through a boundary between environments with different characteristics. This may include
a different speed of ground waves propagating over land and over salty sea in the Loran
system, a non-linear relation between the carrier phase and distance in the near field of
a transmitting antenna, or the non-linear relation between the length of the propagation
path around the curvature of Earth’s surface and the Cartesian distance between terminals.
Such non-linearities are easily handled in iterative algorithms, but not in closed-form ones.
Another example would be a 2D positioning system in which reference nodes are not
located on the same plane as the mobile terminals. In the case of distance measurements,
e.g., using time of arrival (TOA) or RTT methods, the results of measurements taken in a
3D environment can be easily converted to distances in a 2D scenario in one step, using
geometric relationships. However, in the case of distance-difference measurements, e.g., by
the time difference of arrival (TDoA) method, the conversion from 3D measurements to
2D data for position estimation depends on the position of the mobile terminal. Therefore,
iterative computation is almost inevitable. A final argument in favour of using iterative
position estimation algorithms is that data from different measurement methods, for
example distance and angle-based, can be easily integrated.

Since there are systems and solutions where iterative position calculation is not only
more convenient, but even unavoidable, the focus should be on eliminating, or at least
reducing the drawbacks of, iterative algorithms. This article will consider the problem
of the starting point for the first iteration and its impact on the convergence of selected
iterative position calculation algorithms. Some methods for selecting the starting point
have already been mentioned above, but the authors would like to use feedforward neural
networks (FNN) as a coarse position estimation tool that can be used as a starting point
for fine calculations using iterative algorithms. In recent years, many examples of the use
of neural networks in positioning have been proposed in the literature, some of which
will be briefly presented in Section 2. In these publications, a lot of effort has been put
into ensuring that neural networks are able to return the most accurate position estimates,
so the neural networks replace all the data processing typically performed by position
calculation algorithms. However, in this publication, the feedforward neural network is
only responsible for the approximate estimation of the mobile terminal position and the
aim is to find the simplest structure of FNN that allows us to achieve a convergence of final
position estimations using iterative algorithms over the entire area of system operation.

This paper is organized as follows: Section 2 contains the state of the art in using
neural networks in positioning. The system model, used to test the convergence of iterative
position estimation algorithms and the structure of the neural network, are described in
Section 3. The next section contains simulation results with comments, while conclusions
and ideas for further research are presented in Section 5.

2. Related Works

Radio positioning systems and networks can be divided into two groups. The first
group includes positioning methods and techniques that do not require the determination
of strict geometrical relationships between nodes, such as distances or bearing angles.
Systems and solutions based on channel state information, neighborhood detection and
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fingerprinting (“range-free positioning”) are gaining much attention [8–11]. In many cases,
there are no direct relationships or general equations that can be used to relate the results
of radio signal parameters measurements to the coordinates of the mobile terminal in
this group of networks. Therefore, the use of neural networks for position estimation,
including deep-learning solutions, seems to be a perfect solution. For example, in [12], a
feedforward neural network was used to estimate the position in a network based on Wi-Fi
access points with the fingerprinting principle. The authors of [12] focused on the network
training algorithm, which, together with the training dataset, has a great impact on the
performance of the neural network, and they proved that Wi-Fi-based fingerprinting can
provide 1 to 4 m positioning accuracy in indoor environments. Similar accuracy can also
be found in [13].

More comprehensive research can be found in [14], where a neural network was used
to estimate the position in a fingerprinting-based system that used measurements from two
Wi-Fi bands. Different scenarios were tested in [14], with different neural network structures
and network training datasets, with the conclusion that the quality of position estimation
using data from two Wi-Fi bands outperforms the single band case. In [15], the position of
the mobile terminal was estimated using the downlink signals of both Wi-Fi and LTE. The
results of the received signal strength (RSS) measurements were processed by several neural
networks: the first one was used to determine the indoor/outdoor scenario, the second was
used to detect the floor number in the indoor case, and finally separate networks were used
to estimate the position on each floor and in an outdoor environment. The article [15] was
based on real field measurements, but in [16], only simulated values of RSS data were used
for both training and evaluating two neural network models for position estimation in a
sensor network. Therefore, the results presented in [16] may be affected by the use of an
inaccurate path loss model that differs from actual signal attenuation in a real environment.
In comparison, [17] should not have such flaws, since it was based on measurements
of signal levels from Xbee modems in a real indoor environment. The authors did not
specify in which ISM band the modems operated, but four neural network structures were
examined: linear regression, random forest, K-nearest neighbor and decision tree, and the
article includes a comparison of their position estimation accuracy. Xbee modems and RSS
measurement data were also used in [18], where very small neural networks with three,
four or five non-linear neurons in single hidden layer were used, but in this publication
both the training and the test dataset were very limited, too small to generalize conclusions.

In addition to papers describing the results of real field measurements, publications
based solely on simulations can also be found. For example, in [19], the received signal
power for the 5G mmWave band (28 GHz) in an outdoor environment was estimated in
simulations using raytracing, and a multilayer perceptron (MLP) neural network was used
to estimate the position of the mobile terminal based on RSS estimates. In this case, the
usability of the presented results mainly depends on the accuracy of the environment
modelling in the simulations.

In some of the abovementioned positioning systems with artificial intelligence that
used fingerprinting principle, the results of position estimation may differ from the refer-
ence points that were used to collect the “fingerprints” because the neural network can
perform some interpolation of the data. However, in [20], a neural network was used to
classify measurement data into one of twenty-six possible locations in an indoor test envi-
ronment. This solution used Bluetooth Low Energy (BLE) tags to transmit radio packets,
which were received by five stations that performed an initial analysis of the RSS results,
calculating the average value, maximum/minimum, root-mean-square, standard deviation,
skewness and kurtosis. All these data were used as input data for a feedforward neural
network with two hidden layers, and the probability of correct classification was evaluated
as position estimation efficiency. A similar approach can be found in [21], where RSS
measurements from the EnOcean radio network (922 MHz) were used to detect in which
room the mobile terminal was placed.
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Many more examples of using machine learning in indoor positioning using the Wi-
Fi radio interface can be found in very extensive review articles [22,23]. It is somehow
interesting that majority of the solutions mentioned in both these publications rely on RSS
and channel state information (CSI) estimation, with no angle- or time-based solutions.
However, some examples of RSS-based ML positioning experiments allowed for reducing
error in indoor environments below one meter, which is very promising. In general,
most of the ML-based positioning proposed in the abovementioned publications use a
fingerprinting method based on existing Wi-Fi, and sometimes LTE signals, which is in
accordance with a survey presented in [24], but definitely a wider range of applications
of neural networks in position estimation is possible. A deep look into the problem of
using deep learning in fingerprinting-based position estimation networks can be found
in [25], in which various solutions using different sources of measurement data (e.g., Wi-Fi,
BLE and cellular networks radio fingerprints, magnetic fields and image recognition) and
various neural networks’ algorithms are discussed. Some publicly available datasets with
fingerprints for indoor positioning testing and development are also presented in [25].

