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Abstract: Detecting violent behavior in videos to ensure public safety and security poses a significant
challenge. Precisely identifying and categorizing instances of violence in real-life closed-circuit
television, which vary across specifications and locations, requires comprehensive understanding
and processing of the sequential information embedded in these videos. This study aims to in-
troduce a model that adeptly grasps the spatiotemporal context of videos within diverse settings
and specifications of violent scenarios. We propose a method to accurately capture spatiotemporal
features linked to violent behaviors using optical flow and RGB data. The approach leverages a
Conv3D-based ResNet-3D model as the foundational network, capable of handling high-dimensional
video data. The efficiency and accuracy of violence detection are enhanced by integrating an attention
mechanism, which assigns greater weight to the most crucial frames within the RGB and optical-flow
sequences during instances of violence. Our model was evaluated on the UBI-Fight, Hockey, Crowd,
and Movie-Fights datasets; the proposed method outperformed existing state-of-the-art techniques,
achieving area under the curve scores of 95.4, 98.1, 94.5, and 100.0 on the respective datasets. More-
over, this research not only has the potential to be applied in real-time surveillance systems but also
promises to contribute to a broader spectrum of research in video analysis and understanding.

Keywords: deep learning; CCTV anomaly detection; optical flow; attention network

1. Introduction

Identifying violent conduct within video content has quickly become critical in pub-
lic safety and security research. In the society of today, the widespread integration of
closed-circuit television (CCTV) for crime prevention and surveillance has reached unprece-
dented levels. However, this expansion in CCTV deployment has not been matched by
a corresponding increase in human resources for the monitoring and oversight of these
systems. Consequently, automated systems that can rapidly and precisely detect instances
of violence in real time are vital. These systems can provide a timely alert to hazardous
scenarios, facilitating swift responses.

Traditional methods for detecting violence predominantly concentrate on manual
feature extraction from video data [1–3]. However, these approaches frequently exhibit
shortcomings in robustness and adaptability when deployed in real-world settings. This
limitation stems from the intricate interplay of factors such as installation angles, diverse
locations, varying backgrounds, and video resolutions of CCTV footage. In recent times,
propelled by advances in artificial intelligence, several deep-learning models have been
developed. These models autonomously identify features and patterns that were previously
challenging to detect using conventional violence-detection methods [4–7].

Assessing the extent of motion plays a pivotal role in identifying violent occurrences
in video content. Optical-flow techniques are commonly used to capture such motion
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patterns. This approach quantifies the movement between successive frames, proving
effective in swiftly evolving scenes or instances of violence. However, optical-flow frames
alone may not comprehensively detect violent scenarios. RGB frames offer indispensable
cues to recognize violence within static images, revealing details about the elements in
the scene and their interactions. For instance, a motion like running might be construed
as benign, as what may be jogging in one context could signify a potentially hazardous
situation in another. Herein lies the significance of RGB data. Analyzing color and object
patterns within the frames enables a violence-detection model to comprehend a wider
context, thereby minimizing false alarms. The insights obtained from the fusion of optical
flow and RGB data are mutually complementary. Concurrently integrating both types of
data can significantly bolster the efficiency and precision of violence detection by providing
a more comprehensive understanding of the content.

For successful integration of optical flow and RGB data, a model that adeptly compre-
hends the interconnections between temporal and spatial dimensions becomes imperative.
Convolutional neural networks (CNNs) have demonstrated their efficacy in handling spa-
tial data in various applications, such as image recognition [8–11], alongside applications
in security and image inpainting [12,13]. In the realm of video analysis, 3D CNN (Conv3D)
models have gained prominence. These models consider the width, height, and temporal
sequences (frames) of images, effectively handling both the temporal and spatial informa-
tion inherent in videos. This concurrent processing of spatiotemporal aspects marks the
capability of Conv3D models in video analysis and recognition.