In the second group of positioning systems, the position of the mobile terminal is
estimated using measurements of the geometrical parameters of the radio network. For ex-
ample, in [26], machine learning was used to estimate the distance between a user terminal
and a Wi-Fi access point using round-trip-time principle in fine timing measurement (FTM)
protocol. Compared to a maximum-likelihood estimator (MLE), the neural network-based
RTT estimation gave significantly lower error values, but the article lacks a discussion of
what made the ML-based distance estimation so significantly better.

An interesting approach to using a neural network to integrate various data without
explicitly known relationships between them is presented in [27]. In addition to signal
power measurements in the 868 MHz band, a link quality indicator (LQI) and temperature
and humidity measurements were used to estimate distances between nodes using a neural
network for position estimation. However, it is difficult to imagine that temperature and
humidity could affect the quality of distance estimation, but this article does not provide
any comparison of the results with and without taking these measurements into account.

Another position estimation method that takes advantage of artificial neural networks
is presented in [28]. In this solution, a single 5G base station was equipped with two
antenna arrays with 64 antenna elements each, which performed digital beamforming to
create 48 beams. The mobile terminal measured beam reference signal received power
(BRSRP) data, which were processed by the neural network and random forest algorithm
together with direction of departure (DoD) data from the beamformer to estimate a terminal
position in an urban area, with additional data from a LOS-NLOS detector. A similar setup
with one base station equipped with an antenna array is also considered in [29], but in this
publication, a channel frequency response matrix was estimated as position-related data to
be processed by the neural network.

Unlike other examples of positioning networks based on Bluetooth Low Energy and
signal power measurements, in which a neural network was used to estimate the final
coordinates of the mobile terminal, in [30], a two-layer network with 64 neurons in each
hidden layer was used to estimate the distance from the smartphone to the BLE beacon.
The final position estimate was calculated using the intersection points of the circles defined
by the positions of the BLE beacon and the estimated distances. Surprisingly, the authors
of [30] used the Rectified Linear Unit (ReLU) activation function to solve a problem of
distance estimation from RSS measurements, although it only allows for obtaining an
approximation of data through a piecewise linear function.

Positioning networks based on time or time-difference are not often presented in the
literature in conjunction with machine learning and artificial neural networks. A good
example of such a solution based on time difference of arrival (TDoA) measurements in
the LoRa network is presented in [31], where a deep neural network allowed for a fourfold
reduction in position estimation error by estimating and compensating TDoA results prior
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to position calculation. However, although the results presented in [31] are very promising,
no information is given on the structure of the neural network used to process the TDoA.

The accuracy of position estimation in time-based networks decreases significantly
when radio signals propagate through NLOS channels. Blocking the direct propagation
path causes bias in measurement errors and a systematic shift in position estimates; that is
why in [32], the support vector machine (SVM) machine-learning algorithm was used to
detect LOS/NLOS conditions and change the behavior of the position calculation algorithm
accordingly.

In order to facilitate the comparison of various publications describing the use of
neural networks in localization, Table 1 presents a short summary of the most important
information about the solutions presented in them.

Table 1. A summary of neural network-based position estimation solutions.

Work Year Environment Radio
Interface

Meas.
Param.

Network
Type and

Size
Netw. Use Performance Comments

Mok et al. [12] 2013 University
building Wi-Fi RSS (M) FNN/MLP,

1 L/5 N PE MSE 2.6 to
23 m

Narita et al. [13] 2021 7 × 4 m
room Wi-Fi RSS (M) FNN/MLP,

5 L/500 N PE/FP Avg. 0.93 m,
max. 6.7 m

Paudel et al. [14] 2022
2 rooms in

univ.
building

Wi-Fi dual
band RSS (M) SVR, LR,

KNN, other PE/FP Avg. 2.2 m

Urwan et al. [15] 2022

Indoor
(university
building)

and outdoor

Wi-Fi and
LTE RSS (M)

FNN/MLP
2–5 L/

169–311 N
PE/FP

0.9 to 25 m
indoor, 12.7

to 55.4 m
outdoor

Separate
models for
indoor and

outdoor

Bhatti [16] 2018 100 × 100 m Simulation RSS (S) LR/SVM PE Approx. 0.6
m

Alhmiedat [17] 2023 University lab,
21 × 7.6 m ZigBee RSS (M) LR/KNN/

DT/RF PE ME 1.4–4.6 m

Gadhgadhi et al. [18] 2020 10 × 10 m No data RSS (S) FNN/MLP
1 L/3–4 N PE 1.1 m

Al-Tahmeesschi et al.
[19] 2022

Outdoor,
Madrid

simulator
5G mmWave RSS (S)

KNN/MLP/
LSTM 3 L/

1024/512/64 N
PE ME: 0.5–5.4

Avellaneda et al. [20] 2023
Two-

bedroom
apartment

BLE RSS (M) FNN/MLP
2 L/10 + 20 N PE/Class 88% to 97%

class. prob.

Zheng et al. [21] 2021 Laboratory
10 × 20.6 m EnOcean RSS (M) FNN/SVM

1–5 L/4 N Class 96% class.
prob.

Dvorecki et al. [26] 2019 Office
45 × 25 m Wi-Fi RTT (M)

FNN
6L/228/50/

251 N
FE Mean range

error 0.7–2 m

Guidara et al. [27] 2021 Laboratory
9 × 9 m 868 MHz RSS, LQI, T,

RH (M)
FNN/LP

1–5 L/
4–8 N

FE Mean range
error 0.92 m

Malmström et al. [28] 2019 Outdoor,
urban area 5G 15 GHz RSRP (M) FNN/RF 2 L/

12–16 N PE ME 2–39 m Antenna
array 8 × 8

Gong et al. [29] 2022 Outdoor
50 × 50 m

MIMO
OFDM CSI (S)

FNN/MLP
2 L/128 +

128 N
PE/FP ME 0.4–0.9 m

Linear
antenna

array

Kotrotsios et al. [30] 2021 One
apartment BLE RSS (M) FNN/MLP

2 L/64 N FE ME 0.7 m

Cho et al. [31] 2019 Outdoor
6 × 6 km LoRa TDoA (S) FNN FE ME 61 m TDoA data

conditioning

Wu et al. [32] 2018 10 × 10 m No data TDoA (S) SVM FE
Up to 99%

LOS/NLOS
det. prob.

LOS/NLOS
identification

Measured parameters: RSS—received signal strength, RTT—round-trip time, LQI—link quality indicator,
T—temperature, RH—humidity, RSRP—received signal reference power, CSI—channel state information,
TDoA—time difference of arrival, (M)—measurements, (S)—simulations. Network type: FNN—feedforward
neural network, MLP—multilayer perceptron, SVR—support vector regression, LR—linear regression, KNN—K-
nearest neighbor, SVM—support vector machine, DT—decision tree, RF—random forest, LSTM—long-short term
memory, xL/xN—number of hidden layers/neurons. Network use: PE—position estimation, FP—fingerprinting,
Class—classification, FE—feature extraction.