This study introduces a robust violence-detection network tailored for diverse back-
grounds. We focus on isolating and scrutinizing moving objects within videos rather than
the static background, thereby enhancing detection capabilities across various datasets that
portray violent scenarios. To capture features associated with non-background moving
objects, we harness optical-flow features extracted from the video and complement these
with RGB frames to comprehensively interpret the visual context. Both components serve
as inputs to the model. Our methodology integrates these combined features to understand
the spatiotemporal characteristics embedded within the video frames. To achieve this, we
employ a Conv3D-based ResNet model, known as ResNet-3D, renowned for its proficiency
in comprehending video data. This specialized model allows our system to be trained to
recognize patterns of violence, considering both dynamic movements and visual context.
By capitalizing on the strengths of optical flow and RGB data features, our approach repre-
sents a significant step towards developing a more accurate and reliable violence-detection
model. This model surpasses existing models by addressing the challenges posed by the
varying specifications of real-world CCTV setups, thereby offering enhanced robustness
and adaptability.

The key contributions outlined in our study are as follows:

1. Extraction of motion information between frames using optical-flow features;
2. Understanding of visual contexts, such as objects and interactions, using RGB data;
3. Development of a model that captures the relationship between integrated RGB and

optical-flow frames, and understands both spatial and temporal dimensions, using
ResNet-3D and an attention module.

The remainder of the paper is structured as follows. Section 2 provides an in-depth
exploration of crucial technologies fundamental to developing a violence-detection system.
Section 3 outlines the algorithm designed to proficiently detect instances of violence.
Section 4 emphasizes the presented data and preparatory steps for training, covering
aspects such as loss functions and evaluation metrics. Section 5 evaluates the performance
of the model using CCTV data. Finally, Section 6 concludes the paper, summarizing the
research findings of this paper.

2. Related Work

In this section, we provide an overview of violence-detection techniques and focus
on the preliminary studies for the method proposed in this paper. We discuss research on
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optical flow, studies combining optical flow with RGB data, Conv3D, and the trends in
video-violence detection research.

2.1. Utilization of Optical Flow in Violence Detection

Recently, the importance of using optical flow, which extracts critical information
about the dynamic movements of objects in violent situations, has been increasingly high-
lighted. Early research in violence detection applied to human action recognition [14]
used traditional computer-vision techniques to extract optical flow by employing the dense
trajectories method, which calculates trajectories of uniformly sampled points across frames
to capture extensive optical flow information. Such traditional methods had limitations
in precisely extracting optical flows from videos with various resolutions or containing
numerous objects, resulting in violence-detection models with low performance in terms of
accuracy and speed.

To overcome the limitations of these traditional computer-vision techniques, various
deep-learning models that efficiently extract optical flows from image frames have been
developed. There are three types of studies: studies that use spatial pyramid networks
to estimate optical flows [15], studies that assume that most scenes in videos consist of
rigid objects and estimate optical flow in such environments [16], and those that apply the
transformer architecture for optical-flow estimation [17]. These deep-learning models have
demonstrated high action-recognition rates, which have been widely acknowledged. The
trend in violence-detection research is continuing towards enhancing the efficiency and
accuracy of video analysis using optical flow.

2.2. Combining Optical Flow with RGB Data

Recent research has focused on combining optical flow with RGB data to gain an
integrated understanding of the motion characteristics and visual context within video
data [18]. Integrating features from RGB and optical flow allows for capturing various
aspects and characteristics of video data, enabling the model to better understand the
complex structures or patterns within the data. Moreover, it prevents the model from
relying too heavily on specific information and allows it to learn more general patterns
based on diverse information, thus reducing the risk of overfitting.

Several deep-learning models use both optical flow and RGB data. For instance, the
I3D model [18], designed for video classification and action recognition, has shown high
performance in video recognition using optical flow and RGB simultaneously as inputs.
In the video object recognition approach proposed by Zhang [19], issues such as motion
blur, defocus, partial occlusion, and rare poses in videos were addressed by combining
optical flow with RGB data. Studies that combined RNN [20] and CNN models to learn
temporal features [19] also used both optical flow and RGB data. Additionally, various
video-classification models have used RGB and optical flow [21–23].

2.3. Conv3D

Conv3D is gaining significant attention in the field of video processing, particularly in
action recognition within videos. Unlike traditional CNNs, which focus on 2D data such as
images, Conv3D is designed to detect both the static content of images and the dynamic
changes over time. The key to this capability is that Conv3D performs convolutions over
time and across width and height, which is typical in CNNs. Owing to this feature, Conv3D
can simultaneously capture and learn the temporal continuity and spatial characteristics
of videos.

Consequently, the amount of research that uses Conv3D for video data analysis is
increasing. The TSN model [24], a new approach that more precisely represents motion
within videos, is an example. TSN segments full videos into multiple parts and integrates
the sampled frame information from each segment to derive a comprehensive representa-
tion of the videos. This approach has improved the accuracy of human-action recognition in
videos. Christoph [25] introduced a ResNet-based Conv3D architecture, similar to the one
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used in this study, to explore methods of processing spatiotemporal information in videos.
Early Conv3D [26] application studies presented research that improved the way of learn-
ing features through convolutions in the spatiotemporal dimensions of videos. Another
study [27] proposed the C3D model, exploring a methodology for directly learning spa-
tiotemporal features from entire video clips. This model deeply analyzed the relationships
and patterns between frames using continuous convolutions in the temporal dimension.

Thus, research centered around Conv3D is achieving high performance in action
recognition while overcoming the spatiotemporal complexity of videos. This significantly
expands its potential applications in various fields related to video processing.

2.4. Video-Violence Detection

Automatic detection of violent behaviors in videos has become important in various
sectors, such as security, education, and transportation. In the early stages of video-violence
detection research, features extracted manually from the videos were used to develop
detection models. One of the seminal works proposed by Hansner [4] used handcrafted
features to detect violent actions in crowds in real time. It is a representative example
of early violence-detection models. Although these techniques achieved considerable
recognition rates with simple features in specific video environments, they fell short in
detecting violent patterns in the complex settings of various CCTV systems.

With advances in technologies such as deep learning, end-to-end models that extract
features directly from video data are being proposed. These methods, with the significant
increase in the amount of data available for model training, have shown much higher
performance than traditional handcrafted-feature-based approaches and are highly accurate
and reliable in real-world environments.

Various deep-learning-based violence-detection models, such as the Conv-AE [6]
model, learn temporal consistency in video sequences by combining the feature extraction
capability of CNNs with the data reconstruction ability of AutoEncoders [5] after com-
pressing the data. Another example is Explainable VAD [7], a violence-detection network
based on unsupervised learning that learns general knowledge from video data and detects
abnormal events in specific contexts. Moreover, the skeleton-based approach [28] abstracts
actions using human skeletons to form continuous trajectories in each frame and uses this
information to detect anomalies in movement.

Research on video-violence detection has evolved from early handcrafted-feature-
based methods to now leveraging deep learning to utilize various features comprehensively.
This technological progression plays a crucial role in accurately detecting acts of violence
in more diverse and complex environments.

3. Approach

We propose a violence-detection model that combines RGB and optical-flow data
using a Conv3D model based on ResNet. The structure of the proposed violence-detection
model is shown in Figure 1. Given video data, RGB frames are extracted at regular frame
intervals. Subsequently, optical-flow frames are derived from these RGB frames using a
deep-learning model; then, the RGB and optical-flow frames are combined. The combined
frames are fed into the backbone model, Conv3D + attention module, for violence-detection
classification. The specific details of the proposed model are described below.

3.1. Optical Flow

Optical flow represents the pixel movement between two consecutive image frames
as a vector field and is crucial for detecting the movement of objects or the background,
as well as camera motion. Violent actions are characterized by abrupt and unpredictable
movements, which can be analyzed using optical flow. Understanding various patterns of
movement during violent interactions through optical flow enables more accurate detection
of the intensity and nature of the behavior. The precision and efficiency of the model in
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violence detection can be enhanced using the pattern changes in optical flow corresponding
to violent behaviors in different environments.

Figure 1. Proposed violence detection network.

We employed GMFlow [29], a state-of-the-art model that achieved the highest accuracy
on the datasets used for validating optical-flow model performance, such as Sintel [30] and
KITTI [31]. GMFlow uses a pre-trained model with the Sintel dataset, which consists of
videos with various backgrounds and their corresponding optical flow. The model structure
of GMFlow is shown in Figure 2. Figure 3 illustrates the resulting image of optical flow
obtained from a video of a violent situation, emphasizing the dynamic changes between
video frames. These highlight regions of movement, mainly detecting features of moving
objects. Optical flow visually represents these patterns and directions of movement, aiding
in a clearer understanding of changes in moving objects or scenes.

Figure 2. GMFlow model used for optical flow extraction.