Summarising the numerous examples of the use of neural networks in position esti-
mation presented above, and many more listed, e.g., in [23,33], it should be noted that no
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article was found where the concept of using the result of a neural network to indicate the
starting point for the first iteration in iterative position estimation algorithms is presented.
Therefore, the idea presented in Section 3 and the results of computer simulations from
Section 4 are novel.

3. System Model

It was assumed that the aim of the research was to find the simplest structure of an
artificial neural network that can provide a coarse estimate of a mobile terminal position.
This coarse estimate can be used as a starting point for the first iteration in iterative position
estimation algorithms and should allow us to achieve convergence at every point in the
defined operating area of the system.

As there are many methods for position estimation and many possible positioning
network structures, which may affect the convergence of iterative calculation algorithms,
further assumptions were needed.

3.1. Position Estimation Method

From the many different position estimation methods that can be used, e.g., in cellular
networks [34,35], the time difference of arrival (TDoA) method was chosen for investigation.
This is a time-based method in which the measurement results provide information about
the difference in distance of the mobile object (user terminal) to two reference nodes (base
stations). Thus, the measurement results in this method define hyperbolas in 2D positioning
or hyperboloids in the case of 3D positioning, and the mobile terminal is located at the
intersection of all hyperbolas or hyperboloids in perfect conditions or close to a group
of intersection points in the presence of measurement errors. When the final position of
the mobile terminal is calculated using iterative algorithms (see Section 3.3), this method
is known to be more prone to an incorrect selection of the starting point for the first
iteration [36], compared to positioning methods based on distance estimation (ToA, RSS)
or angle estimation (AoA, AoD). However, since the TDoA positioning method has been
defined as part of the 4G and 5G cellular standards, the starting point selection problem is
still relevant.

3.2. Base Stations Geometry

A study on the selection of the starting point for iterative position estimation was
carried out using the actual coordinates of five LTE base stations from one operator in
Gdansk, Poland, because cellular systems already have some sort of positioning capabilities
built in and they are considered sources of position data alternative to satellite positioning.
The coordinates of the base stations were expressed in a local Cartesian coordinate system
with the center defined by the average coordinates of all stations. The irregular distribution
of base stations taken from the actual network is beneficial, as in the case of a regular grid
of base stations, there could be doubt whether the obtained parameters of the minimum
structure of the neural network would allow the generalization of conclusions. In fact, the
symmetric deployment of base stations in simulations resulted in a much simpler network
structure than in the asymmetric cases.

In two-dimensional position estimation using distance measurements, the minimum
number of reference stations that allows an unambiguous indication of the mobile terminal
position is three. However, in the case of distance-difference measurements, even in the
simplest 2D system, all the hyperbolas defined by the positioning equations can intersect
twice, causing ambiguity in some parts of area of system operation. Thus, the minimum
number of base stations in 2D TDoA investigations was increased to four. For the same
reasons, the 3D case requires five base stations, but most simulations were made with six
stations for reasons explained in Section 4.2. The coordinates of the base stations used in all
simulations are summarized in Table 2.
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Table 2. Coordinates of base stations in the local Cartesian coordinate system.

Station Number X [m] Y [m] Z [m] 2D 3D

1 146 109 20 ✓ ✓
2 −14 −170 27 ✓ ✓
3 −167 14 26 ✓ ✓
4 212 −20 23 ✓ ✓
5 −136 181 15 ✓
6 −112 −116 20 ✓

It is well known that the convergence problem in iterative algorithms increases in
regions with higher values of the dilution of precision (DOP) parameter. In range and
range-difference systems, these regions typically occur outside the area surrounded by
base stations (the distance from the origin of the local coordinate system to the most distant
base station was 226 m in our scenario), therefore a larger region of simulations was chosen
in the form of a square of 800 m. For the 3D scenarios, the range of the z coordinate was
from 0 to 20 m, which is the typical height of a six-story building. The convergence of the
position estimation was tested by generating distance difference data corresponding to
each possible position in the 2D grid with x and y ranging from −400 to +400 and a step
equal to 5 m. In the case of 3D positioning, the horizontal coordinate step was set to 10 m
but the vertical (z) was reduced to 2 m due to the smaller range of height variability. Test
positions closer than 2 m from any base station were removed from the grid due to the high
risk of obtaining an irreversible form of matrix at some stage of calculations in the iterative
algorithms under consideration. This is not a significant reduction of system usability, as
it is not common to design 4G/LTE cellular base stations in such a way that the user can
approach base station antennas at a distance of less than a few meters.

It was assumed that no measurement errors were present when testing iterative
position estimation algorithms. If, after a finite number of iterations, the position estimation
algorithm returned coordinates within 1 m from the actual terminal position, the obtained
result was evaluated as a correct convergence. If the algorithm stopped before reaching
the maximum number of iterations, but the returned coordinates were further than 1 m
from the correct position, a convergence to an incorrect result was counted. Finally, if the
algorithm reached the defined maximum number of iterations, the results were assessed
as divergent. The presence of measurement errors would make it difficult to evaluate the
results, as both the starting point selection and measurement errors affect the convergence
of iterative algorithms.

3.3. Iterative Position Calculation Algorithms

In the TDoA system that performs 2D position estimation, the actual difference in
distance of the mobile terminal from a pair of base stations (reference nodes) numbered m
and n can be defined as:

dm,n(x) =
√
(x − Xm)

2 + (y − Ym)
2 −

√
(x − Xn)

2 + (y − Yn)
2, (1)

where the vector x contains the Cartesian coordinates of the tracked object:

x = [x, y]T (2)

and Xm, Ym, Xn, Yn are coordinates of the mth and nth base station, respectively. In a
real system, the results of distance-difference measurements rm,n differ from the actual
distance differences dm,n due to the presence of measurement errors εm,n. Writing both
measurements and errors in vector form:

r = [r2,1, r3,1, . . . , rm,n, . . .]T , (3)
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ε = [ε2,1, ε3,1, . . . , εm,n, . . .]T , (4)

we obtain:
r = d(x) + ε. (5)

An extension to a three-dimensional case is straightforward. The position estimation
algorithm should minimize the value of a cost function:

e(x) = (r − d(x))TG−1(r − d(x)), (6)

where G is the measurement error covariance matrix. Thus, the weighted non-linear least
squares solution to (6) is:

x̂ = argminxe(x). (7)

In iterative algorithms, the estimate of vector of coordinates x̂ is updated iteratively,
starting from an initial guess (starting point) x̂0. The problem of starting point selection
has been mentioned, e.g., in [37], but without constructive conclusions, the authors of [37]
simply used a closed-form algorithm proposed by Bancroft [38].

3.3.1. Gauss-Newton

As it is clearly presented in [39], the Gauss–Newton algorithm is based on the lineariza-
tion of system equations about some initial value of the vector x0, giving the approximation:

d(x) ≈ d(x0) + A(x0)(x − x0), (8)

where A(x) is Jacobian matrix. For the 2D TDoA case:

A(x) =



x−X2
r2

− x−X1
r1

y−Y2
r2

− y−Y1
r1

x−X3
r3

− x−X1
r1

y−Y3
r3

− y−Y1
r1

...
...

x−Xm
rm

− x−Xn
rn

y−Ym
rm

− y−Yn
rn

...
...


(9)

Additional variable
rm =

√
(x − Xm)

2 + (y − Ym)
2 (10)

is the distance from the mobile terminal in point x to the mth base station. The iterative
algorithm for finding a linear least squares estimate of mobile terminal coordinates can be
summarized in equation [40]:

x̂i+1 = x̂i +
(

AT(x̂i)G−1A(x̂i)
)−1

AT(x̂i)G−1(r − d(x̂i)) (11)

where i is iteration number and iterations start from an initial guess x̂0.

3.3.2. Levenberg–Marquardt

A reduction in the possibility of divergence in iterative position calculation can be
achieved by using a method proposed by Levenberg [41] and Marquardt. It is based on a
damped Gauss–Newton algorithm, which can be presented as an iterative equation:

x̂i+1 = x̂i +
(

AT(x̂i)G−1A(x̂i) + λiI
)−1

AT(x̂i)G−1(r − d(x̂i)) (12)

where I is the identity matrix. The λi variable, called the damping parameter [42], controls
the step size and reduces the risk of algorithm divergence. In our investigation, λi was
calculated in every step of the iteration using a simple algorithm presented in [39] in the
form of a pseudo-code.
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3.4. Neural Network Structure

The feedforward neural network, also called the multilayer perceptron (MLP), was
selected to solve the problem of the raw coordinates estimation for the first iteration in
the iterative position calculation. MLP is able to model the functional relation between
input signals and network output without knowing the function or its parameters [43]. The
general structure of the neural network used in investigation is presented in Figure 1.
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Figure 1. General structure of feedforward neural network used for initial coordinate estimation.

The input layer is linear and does not alter signals in any way—it only acts as a source
of data for the first hidden layer. The size of the input layer equals the number of distance-
difference values used to train the network. For N base stations, N − 1 independent
distance differences can be defined, but all possible combinations of (N − 1)(N − 2) values
were used as network input data because it allowed us to achieve faster network training
without any impact on network performance after training. In the case of 3D positioning
using cascaded networks, the second network (Section 4.2.3) uses the outputs of the first
network in the cascade as input data, so the size of the input layer in the second network is
increased by two.

Hidden layers are fully connected and they have non-linear activation functions.
Various functions were tested; some of the best choices will be presented in Section 4. The
output layer is linear or non-linear; the size of this layer equals the size of output data
vector. In 2D positioning, it is always equal to two. However, in the case of a 3D position
estimation, the networks used in different scenarios (Section 4.2) had output layer sizes
equal to one, two or three.

All input and output data for neural networks were scaled in software to range from
−1 to 1, as it is the default range of values for the most frequently used activation functions.
The distance-difference values were normalized to the distance between corresponding
base stations:

r′m,n =

√
(x − Xm)

2 + (y − Ym)
2 −

√
(x − Xn)

2 + (y − Yn)
2√

(Xm − Xn)
2 + (Ym − Yn)

2
(13)

Also, the output from the network x′0, y′0, which is an approximation of true coor-
dinates x and y for the first iteration in iterative position estimation, was normalized to
the size of the system operation area (400 m). Both normalizations should speed up the
network training process; however, data normalization is optional, as a properly trained
network should also be able to normalize data internally.
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3.5. Network Efficiency Evaluation

The aim of the research carried out was to find the simplest possible structure of
a feedforward neural network that allows us to estimate a coarse approximation of the
position from TDoA measurements that can be used as a starting point for iterative position
estimation algorithms. Iterative algorithms, supported by the proper selection of starting
points, must achieve convergence to a correct result at each test point in the defined
operating area of the system. The test point selection for all scenarios will be explained
in Section 4. The reference scenario against which the results of using the neural network
were compared was always the case where the coordinates of the origin of the coordinate
system (x = 0, y = 0, z = 0) were taken for the first iteration. Although the proper selection
of a starting point allows us to reduce the number of iterations that are required to achieve
a sufficiently small value of a position estimation update, typically used as stop condition,
the number of iterations was recorded and presented, but was not taken into account as a
parameter for neural network optimization. It may be a next step in network development
in future works.

It should be stressed that a given neural network configuration was treated as sufficient
when at least in one repetition of network training, repeated at least 10 times, the trained
network gave a 100% convergence of position estimation algorithms. However, as the
network training process is based on partially random operations (e.g., partially random
generation of initial biases and weights for all neurons), the results of network training,
even using the same training dataset, may differ in next repetitions of the training process.
It frequently happened that the same neural network configuration resulted in 100%
convergence efficiency in some simulations in the series, but in other simulations in several
dozens of test points, the position estimation algorithms were divergent just because of
small differences in weights and biases in FNN resulting from these partially random
operations during training.

4. Simulations
4.1. 2D Case

In the simplest, two-dimensional scenario, differences in the height of base stations’
antennas and mobile nodes are omitted. Distance-difference values were calculated on an
X–Y plane. Both the Gauss–Newton and the Levenberg–Marquardt iterative algorithms
failed to provide correct position estimation results when the starting point for the first
iteration was located in the origin of the local coordinate system, which means x0 = 0,
y0 = 0. In such cases, a set of input data for a position estimation algorithm consists of base
stations’ coordinates X1, Y1, X2, Y2, . . . and the results of distance-difference measurements
r2,1, r3,1, . . . as presented in the block diagram in Figure 2. Regions in which these iterative
algorithms returned incorrect coordinates or were even divergent are marked yellow on
charts in Figure 3. It should be noted that some impact on the convergence may be seen
when a different number of distance-difference equations are used in iterative algorithms.
In the case of N base stations, only N − 1 distance-difference values (4) are independent,
while others are simply linear combinations that do not provide additional data. In the
simulator used in our investigation, a full set of (N − 1)(N − 2) positioning equations
was used, and therefore all the results presented later in the paper were obtained for an
overdetermined system of equations. However, it has been checked that conclusions on
the usability of FNN to indicate initial coordinates for iterative position estimation are also
valid when the numbers of position equations are reduced.

The results of a convergence check for the 2D TDoA positioning system are summa-
rized in Table 3. The average and maximum number of iterations were counted only for
cases which converged to the correct coordinates of the mobile terminal.