3.2. RGB Data

In addition to optical flow, which captures dynamic movements in videos, RGB data
should also be used to capture static context information effectively. RGB data contain
the original color information of the video, which can identify static information such as
the background, objects, and environment of violent behavior. Since violent situations are
often closely linked to specific backgrounds or contexts, this static information provides
critical insight for increasing the detection accuracy. For example, the act of one person
pushing another could have a significantly different contextual meaning when occurring in
a park, suggesting play, as opposed to in a parking lot, suggesting violence. Thus, RGB
data provide the context of the action, helping to ascertain the intent or cause of action
more accurately.
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Figure 3. Optical-flow image extracted from a violent situation video.

3.3. Conv3D

Conv3D is a convolutional operation designed for 3D data, especially temporal data
such as videos. While traditional CNNs only perform convolutions across the spatial
dimensions of height and width of an image, Conv3D additionally considers the temporal
dimension, performing convolutions across three dimensions: height, width, and time.

Figure 4 visualizes the operation of Conv3D. The process of Conv3D operation pro-
ceeds as follows:

1. The input is a 4D tensor of the form C × T × W × H, where C represents the number
of channels (3), T represents the temporal dimension (frames), H represents the height
of the image, and W represents the width of the image.

2. For the convolution filter, a 5D tensor of the form F × C × T × H is used. Here, F is the
number of filters. The depth of the filter must match the number of input channels.

3. When performing the convolution, a 3D filter is applied to each channel of the input
data to generate output values. The filter slides along the temporal dimension, com-
puting spatial convolutions at each position. These results are summed to obtain the
final output value.

4. The output is a 4D tensor of the form F × T × W × H, composed of the convolution
results for each filter.

Figure 4. Conv3D calculation.
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Through these 3D operations, Conv3D can extract not only the features of images but
also the information between frames along the time axis.

3.4. ResNet-3D

ResNet-3D [25] is an architecture that extends the core principles of the existing CNN
model, ResNet, and applies it to the Conv3D model. This allows the model to capture
temporal continuity between video frames. Such a feature enables the model to effectively
learn patterns and information in the temporal dimension.

The essential feature of ResNet, the residual connection, is also applied to this ResNet-
3D structure. One of the main advantages of residual connections is that they alleviate the
vanishing gradient problem, which is common in deep networks. This issue can become
even more pronounced in complex networks that handle high-dimensional data, such
as videos in the case of Conv3D. With the introduction of residual connections, stable
improvements in model performance are possible even in deep Conv3D architectures.

Because ResNet-3D processes information in the temporal dimension, it can intricately
learn information about dynamic characteristics such as movement, continuity, and tempo-
ral changes, demonstrating superior performance on video analysis problems like action
recognition compared with other Conv3D models. Figure 5 below depicts the structure of
the ResNet-3D model used in this study.

Figure 5. ResNet-3D model structure.

As shown in Figure 5, ResNet-3D uses residual connections to mitigate the vanishing
gradient problem by adding skip connections that directly add the input to the output of
each layer, aiding the network in learning more effectively. It also employs bottleneck struc-
tures at intervals to reduce the computational load and uses batch normalization to enhance
network stability. We used ResNet-3D based on Conv3D as the backbone model, focusing
on learning the temporal continuity of video data to extract more sophisticated features.
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3.5. Attention Module

To detect violent situations, it is crucial to capture the dynamic changes between
consecutive frames within the video and the significant frames related to dangerous visual
information. We used data in the form of a combination of RGB frames and optical flow
and employed the SEModule3D attention module within our backbone model, ResNet-3D,
to assist the model in identifying important frames from the combined data. SEModule3D
is an adaptation of the widely used squeeze-and-excitation (SE) attention module in images
for 3D data, modeled to suit 3D information. The SE network was first proposed in [32],
and its basic concept is to explicitly model the interdependencies between channels of
feature maps. This allows the network to learn the importance of each Frame, thereby
enhancing the representativeness of the network. The operation of SEModule3D is shown
in Figure 6.

Figure 6. Attention module structure.

The operational structure of SEModule3D is as follows:

1. Squeeze: It uses average pooling to extract the global average information of each Frame.
2. Excitation: Based on the global average statistics, the feature map is transformed

through two fully connected layers. The first layer reduces the number of Frames,
followed by an adjustment to values between 0 and 1 via the rectified linear unit and
the sigmoid functions.

3. Rescale: The final output is obtained by multiplying the input feature map with the
sigmoid output. This process enables the network to learn the importance of each
Frame, emphasizing important Frames and suppressing less important ones.

The attention module helps the violence-detection model to focus on important Frames
within the input data, effectively capturing critical areas within specific frames and impor-
tant movements between consecutive frames.

4. Experiment

In this section, we introduce the experimental datasets, describe the loss functions and
optimization techniques employed, and provide an overview of the actual experimental setup.
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4.1. Training Data

To train the model to detect violent behaviors, we used training data that include
a variety of backgrounds and situations captured by real CCTV footage. Each dataset
was divided into an 8:2 ratio for training and validation purposes. The datasets used are
as follows:

UBI-FIGHT [33]: This contained real violent situations occurring in various places and
consisted of 1000 data samples. Among these, 786 were normal situations and 214 were
abnormal, making it an imbalanced dataset.

Hockey [34]: This contained violent situations from real hockey games, comprising
1000 data samples with 500 normal and 500 abnormal situations.

Movie-Fights [35]: This contained 200 violent situations captured in various back-
grounds from movies—100 normal and 100 abnormal.

Crowd [4]: A video dataset about collective violence situations. It contained 256 data
samples, with 123 normal and 123 abnormal situations.

4.2. Loss Function

For training, a loss function is used as a metric to gauge the prediction and error. A loss
function refers to a function that calculates the error based on the difference between input
and output values. Owing to the nature of the data used in anomaly detection, which often
involves an imbalance between normal and abnormal data, the focal loss function [36] is
employed to address this imbalance as much as possible. It aids the handling of imbalanced
class distributions in binary and multi-class classification problems and performs effectively
for datasets with imbalanced distributions, which are not adequately addressed by standard
cross-entropy loss.

Focal loss is based on cross-entropy loss; however, it assigns greater weight to mis-
classified classes and reduces the loss for correctly classified classes. This encourages the
model to focus on classes that are difficult to classify and less learned. Below is the focal
loss formula.

FL(pt) = −αt(1 − pt)
γ log(pt) (1)

The essence of focal loss is as follows. During the model training, if a sample is
deemed easy, the value of pt in the formula becomes high, and by adding (1 − pt)γ to
the loss, a penalty is imposed for high-confidence predictions. Here, γ is known as the
focusing parameter, and it serves to reduce the contribution of easy samples to the loss
during model training.

4.3. Optimization Technique

We employed AdamW [37], an improved version of adaptive moment estimation
(Adam) [38], to address the issue of overfitting caused by training data from imbal-
anced datasets.

4.3.1. Adam

Adam is one of the deep-learning optimization algorithms, which combines the ad-
vantages of momentum [39] and RMSprop [40]. Adam adjusts the learning rate for each
parameter using the average of the past squared gradients.

Adam is an optimization method that adaptively adjusts the learning rate for each
parameter, following the update rule:

θt+1 = θt −
η√

v̂t + ϵ
m̂t, (2)

• θ represents the parameters to be optimized;
• t is the current time step;
• η is the learning rate;
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• v̂t and m̂t are bias-corrected estimates of the first and second moments of the gradients,
respectively;

• ϵ is a small scalar added to improve numerical stability.

The bias-corrected estimates, m̂t and v̂t, are computed as follows:

m̂t =
mt

1 − βt
1

, (3)

v̂t =
vt

1 − βt
2

, (4)

where mt and vt are the first moments (the mean) and the second moment (the uncentered
variance) of the gradients, and β1 and β2 are the decay rates for these moments.

4.3.2. AdamW

AdamW is a modification of the Adam update rule, incorporating L2 weight decay [41].
L2 weight decay is a regularization method that limits the complexity of the model to
prevent overfitting. The update rule of AdamW is similar to that of Adam, but includes
an additional weight decay term during the parameter update phase. The formula for
AdamW is as follows:

θt+1 = θt −
η√

v̂t + ϵ
(m̂t + λθt) (5)

• θ denotes the parameters of the model;
• t indexes the current time step;
• η is the learning rate;
• m̂t is the bias-corrected estimate of the first moment (the mean) of the gradients;
• v̂t is the bias-corrected estimate of the second moment (the uncentered variance) of

the gradients;
• ϵ is a small scalar used to prevent division by zero and ensure numerical stability;
• λ represents the weight decay coefficient.