It is somehow surprising that there is no obvious coincidence of regions of incorrect
convergence and regions with high values of a horizontal dilution of precision (HDOP),
which is a good measure of relation between system geometry and possible position
estimation accuracy. Comparing Figures 3 and 4, it may be said that convergence problems
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occur mostly in regions located on the opposite side of one of the base stations from the
starting point.
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Figure 3. Regions of convergence for Gauss–Newton and Levenberg–Marquardt algorithms in
2D TDoA positioning. Green: correct convergence, yellow: convergence to incorrect position or
divergence. Red dots: position of base stations.

Table 3. Results of convergence check for 2D TDoA system with fixed starting point coordinates.

Position Estimation
Algorithm

Test Point Step
(x/y)

Total Number of
Test Points

Points with
Correct

Convergence

Probability of
Correct

Convergence

Average
Number of
Iterations

Maximum
Number of
Iterations

Gauss-Newton 5 m 25,921 25,648 98.946% 8.007 92
Levenberg–Marquardt 5 m 25,921 25,189 97.176% 12.89 94
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A feedforward neural network uses normalized distance-difference values (13) to
estimate the scaled initial position of a mobile terminal x′0, y′0 as it is presented in the block
diagram in Figure 5. It was assumed that the learned network would only be used in
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one scenario, i.e., with an unchanging distribution of base stations. For this reason, the
coordinates of the reference stations are not an input to the neural network.
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To carry out the neural network learning process, it is necessary to prepare reference
data. If the neural network is used as the sole tool to estimate position of a mobile object,
the training dataset typically consists of reference data from points deployed uniformly
over whole area of system operation and the goal of learning is to achieve the best quality
of position estimation in terms of RMS or maximal position estimation error. But in our
investigation, rough estimates of mobile terminal positions are used as starting points for
fine position estimation using iterative algorithms. Therefore, although selecting the closest
coordinates should usually result in a fast convergence with a low number of required
iterations, correct convergence can be obtained also for an unlimited number of other
possible candidates for starting points, even located far away from true terminal position.
So, for the specified set of distance-difference data (1), there is more than one possible
set of output data that allows us to achieve a convergence of iterative position estimation
algorithms. It is also important that the closest approximation of the mobile terminal
position may not be the best method of evaluation of the neural network effectiveness,
because in the search for the simplest network structure, networks giving higher errors
of position estimation may turn out to be better candidates. However, the definition
of network training goals and the cost function for our investigation is not trivial, and
finding the simplest FNN structure may require adaptive changes in training datasets
during the training process, which is not already implemented in the tool used for FNN
experiments. Therefore, our search for FNN structure was conducted by training the FNN
using datasets with the true coordinates of the mobile terminal, selected uniformly and
non-uniformly in a predefined area of system operation. It may of course raise question of
whether the obtained results are really the simplest structures of FNN capable of solving
the convergence problem, but, as it will be shown later, in all tested scenarios, the obtained
network structures are really promising.

The investigation of position estimation convergence improvement by FNN was
started with a learning dataset consisting of reference distance-difference values for mobile
terminal positions generated uniformly in the whole area of system operation in a grid
with x and y coordinate step equal 10 m (Figure 6a). Therefore, for an area of 800 × 800 m,
the reference dataset size was 6561. All simulations were made using Matlab (version
R2022b) with a Deep Learning toolbox (version 14.5), using built-in network training
procedures. Unless otherwise stated, the Levenberg–Marquardt algorithm with an RMS
error function was used to train the network, with a random division of the reference
dataset into three groups: 70% training data, 15% validation data and 15% test data. Please
note that the Levenberg–Marquardt algorithm occurs twice in this article: as an iterative
position estimation algorithm and as an FNN training algorithm. The initialization of
neuron weights and biases in FNN was made using the Nguyen-Widrow algorithm, which
contains some degree of randomness; therefore, repetitions of network training may result



Sensors 2024, 24, 332 14 of 25

in different network parameters and performances. Thus, the presented data corresponds
to the best results obtained in 10 to 30 repetitions of FNN training process. The performed
simulations can be summarized in the following steps:

1. Generate test points uniformly distributed in the whole system area with an x and y
step equal to 5 m (25,921 point in total), and calculate TDoA data for all test points;

2. Run the iterative position estimation algorithm (Gauss–Newton or Levenberg–Marquardt)
with TDoA data corresponding to all test points, with the starting point in origin
(x0 = 0, y0 = 0), and check convergence to correct coordinates;

3. Generate reference points for the neural network training: uniformly with an x and y
step equal to 10 m (6561 points in total), or non-uniformly using the rules described
later in the article; calculate TDoA data for all reference points;

4. Normalize TDoA data and reference points’ coordinates and train the feedforward
neural network to predict normalized coordinates using normalized TDoA input data;

5. Verify the convergence of the iterative position estimation algorithm (G–N or L–M)
using a larger set of test points from step 1 with initial coordinates calculated using
the output of a neural network trained using a smaller set of training points from
step 3.
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Training the network using a smaller set of training points compared to the set of test
points used to verify the convergence of iterative position estimation algorithms allows us
to check its ability to generalize the solution by FNN. In this way, in step no. 5, the trained
network is used to predict the coordinates of the mobile object using data that was not
previously used to train the network.

Tables 4 and 5 show the selected numerical results of the convergence analysis of the
iterative algorithms with the starting points indicated by the neural networks, obtained
using Gauss–Newton and Levenberg–Marquardt algorithms. The size of the input layer,
which is 12, is determined by the number of distance-difference values rm,n for any m ̸= n.
The input layer is always linear. The transfer function of the output layer is by default
linear, but a non-linear case has also been checked. The size of the output layer equals the
number of estimated coordinates. Various combinations of transfer functions have been
checked in networks with one and two hidden layers. The symbol “lin” denotes the linear
transfer function, “tanh” is the hyperbolic tangent function, “log” is the logistic sigmoid
function, “ell” is the Elliot activation function and “rad” is the radial basis transfer function.
For the selected neural network configuration: the number of layers, activation functions
in all layers and for the two-layer case, the number of neurons in the second layer and the
size of the first hidden layer was reduced by one starting from several dozen, until it was
not possible to obtain a 100% convergence of position estimation. Then, another network
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configuration was selected (e.g., a different activation function) and the simulation process
was repeated.

Table 4. Convergence of iterative position estimation using Gauss–Newton algorithm with starting
points estimated using FNN trained using uniform dataset.

FNN Iterative Position Estimation Convergence

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Position
Estima-

tion RMS
Error [m]

Position
Estima-

tion
Maximum
Error [m]

Tested
Points

Correct
Conver-
gence

Probability
of Con-

vergence

Average
Number
of Itera-

tions

Maximum
Number
of Itera-

tions

12: lin 50: tanh - 2: lin 1.27 12.59 25,921 25,921 100 3.95 12
12: lin 30: tanh - 2: lin 1.61 9.87 25,921 25,921 100 3.98 11
12: lin 15: tanh - 2: lin 10.91 62.64 25,921 25,921 100 4.47 12
12: lin 10: tanh - 2: lin 14.43 63.38 25,921 25,921 100 4.67 15
12: lin 8: tanh - 2: lin 18.31 66.6 25,921 25,921 100 4.81 16
12: lin 7: tanh - 2: lin 18.93 73.47 25,921 25,920 99.996 4.84 15
12: lin 20: tanh - 2: tanh 6.63 41.88 25,921 25,921 100 4.24 16
12: lin 15: tanh - 2: tanh 15.64 71.4 25,921 25,920 99.996 4.69 10
12: lin 10: log - 2: lin 10.73 55.74 25,921 25,921 100 4.5 56
12: lin 7: log - 2: lin 24.25 93.25 25,921 25,921 100 4.94 8
12: lin 6: log - 2: lin 26.25 109.9 25,921 25,920 99.996 4.94 8
12: lin 15: ell - 2: lin 5.66 31.15 25,921 25,921 100 4.22 15
12: lin 12: ell - 2: lin 9 57 25,921 25,920 99.996 4.41 16
12: lin 20: rad - 2: lin 6.36 38.13 25,921 25,921 100 4.22 8
12: lin 15: rad - 2: lin 10.49 45.8 25,921 25,920 99.996 4.43 21
12: lin 10: tanh 4: tanh 2: lin 6.05 26.26 25,921 25,921 100 4.24 15
12: lin 4: tanh 4: tanh 2: lin 16.13 76.97 25,921 25,921 100 4.73 19
12: lin 6: tanh 3: tanh 2: lin 11.61 55.87 25,921 25,921 100 4.5 10
12: lin 5: tanh 3: tanh 2: lin 19.98 77.67 25,921 25,920 99.996 4.83 10
12: lin 12: tanh 2: tanh 2: lin 9.15 41.42 25,921 25,921 100 4.42 11
12: lin 10: tanh 2: tanh 2: lin 13.1 62.1 25,921 25,919 99.992 4.59 12

Table 5. Convergence of iterative position estimation using Levenberg–Marquardt algorithm with
starting points estimated using FNN trained using uniform dataset.

FNN Iterative Position Estimation Convergence

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Position
Estima-

tion RMS
Error [m]

Position
Estima-

tion
Maximum
Error [m]

Tested
Points

Correct
Conver-
gence

Probability
of Con-

vergence

Average
Number
of Itera-

tions

Maximum
Number
of Itera-

tions

12: lin 50: tanh - 2: lin 0.93 7.46 25,921 25,921 100 10.17 13
12: lin 30: tanh - 2: lin 1.63 9.51 25,921 25,921 100 10.33 14
12: lin 15: tanh - 2: lin 6.94 33.03 25,921 25,921 100 10.67 14
12: lin 10: tanh - 2: lin 21.97 95.25 25,921 25,921 100 10.92 19
12: lin 8: tanh - 2: lin 18.73 77.25 25,921 25,920 99.996 10.86 16
12: lin 8: tanh 4: tanh 2: lin 10.14 47.67 25,921 25,921 100 10.75 19
12: lin 4: tanh 4: tanh 2: lin 22.88 85.7 25,921 25,921 100 10.94 16
12: lin 4: tanh 3: tanh 2: lin 25.06 88.4 25,921 25,921 100 10.96 14
12: lin 5: tanh 2: tanh 2: lin 34.6 137.5 25,921 25,921 100 10.99 19
12: lin 4: tanh 2: tanh 2: lin 34.95 119.3 25,921 25,917 99.98 10.96 18

Data in both Tables 4 and 5 are arranged in some subcategories that differ, e.g., by
the number of hidden layers or activation functions in the first, the second or both hidden
layers. Data in the rows printed in bold indicates the smallest network size (optimal
configuration in terms of computational complexity) that achieved a 100% convergence of
position estimation in these subcategories. In addition, some examples of neural networks
much larger than required are also presented (e.g., the first three rows in Table 4) to show
that an increasing accuracy of position estimation using FNN results in a slightly lower
average number of iterations using both iterative algorithms (G–N and L–M). In turn, some
examples of networks slightly smaller than the minimum network configurations marked
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in bold are also included to show that the degradation in the convergence ratio caused
by reducing the FNN size below a critical value is not rapid and only causes convergence
problems in a few test points out of over twenty-five thousand.

From the results presented in Table 4, even for networks with linear inputs and output
layers and only one hidden layer with a hyperbolic tangent activation function, only eight
neurons in hidden layers were necessary to obtain the convergence of the Gauss–Newton
position estimation algorithm. A higher number of neurons in hidden layers obviously
increased the quality of rough position estimation for the first iteration, but it had only
a marginal impact on the average number of iterations needed to reach a final position
estimation. On the other side, networks with seven or less neurons in hidden layers
were not able to provide correct starting point coordinates in at least one of the tested
points. It must be pointed out that a required hidden layer size of only eight neurons is
already surprisingly small; however, it cannot be precluded that networks with even lower
numbers of neurons but trained in different ways or with different structures are also able
to estimate correct initial coordinates, reaching convergence in all test points. Thus, more
tests were needed.

A change in the activation function in the output layer from a linear to hyperbolic
tangent worsened the results, probably because the region of high variability of the tanh
function values in output layers corresponds to the center of the area of the positioning
system operation. Therefore, the output layer activation function was kept linear. The
logistic sigmoid function in hidden layers gave almost exactly the same results as the
hyperbolic tangent, which is not surprising as the logistic sigmoid function can be obtained
by the proper scaling of tanh. From other activation functions that are differentiable in
the entire domain, the Elliot sigmoid function and the radial basis function have been
checked as potential candidates for hidden layers, but obtained results were significantly
worse compared to hyperbolic tangent. Also, different network training algorithms and
different error functions (mean error, sum of squared errors) could not outperform the
results obtained using the Levenberg–Marquardt training algorithm with mean squared
error as the error function.

Further, tests were conducted with networks consisting of two hidden layers, both
using a hyperbolic tangent activation function. The smallest configurations of hidden
layers in terms of the total number of neurons with non-linear processing, which allows for
obtaining a convergence of position estimations in all tested points, included the following:
two layers with four neurons, a first layer with six neurons, followed by a second hidden
layer with three neurons and first layer with twelve neurons, followed by a second layer
with two neurons only. Any of these configurations could not outperform the network with
one hidden layer working with eight neurons, so the minimal network configuration seems
to be eight non-linear neurons, no matter if they are in one or two hidden layers.