Here, λθt is the parameter for L2 weight decay, which prevents overfitting by sub-
tracting a small value from the weight updates. Datasets like those for violence detection
often consist of imbalanced data, where the number of normal instances far exceeds that
of abnormal ones. Therefore, to mitigate the problem of overfitting due to training on
imbalanced datasets, we employed the AdamW optimization technique.

4.3.3. Training Environment

The training was conducted on Windows 11 using an i7-13700K CPU, an NVIDIA
GeForce RTX 4090 graphics card, and Pytorch 2.00 + CUDA 11.7 version.

4.3.4. Evaluation Metrics

Accuracy and the receiver operating characteristic–area under the curve (ROC-AUC) [42]
were used as metrics to evaluate the performance of the model. Accuracy is one of the most
intuitively used performance evaluation metrics in classification problems. It is calculated
as the ratio of correct predictions to the total number of predictions. Below is the formula
for accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Here, True positive (TP) is when the actual class is positive and the model also predicts
positive. True negative (TN) is when the actual class is negative and the model predicts neg-
ative. False positive (FP) is when the actual class is negative but the model predicts positive.
False negative (FN) is when the actual class is positive but the model predicts negative.
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The ROC curve graphically represents the relationship between sensitivity and speci-
ficity. It allows the performance of a model to be evaluated across various classification
thresholds. Below are the formulas for sensitivity and specificity.

Sensitivity (TPR) =
TP

TP + FN
(7)

Specificity (TNR) =
TN

TN + FP
(8)

The AUC represents the area under the ROC curve. The closer the AUC value is to 1,
the better the model performance. If the AUC value is close to 0.5, the performance of the
model is considered to be at the level of random guessing.

5. Experimental Result

We used accuracy and AUC as the evaluation metrics for performance comparison
between our model and the models in [6,18,29,43–46] that have shown excellent perfor-
mance in various violent-situation detection in recent studies. In datasets like Hockey,
Movie-Fights, and Crowd, where the ratio of abnormal to normal data is evenly distributed,
model performance was evaluated based on accuracy (ACC).

On the other hand, in the case of datasets with a large imbalance between normal and
abnormal data, such as UBI-FIGHT, it is difficult to evaluate model performance using
only conventional ACC. Since models can be biased towards the predominant class in
imbalanced data, we adopted the AUC evaluation metric, which is widely used to assess
performance on imbalanced datasets.

Deep networks, capable of extracting features across various layers, have demonstrated
powerful performance on high-dimensional data like videos, but issues such as overfitting
can occur, and depth does not always correlate with performance. We experimented with
various depths of the backbone model, ResNet-3D, and conducted performance evaluations.
Four versions of the widely used classification model proposed (ResNet-10, ResNet-34),
were applied in the experiments. By using models of various depths, we sought to explore
the relationship between the depth of each model and its performance.

The results in Table 1 are from an experiment using the UBI-FIGHT dataset. For
evaluation, the model proposed by Hasan [6], which achieved high performance in the field
of violent-situation detection; the model proposed by Ravanbakhsh [43]; Wang’s model [44];
the Binary SVM Classifier proposed by Sultani [45]; and the GMM model [47], which
exhibits excellent performance in video violence-situation recognition, were compared.
Before training and evaluating, the data were resized to 512 × 512, which is a power of
two, ensuring efficient operation in GPU memory allocation and thread management.
Since the number of frames in each video within the video dataset can vary, 150 frames
were extracted from the frames of each video to train the model. The UBI-FIGHT dataset
comprised 784 normal videos and 214 abnormal videos and included a vast array of video
lengths ranging from a minimum of one minute to a maximum of one hour. However, due
to the significant imbalance between the number of normal and abnormal videos, the AUC
metric, which is more suitable for imbalanced datasets, was used instead of the commonly
used accuracy (ACC) metric to evaluate the performance of the model. The model based
on the proposed ResNet-34 showed outstanding performance, with an AUC score of 0.952.
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Table 1. Performance comparison of proposed model and existing models on the UBI-FIGHT dataset.