The results of the convergence test for the Levenberg–Marquardt iterative position
estimation algorithm, presented in Table 5, are a little better than those obtained using the
Gauss–Newton algorithm in the case of FNN with two hidden layers, which is unexpected
as the L–M algorithm with fixed starting points had a lower probability of convergence than
G–N (see Table 3). For example, for the G–N algorithm, a minimal FNN configuration with
four tanh neurons in the second layer required also four tanh neurons in the first hidden
layer (a total of eight non-linear neurons, the smallest configuration of a two-layer network
in this scenario) and three neurons in the second layer required six neurons in the first layer
(nine in total). But, in the case of the L–M algorithm, four tanh neurons in the first hidden
layer required only three neurons in the second layer (a total of seven non-linear neurons,
the smallest configuration for the L–M algorithm) and the same number of neurons also
worked correctly in a network with five neurons in the first layer and two in the second one
(also seven in total). Therefore, in the case of the L–M algorithm, slightly smaller two-layer
neural network configurations were found compared to the G–N case. However, when
only one hidden layer was used, G–N slightly outperformed L–M in terms of convergence.
Thus, no significant differences between G–N and L–M algorithms are visible.
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Interesting conclusions can be drawn by analyzing the distribution of places in which
the convergence of position estimation algorithms was not achieved, even though a starting
point selection by the neural network was used. In Figure 7a a kind of map is shown
which presents the distortion of a mobile terminal coordinate grid estimated using a
feedforward network. In the case of a perfect estimation, this figure should contain a grid
of perpendicular straight lines with a 40 m raster. The deformation and displacement
of lines clearly shows that the quality of position estimation using FNN is not the same
in whole area of system operation. Comparing this map with Figure 7b, which presents
the results of the convergence test, reveals that a lack of convergence is observed only in
proximity to one or more base stations, and it coincides with some deformation in the grid
in Figure 7a in these regions. Therefore, greater emphasis must be placed on the quality of
position estimation using FNN close to all base stations. It may be achieved by changing
the error function used during network training in such a way that in regions close to base
stations, a lower position estimation error is required, but the simplest method would be
to change the distribution of points used to generate reference data for network training
while keeping the MSE error function unchanged.
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The uneven deployment of reference points with a higher density close to base stations
should increase the position estimation in these regions; therefore, the following procedure
was proposed to generate a training dataset. The coordinates of candidate points were
generated randomly with a uniform distribution in the whole area of system operation.
Next, the distances rn from this candidate to all N base stations were calculated. The
candidate is added to training dataset with a probability defined by equation:

p = max
(

1, max
(

1
r2

n

)
n=1...N

)
(14)

Candidate generation is repeated until the predefined size of the training dataset is
achieved. In order to obtain results comparable with those for a uniform distribution of
training points, a dataset size of 6000 points was chosen. One of the obtained non-uniform
distribution training points is presented in Figure 6b.

The results of using FNN with a non-uniform distribution of reference data used for
training are very promising. Both the Gauss–Newton and Levenberg–Marquardt iterative
position estimation algorithms were convergent in all tested points when the starting
point for the first iteration was estimated using a neural network with only four neurons
with a hyperbolic tangent activation function in the only hidden layer. Although, the
numerical values of the position estimation for such a network were quite high, with an
RMS error of 53.5 m and a maximum error exceeding 200 m, and though the deformation
of the coordinate grid shown in Figure 8 is very large, especially near edges of the area of
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system operation, such a rough estimation of the position was sufficient to achieve the full
convergence of both tested algorithms.
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four neurons in hidden layer. FNN trained with non-uniformly distributed data.

It is hard to imagine the possibility of solving the problem of estimating two coor-
dinates of a mobile terminal with network consisting of less than four neurons with a
non-linear activation function; therefore, the obtained network structure may be treated as
the minimal FNN configuration. By extracting weights and biases from a trained network
and reducing the number of input data to a minimal set of independent distance-difference
values, it is possible to write equations that fully describe the operation of the minimal
network structure found during the investigation:

i = tanh(2.3735·r2,1 − 3.867·r3,1 − 0.0139·r4,1 + 3.7593)
j = tanh(3.0158·r2,1 − 2.0051·r3,1 − 0.7724·r4,1 − 3.1828)
k = tanh(2.2489·r2,1 − 0.0023·r3,1 − 3.26·r4,1 + 3.0828)
l = tanh(−0.3013·r2,1 − 1.1367·r3,1 − 1.3176·r4,1 − 2.966)

(15)

x′0 = −8.8602·i + 4.9286·j + 3.4307·k − 4.0567·l + 6.4201
y′0 = 2.7504·i + 9.9756·j − 1.0157·k − 9.8887·l − 1.6524

(16)

Comparing the data from Tables 3 and 6, it is also obvious that the pre-calculation of
starting points significantly reduces the average and maximal number of iterations needed
to reach the assumed stop condition in iterative position calculation, typically defined as
the maximal norm of the position update vector, which was 10−4. The gain in the reduced
number of iterations fully compensates the additional computational effort that is caused
by the need to calculate starting points using (15) and (16).

Table 6. Results of convergence test in the case of starting point estimation by FNN with four neurons
in hidden layer, trained using non-uniform distribution of training data.

Position Estimation
Algorithm

Iterative Position Estimation Convergence

Tested Points Correct
Convergence

Probability of
Convergence

Average Number
of Iterations

Maximum Number
of Iterations

Gauss–Newton 25,921 25,921 100 5.19 7
Levenberg–Marquardt 25,921 25,921 100 11.11 15

4.2. 3D Case

In 3D hyperbolic positioning, at least five reference points are needed to obtain an
unambiguous position indication. However, when these reference points have coordinates
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of stations no. 1 to 5 from Table 2, the maximum value of 3D dilution of precision parameter
(DOP) exceeds 2.5 million in the area to the north of station no. 5 and to the south of station
no. 4. A positioning system with such a high value of DOP is practically unusable, as a
1 mm error in distance-difference measurements could cause a 2.5 km position estimation
error. It has been checked that even with such an unfavorable geometry of base stations, it
is possible to train FNN to indicate starting points for the G–N algorithm using, e.g., two
separate networks from Section 4.2.2; the first network: one layer tanh, 40 neurons and
the second one: one layer tanh, 400 neurons. However, in order to make the results more
usable, another base station has been added and all the 3D simulation results presented in
next subsections were obtained using six base stations. In such a case, the maximum DOP
was 845, which is still not low enough to reach a high position estimation quality in whole
area of system operation, but can be accepted in some regions in practical solutions.

Test points for the 3D scenario were distributed uniformly with x and y in a range
from −400 to 400 m and an step equal to 10 m. The z range was set from 0 to 20 m
with a step equal to 2 m. After removing points located too close to base stations, a
total number of 72,164 points were checked for the convergence of the Gauss-Newton
iterative position calculation algorithm. The results obtained for the fixed starting point
x0 = 0, y0 = 0, z0 = 0 are depicted in Figure 9, where a yellow color indicates that at least
for one value of z coordinate the G–N algorithm was divergent or converged to an incorrect
result, while the dark red color indicates regions where convergence was not possible for
any value of z. In this scenario, convergence was achieved in 49,365 points, which is 68.4%
of test points.
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The results presented in Section 4.1 for 2D positioning showed that the G–N algorithm
supported by a feedforward neural network with only one hidden layer and hyperbolic
tangent activation function allowed us to obtain representative results, compared to other
network structures. Thus, in this section, only the results obtained for the G–N algorithm
and one-layer networks with a tanh function will be presented, although different network
structures and functions were also tested. It should be noted that the hyperbolic tangent
activation function is also frequently used by other authors, e.g., in direction of arrival
estimation presented in [28].
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4.2.1. One Network

Compared to the 2D case presented in Figure 5, the indication of starting points
in 3D positioning system requires only adding one more neuron in the output layer of
the feedforward neural network. However, in this straightforward approach, there is no
way to control what part of a neural network resource is used to estimate horizontal and
vertical coordinates.

The minimal configurations of neural networks with one and two hidden layers
with a hyperbolic tangent activation function, that allowed us to achieve convergence
in all test points in the 3D case, are presented in Figure 10 for both the linear and non-
linear deployment of reference points in the network training dataset. Assuming that the
computation of a non-linear activation function value is the most resource-consuming part
of FNN work, the closer the points are to the origin in Figure 10, the less complicated the
network structure is.
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Figure 10. Configuration of FNN that results in convergence of 3D G–N algorithm in all test points.

When the feedforward neural network was trained using a uniform distribution of
the training dataset, networks with only one hidden layer required 35 tanh neurons, while
two-layered networks required 11 neurons in the first hidden layer and 9 in the second one,
amounting to 20 non-linear neurons in total. However, the non-uniform distribution of
training data allowed us to obtain the same result (convergence of G–N algorithm in all
test points) using 11 tanh neurons in only one hidden layer. Adding the second layer did
not improve the results, as the minimum configurations of a two-layer FNN trained using
a non-uniform dataset required 13 tanh neurons in total (configuration: 7 + 6, 8 + 5 and
9 + 4 neurons).

4.2.2. Two Separate Networks

The range of x and y coordinates in the scenario presented in Section 4.2 differs
significantly from range of z. Thus, the required accuracy of the initial values of x0, y0
and z0 may also be different. Two separate neural networks were implemented to check
if a separate estimation of horizontal and vertical coordinates allows us to reduce the
computational complexity understood as the total number of non-linear neurons. The block
diagram of position estimation in this experiment is depicted in Figure 11.

The results of the simulations are presented in Figure 12 in form of points indicating the
number of non-linear neurons in the first network, responsible for the horizontal coordinate
estimation and the number of non-linear neurons in the second network, which was only
for estimating vertical coordinates. Both networks had only one hidden layer.

In the case of the uniform distribution of data in training dataset, the minimal size of
both FNN, in terms of the total number of non-linear neurons, was 28, but the majority
of them (19) had to be in the second network, responsible for z coordinate estimation.
This clearly indicates a greater importance of this coordinate in the convergence of the
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G–N algorithm. The same trend is visible in the data from the networks trained using a
non-uniform dataset: the minimal configuration of networks was four neurons in the x-y
network and seven neurons in z network, amounting to 11 in total. However, comparing
these results to the case with one network only, no reduction in the number of neurons in
the smallest network configuration was observed.
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two separate feedforward neural networks.
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Figure 12. Configuration of two independent neural networks that result in convergence of 3D G–N
algorithm in all test points.

4.2.3. Two Networks Cascaded

Another neural network configuration that has been tested in simulations is presented
in Figure 13. Also, this time, two feedforward neural networks have been used, but the
second network, responsible for vertical coordinate estimation, was able to use output data
from the first network as additional inputs, so these networks are connected in a cascade.

In the cascaded configuration, the second FNN takes advantage of the output from the
first network, and therefore is able to provide a comparable quality of prediction using the
lower number of non-linear neurons. Comparing the results from Figure 14 with Figure 12,
it can be seen that almost in all cases for the same size of the first network, the number of
non-linear neurons in the second FNN required for the convergence of G–N algorithm is
reduced. The minimal configuration of two cascaded networks in the case of the uniform
training dataset is 9 + 14 neurons, and in the case of the non-uniform distribution of training
points, it is 5 + 5 neurons. It should be noted that it still indicates a higher computational
complexity of vertical coordinate estimation, as the first FNN with five neurons in the
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hidden layer estimates two coordinates, while the second FNN needs five neurons for
one coordinate.
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Figure 13. Data flow in the case of 3D iterative position estimation with starting point selection using
two cascaded feedforward neural networks.
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5. Conclusions

When neural networks are used for position estimation instead of dedicated algo-
rithms, iterative or closed-form, usually a larger network results in a better accuracy of
the obtained results. Therefore, it is not surprising that, for example, in [44], a multi-layer
perceptron with up to 1200 neurons was used to estimate the position in a MIMO system
based on channel state information. But, when a neural network is only used for coarse
position estimation, used as a starting point for fine position calculation using iterative
algorithms, much smaller networks with only a dozen of non-linear neurons turned out
to be sufficient. However, compared to the results of other investigations presented in the
literature, such small network configurations are not surprising. For example, in [28], in
a solution based on direction of arrival (DoA) estimation, the neural network consisted
of two layers with a dozen neurons each, while in [20], FNN with 10 neurons in the first
layer and 20 in the second one was successfully used for RSS-based position estimation.
Even smaller neural networks with no more than five neurons were tested in [18] in a small
positioning network based on RSS measurements. Therefore, the FNN structures presented
in this article are consistent with the literature.
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One of the most important conclusions from the investigation presented in Section 4
is that when the accuracy of position estimation in different parts of system’s area of
operation is not the same, proper preparation of the dataset for training the network can
significantly reduce the size of the feedforward neural network that is necessary to achieve
the objective, which in our case was the convergence of the position estimation algorithm.
The non-uniform distribution of points in a training dataset, with a focus on the critical area
for convergence, allowed us to reduce the FNN size to less than half of a network trained
using uniformly distributed points, both in 2D and 3D positioning. However, it should be
emphasized that all the neural networks used in our simulations were trained for the base
stations’ configurations shown in Table 2 and will not work for other reference stations’
deployment without retraining. But, the tacit assumption that the case-study solution is
acceptable can be found in most publications on neural networks and deep learning in
position estimation, including the articles mentioned in Section 2. Generalizing a solution
that can estimate a position in any possible configuration of reference stations will certainly
require much larger neural networks and it may be interesting topic for future work.

Another topic worth investigating in the future is the rate of the convergence of
iterative position estimation algorithms. In this paper, the number of iterations was not
taken into account in the network training process because the error function was the
mean squared error of coordinates estimated by the neural network with respect to the
actual coordinates of the test point. However, when the size of the FNN is already defined,
the network training process can be evaluated by the speed of convergence to reduce
the total computational complexity of both the neural network and the iterative position
calculation algorithm.
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