Method AUC

Hasan et al. [6] 0.510
Ravanbakhsh et al. [43] 0.523

Wang et al. [44] 0.610
Sultani et al. [45] 0.892

GMM [47] 0.906
Proposed (ResNet-10) 0.951
Proposed (ResNet-34) 0.952

Table 2 presents the experimental results for the Hockey, Movie-Fight, and Crowd
datasets. The models used for comparison, which are I3D, Flow Gated, and SPIL, are
all networks that have shown good performance in violence-situation detection. Since
all the data used in Table 2 are balanced datasets with equal proportions of normal to
abnormal instances, accuracy (ACC) was used as the evaluation metric for analysis. In the
Hockey dataset, the model proposed in this paper, Proposed (ResNet-34), achieved high
performance with an ACC of 98.1. In the Movie-Fights dataset, all depths of ResNet models
reached high performance with an ACC of 100. For the Crowd dataset, which involves
violent situations occurring within large crowds, the Proposed (ResNet-10) model showed
good results with an ACC of 94.0, close to the performance of SPIL.

Table 2. Performance comparison of proposed model and existing models on the Hockey, Movie-
Fights, and Crowd datasets.

Method Hockey (ACC) Movie-Fights (ACC) Crowd (ACC)

I3D [6] 0.934 0.958 0.834
Flow Gated 0.980 0.973 0.888

SPIL [45] 0.968 0.953 0.954
Proposed (ResNet-10) 0.970 1.0 0.940
Proposed (ResNet-34) 0.981 1.0 0.915

Table 3 presents a comparative analysis of performance with and without the use of
an attention module. The results indicate a higher ACC when the attention module is
employed. It demonstrates that assigning weights to significant frames among RGB and
optical-flow frames enhances the effectiveness of video violence detection. This finding
confirms the value of focusing on crucial frames in improving the recognition of violent
situations in videos.

Table 3. Comparative performance evaluation of models with and without attention module.

Method Hockey (ACC)

Proposed (ResNet-10) 0.970
Proposed (ResNet-10) Without Attention 0.930

Proposed (ResNet-34) 0.981
Proposed (ResNet-34) Without Attention 0.925

Additionally, in terms of time efficiency, the proposed model demonstrated reliable
performance with a processing speed of 30–60 frames per second (FPS), aligning well with
the operational standards of real-time CCTV systems. Although this aspect was not directly
compared with other models, it adds a significant dimension to the practical applicability
of our approach in real-world scenarios.

6. Conclusions and Future Work

In this study, we propose an enhanced violence-detection model that integrates optical
flow and RGB data by augmenting the ResNet-3D model with an attention module. This
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model effectively captures both the spatiotemporal features of the dynamic context from
optical flow and the spatial context of RGB frames, combining them for a comprehensive
analysis. The introduction of the attention module significantly improved the model’s
ability to focus on crucial frames for detecting violent situations within the combined RGB
and optical-flow frames, thus increasing the accuracy of violence detection.

While the foundational ResNet-based ResNet-3D model, which leverages the residual
connections of ResNet, allows for efficient training with high-dimensional data such as
videos. Performance evaluations on real-life CCTV datasets, including the Crowd, Hockey,
UBI-FIGHT, and Movie-Fights datasets, have shown the superior accuracy of our model
over existing models in various environments with differing backgrounds, lighting, and
movements. However, the model’s performance slightly decreases in scenarios involving
videos with a high density of people. Additionally, while the model is capable of processing
video in real-time, reducing the memory required to compute optical flow from images
remains a challenge for us.

Our future research plans include two primary directions. Firstly, we aim to conduct
research on reducing memory usage for optical flow extraction. This is a crucial step
to enhance the efficiency of video processing and increase the applicability of real-time
systems. Specifically, by improving memory efficiency, we intend to make optical-flow-
based models more versatile across a wider range of equipment and environments.

Secondly, we plan to focus on increasing the accuracy of violence detection in environ-
ments with spatial constraints, like crowded areas. Such settings pose a unique challenge
to violence detection models due to the difficulty in detecting dynamic movements. To
address this, we will work on developing more sophisticated data processing techniques
and algorithms to optimize the model for high accuracy in complex environments.

Our findings demonstrate that by utilizing optical flow and the attention module, the
model is able to focus more on the dynamic aspects of objects, showing robust performance
even in video datasets with diverse backgrounds. This video violence detection model
is expected to play a significant role in real-time security and surveillance systems in
the future, especially in enhancing safety in complex urban environments or large public
spaces. Furthermore, the development of this model expands the possibilities of AI-based
security systems and paves the way for the development of more sophisticated surveillance
technologies. This represents a significant advancement in improving public safety, offering
a swift and efficient mechanism for responding to hazardous situations.
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